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Abstract: A palladium-catalyzed Mizoroki–Heck-type reaction
of aryl trimethoxysilanes with olefins is described. A series of
ArSi(OMe)3 and olefins, including electron-rich and electron-defi-
cient analogues worked well in the procedure, affording the aryla-
tion products in moderate to good yields.

Key words: palladium-catalyzed, aryltrimethoxysilanes, cross-
coupling, Heck reaction, alkenes

The palladium-catalyzed arylation of olefins, also known
as the Mizoroki–Heck reaction, is one of the most versa-
tile tools available for C–C bond formation used in organ-
ic synthesis.1 Over the past few decades, some alternative
halide surrogates such as diazonium halide salts,2 tri-
flates,3 acid chlorides,4 and telluronium salts,5 have been
developed for use in the Mizoroki–Heck reaction. Recent-
ly, the transition-metal catalyzed oxidative Mizoroki–
Heck reaction of boronic acids with alkenes has drawn
considerable attention because boronic acids are compar-
atively stable, nontoxic, and easily available.6 Compared
with the organoboranes, organosilane reagents, especially
aryl trialkoxysilanes, are lower-cost and easily purified by
distillation or chromatography.7 However, much attention
had been paid to transition-metal-catalyzed 1,4-conjugate
addition (CA) of organosilane reagents to a,b-unsaturated
conjugated compounds. The Mizoroki–Heck-type reac-
tion (HT), which occurs as a side reaction of the 1,4-con-
jugated addition and results from b-H elimination of the
a-metal carbonyl intermediates in the aforementioned
reaction, was occasionally observed (Scheme 1).

From both organometallic and synthetic points of view, it
is important to switch the reactivity of a-metal carbonyl
intermediates. The reactivity of an organo-palladium spe-
cies is not only determined by the intrinsic nature of pal-
ladium, but can also be tuned by the supporting ligands
and reaction conditions. Zou described the tunability of a
competition between b-H elimination versus hydrolysis of

a-rhodium carbonyl intermediates in the presence of wa-
ter.6u

In 1998 and 2001, Mori and co-workers described the pal-
ladium and rhodium-catalyzed oxidative Mizoroki–Heck-
type reaction of aryl silanol.8 However, only a,b-unsatur-
ated conjugated compounds8a or electron-deficient
alkenes8b were reported and the procedure was very sensi-
tive to the electronic nature of the carbonyl substrate.8a

Moreover, while the synthesis of chlorosilanes, which un-
derwent hydrolysis to form silanols, was somewhat te-
dious,9 aryl trialkoxysilanes could be readily prepared
from the reaction of ArX and either tetraalkoxysilanes or
trialkoxysilanes.7b,10 In 2003, Mori reported an iridium-
catalyzed Mizoroki–Heck reaction of aryl trialkoxy-
silanes that occurred at 120 °C.11 Herein, we wish to re-
port a mild, palladium-catalyzed cross-coupling reaction
of aryl trimethoxysilanes with alkenes, including elec-
tron-deficient, electron-rich, acyclic and cyclic conjugated
alkenes.

We envisioned that the hydrolysis of the a-palladium car-
bonyl intermediates would be inhibited in the absence of
water. Initially, we investigated the Mizoroki–Heck-type
reaction of phenyl trimethoxysilane (2a) with cyclohex-2-
enone (1a) in the presence of Pd(OAc)2 (5 mol%), bipy
(10 mol%) and three equivalents of various fluoride
sources in anhydrous DMF (2 mL) at 60 °C (Table 1). The
results suggested that the fluoride source had a dramatic
effect on the yields. Among the fluoride sources screened,
only FeF3 and AgF showed good catalytic activity
(Table 1, entries 3 and 4). Remarkably, compared with
other solvents, DMF proved to be the best among the ar-
ray of solvents tested (Table 1, entries 4–8). The ligands
were also found to be crucial for this transformation. The
phosphines tested, such as tri(2-tolyl)phosphine and
tris(3,5-dimethylphenyl)phosphine, which are susceptible
to oxidation under air, gave moderate yields (Table 1, en-
tries 13 and 14), whereas the phenanthroline class of

Scheme 1 Two plausible pathways for a-metal carbonyl intermediates
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ligands, which are more stable towards oxidation, provid-
ed high yields (Table 1, entries 10–12). Amongst these,
1,10-phenanthroline was found to be the most effective;
using this ligand, the yield of 3aa sharply increased to
90%.

Under our optimized reaction conditions, we explored the
scope of reaction with a range of aryl trimethoxysilanes as
shown in Table 2.12 Aryl trimethoxysilane substrates
worked well under the reaction conditions. Electron-rich,
as well as electron-neutral aryl trimethoxysilanes coupled
efficiently with cyclohex-2-enone and good yields were
obtained (Table 2, entries 1 and 5). However, the steric
hindrance affected the efficiency. For example, only a
22% yield of 3ad was isolated.

In the next stage, we explored the reaction of a variety of
olefins with PhSi(OMe)3 as shown in Table 3. Electron-
deficient olefins such as methyl acrylate 3d reacted
smoothly to afford the desired product 3da in high yield.
However, when acrylamide was subjected to the proce-
dure, the yield dramatically decreased to 33%. The elec-
tron-rich olefin 1e also worked well under the standard
reaction conditions and provided (E)-stilbene (3ea) in
75% yield. Furthermore, styrene and 2-vinylpyridine
were good reaction partners and gave 78% and 62% yields
of (E)-stilbene (3ba) and (E)-2-styrylpyridine (3ca), re-
spectively (Table 2, entries 1 and 2). However, the former
compound (E)-2-styrylpyridine failed to undergo the aryl-
ation reaction, presumably due to steric hindrance.

Silver(I) fluoride may play a dual role in the procedure.
One could be to activate the ArSi(OMe)3 by forming
[ArSi(OMe)3F]–, the other may be to regenerate Pd(II)
from Pd(0), which is generated from the HPdX released
by the b-H elimination of a-metal carbonyl intermediates
(Scheme 1).

In conclusion, we have developed an efficient and mild
method for a Mizoroki–Heck-type reaction of both elec-
tron-rich and electron-deficient olefins by employing
readily prepared aryl trimethoxysilanes. The reaction af-
forded the arylation products in moderate to good yields.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.

Table 1 Effects of Solvents and Fluoride Source on the Reaction 
Yielda

Entry Ligand F source Solvent Yield 
(%)b

1 bipy TBAF·3H2O DMF <5

2 bipy KF DMF <5

3 bipy FeF3 DMF 70

4 bipy AgF DMF 84

5 bipy AgF THF <5

6 bipy AgF MeCN <5

7 bipy AgF toluene <5

8 bipy AgF dioxane <5

9 Ph3P AgF DMF 44

10 1,10-phenanthroline AgF DMF 90

11 4,7-dimethyl-
1,10-phenanthroline

AgF DMF 50

12 2,9-dimethyl-4,7-diphenyl-
1,10-phenanthroline

AgF DMF 87

13 (2-MeC6H4)3P AgF DMF 34

14 (3,5-Me2C6H3)3P AgF DMF 40

15 AgF DMF 42

16 1,10-phenanthroline AgF DMF 88c

17 1,10-phenanthroline DMF <5d

a Reaction conditions: 1a (19 mL, 0.2 mmol), 2a (56 mL, 0.3 mmol), 
Pd(OAc)2 (2.2 mg, 5 mol%), ligand (10 mol%), F source (0.6 mmol), 
anhydrous solvent (2 mL), air, 60 °C. 
b Isolated yield.
c Under N2.
d Under O2.
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Table 2 Mizoroki–Heck-Type Reaction of Aryl Trimethoxysilanes 
with Cyclohex-2-enonea

Entry ArSi(OMe)3 Product Yield (%)b

1 2a 3aa 90

2 2b 3ab 82

3 2c 3ac 91

4 2d 3ad 22

5 2e 3ae 77

6 2f 3af 86

7 2g 3ag 70

a Reaction conditions: cyclohex-2-enone (1a; 19 mL, 0.2 mmol),
ArSi(OMe)3 2 (0.3 mmol), Pd(OAc)2 (2.2 mg, 5 mol%), 1,10-phen-
anthroline (3.6 mg, 10 mol%), AgF (76mg, 0.6 mmol), anhydrous
DMF (2 mL), air, 60 °C. 
b Isolated yield.
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Table 3 Mizoroki–Heck-Type Reaction of Phenyl Trimethoxy-
silane with Olefinsa

Entry Olefin Product Yield (%)b

1 1b 3ba 78

2 1c 3ca 62

3 1d 3da 92

4 1e 3ea 75

5 1f 3fa 33

6 1g 3ga <5

a Reaction conditions: olefin 1 (0.2 mmol), PhSi(OMe)3 (56 mL, 0.3 
mmol), Pd(OAc)2 (2.2 mg, 5 mol%), 1,10-phenanthroline (3.6 mg, 10 
mol%), AgF (76 mg, 0.6 mmol), anhydrous DMF (2 mL), air, 60 °C. 
b Isolated yield. 
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1g, (E)-2-styrylpyridine
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