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Efficiently installing high molecular complexity is a funda-
mental pursuit in organic synthesis.[1] Several excellent
strategies have emerged for installing multiple bonds in a
single synthetic operation; bidirectional synthesis,[2] domino
reactions,[3] biomimetic cascades,[4] and multicomponent reac-
tions.[5] Each strategy exhibits complementary advantages,
with multicomponent reactions benefiting from an inherent
convergence that fulfills the synthetic criteria of assembling
complex targets from fragments of similar size.[6]
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As a subclass of multicomponent reactions, conjugate
addition–alkylation reactions install two new bonds and up to
three stereocenters in a single synthetic operation.[7] Chela-
tion-controlled conjugate addition–alkylations exhibit the
additional advantage of promoting conjugate additions with
less reactive Michael acceptors. The strategy is particularly
effective for g-hydroxyalkenenitriles (Scheme 1, 1!4)[8]

where chelation permits a facile conjugate addition–alkyla-
tion with a recalcitrant class of Michael acceptors that are
unreactive toward many conventional nucleophiles.[9]

The highly efficient chelation-controlled conjugate addi-
tions to g-hydroxyalkenenitriles 1 stimulated a multicompo-
nent variation with Grignard reagents and oxonitriles for
potentially installing three new stereocenters in one operation
(inset, Scheme 1). Conceptually, the addition of a Grignard
reagent to the g-oxonitrile 5a was envisaged to directly
generate an alkylmagnesium alkoxide intermediate 2, which
triggered conjugate addition and generated the dimagnesi-
ated nitrile 3 for potential alkylation (Scheme 1). Addition of
excess PhMgBr to oxonitrile 5a[10] triggers sequential carbon-
yl and conjugate additions, generating 4a as the sole stereo-
isomer.

Although the formation of 4a validates the multicompo-
nent concept, optimizing the reaction was frustrated by the
volatility and instability of 5a.[10a] Attention was therefore
redirected toward the more stable six-membered oxonitrile
5b[11] (Scheme 2). Addition of excess methylmagnesium
chloride to 5b triggers the sequential carbonyl addition–

conjugate addition affording the cyclic magnesiated nitrile
3b.[8] Intercepting this formal dianion with methyl iodide
installs a third stereocenter,[12] generating 4b as a single
stereoisomer.[13]

The efficient three-component addition–alkylation of 5b
is typical of the reactivity exhibited in a range of multi-
component reactions (Table 1). Grignard reagents react
significantly faster with the carbonyl group than in the
subsequent chelation-controlled conjugate addition, permit-
ting the sequential addition of two different Grignard
reagents, first to the ketone and second in the conjugate
addition (Table 1, entry 2). Employing w-haloalkyl Grignard

Scheme 1. Chelation-controlled conjugate additions to alkenenitriles.
a) PhMgBr (3 equiv), THF, RT, 1.5 h, (58%).

Scheme 2. Multicomponent addition–alkylation with oxonitrile 5b.
a) MeMgCl, THF, �78 8C, 1 h; b) �78 8C!RT, 2 h, MeI, 86%.

Table 1: Multicomponent oxonitrile conjugate addition–alkylations.

Entry Oxonitrile Reagents Alkanenitrile Yield [%]

1 MeMgCl, 86

MeI

2 MeMgCl, 71

PhMgCl,
MeI

3 MeMgCl, 53

4 iPrMgBr, 58

5 MeMgCl, 53

6 MeMgCl, 50[b]

[a] Stereochemistry assigned by X-ray crystallography.[14] [b] Prepared by
iPrMgCl exchange.[15] [c] An equivalent of tBuLi is added after addition of
6b to promote conjugate addition through the ate complex.[16]
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reagents, such as chlorobutylmagnesium bromide (6a) or the
related Grignard reagent 6b, for the conjugate addition
allows a smooth annulation route to the cis-fused decalin 4d
and hydrindane 4e, respectively (Table 1, entries 3 and 4,
respectively). Similarly, carbonyl additions to the correspond-
ing five-membered oxonitrile 5c,[11] followed by addition of
the w-haloalkyl Grignard reagents 6a and 6b, generates
nitrile-substituted hydrindane and octalin rings in one syn-
thetic operation (Table 1, entries 5 and 6).

The rapid installation of three new stereocenters makes
the multicomponent Grignard addition to oxonitriles ideally
suited to terpenoid synthesis. Combining the multicompo-
nent addition with cationic cyclization provides a particularly
efficient entry to the dehydroabietic acid skeleton, several
congeners of which exhibit antitumor, antibiotic, and cyto-
toxic actitvity.[17] Sequential addition of MeMgCl and
Grignard 6c[18] to 5b followed by methylation with MeI
installs the entire abietane carbon skeleton (Scheme 3).

Intramolecular Friedel–Crafts alkylation affords predomi-
nantly[19] the cis-abietane 9, illustrating the advantage of the
small, non-nucleophilic nitrile that permits arylation without
prior interception of the carbocation intermediate 8 that
occurs with the corresponding ester.[20] Nitrile hydrolysis
completes the synthesis of epi-dehydroabietic acid 10.[21]

Multicomponent Grignard addition–alkylations of oxo-
nitriles rapidly assembles highly substituted mono- and
bicyclic nitriles. Employing w-haloalkyl Grignard reagents
permits an efficient route to octalins, hydrindanes, and
decalins with aryl-substituted Grignards being ideally suited
for annulation by Friedel–Crafts alkylations. Collectively the
strategy rapidly assembles a diverse array of cyclic nitriles,
with complete control over the three stereogenic centers.
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