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Abstract. This paper consists of two nearly independent parts, both of which discuss
the common theme of biaccessible points in the Julia setJ of a quadratic polynomial
f : z 7→ z2 + c.

In Part I, we assume thatJ is locally-connected. We prove that the Brolin measure of
the set of biaccessible points (through the basin of attraction of infinity) inJ is zero except
whenf (z) = z2−2 is the Chebyshev map for which the corresponding measure is one. As
a corollary, we show that a locally-connected quadratic Julia set is not a countable union
of embedded arcs unless it is a straight line or a Jordan curve.

In Part II, we assume thatf has an irrationally indifferent fixed pointα. If z is a
biaccessible point inJ , we prove that the orbit ofz eventually hits the critical point off
in the Siegel case, and the fixed pointα in the Cremer case. As a corollary, it follows that
the set of biaccessible points inJ has Brolin measure zero.

1. Part I: The locally-connected case
1.1. Introduction. Let f : z 7→ z2 + c be a quadratic polynomial in the complex plane
C. Recall that thefilled Julia setof f is

K = {z ∈ C : the orbit{f ◦n(z)}n≥0 is bounded}
and theJulia setof f is the topological boundary of the filled Julia set:

J = ∂K.

Both sets are non-empty and compact, and the filled Julia set is full, i.e. the complement

C r K is connected. Letψ : C r D
'−→ C r K be the unique conformal isomorphism,

normalized asψ(∞) = ∞ andψ ′(∞) = 1, which conjugates the squaring map tof :

ψ(z2) = f (ψ(z)). (1.1)

(The inverseψ−1 is often called theBöttchercoordinate.) By theexternal rayRt we mean
the image of the radial line{ψ(re2πit ) : r > 1}, wheret ∈ T = R/Z is theangleof the ray.
We say thatRt landsat z ∈ J if lim r→1ψ(re

2πit ) = z. A point z ∈ J is calledaccessible
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if there exists a simple arc inC rK which starts at infinity and terminates atz. According
to a theorem of Lindel¨of (see, for example, [Ru, Theorem 12.10]),z is accessible exactly
when there exists an external ray landing atz. We call z biaccessibleif it is accessible
through at least two distinct external rays. By a theorem of F. and M. Riesz [Mi1 ], K r {z}
is disconnected wheneverz is biaccessible. It is interesting that the converse is also true.
More precisely, if there are at leastn > 1 connected components ofK r {z}, then at least
n distinct external rays land atz (see, for example, [Mc, Theorem 6.6]).

Let us denote byγ (t) the radial limit limr→1ψ(re
2πit ). According to a classical

theorem of Fatou (see [Ru, Theorem 11.32]),γ (t) exists for almost everyt ∈ T in the sense
of the Lebesgue measure. For all such anglest , it follows from (1.1) thatγ conjugates the
doubling map to the action off on the Julia set:

γ (2t) = f (γ (t)). (1.2)

When K, or equivalentlyJ , is locally-connected, it follows from the theorem of
Carathéodory (see [Po, Theorem 2.6]) thatγ is defined and continuous on the whole circle.
In this case, the surjective mapγ : T → J is called theCarath́eodory loop. Evidently the
biaccessible points inJ correspond to the points whereγ fails to be one-to-one.

Whether or notJ is locally-connected, the Lebesgue measure on the circleT pushes
forward byγ to a probability measureµ on the Julia set. Complex analysts callµ the
harmonic measureonJ , but in the context of holomorphic dynamics,µ is called theBrolin
measure. It has the following nice properties.
(i) The support ofµ is the whole Julia set, withµ(J ) = 1.
(ii) µ is invariant under the 180◦ rotation z 7→ −z, i.e. µ(−A) = µ(A) for every

measurable setA ⊂ J .
(iii) µ is f -invariant, i.e.µ(f−1(A)) = µ(A) for every measurable setA ⊂ J .
(iv) µ is ergodic in the sense that for every measurable setA ⊂ J with f−1(A) = A, we

haveµ(A) = 0 orµ(A) = 1.
All of these properties are immediate consequences of the corresponding properties of

the Lebesgue measure and the angle-doubling map on the unit circle. Properties (ii) and
(iii) are equivalent to the next property, which will be used repeatedly in this paper.
(v) µ(f (A)) = 2µ(A) for every measurable setA ⊂ J for which the restrictionf |A is

one-to-one.
Brolin proved that with respect to the measureµ the backward orbits of typical points

have an asymptotically uniform distribution [Br ]. Lyubich has proved thatµ is the unique
measure of maximal entropy log 2. He has also constructed such invariant measures of
maximal entropy for arbitrary rational maps of the Riemann sphere [Ly ].

For z ∈ J , let v(z) denote the number of external rays which land atz. (In Milnor’s
terminology [Mi2 ], this is called thevalenceof z.) For 0≤ n ≤ ∞ define the measurable
setJn = {z ∈ J : v(z) = n}. It follows from elementary plane topology that the union⋃
n≥3 Jn is at most countable (see [Po, Proposition 2.18]). On the other hand, the fact that

almost every external ray (with respect to the Lebesgue measure onR/Z) lands, shows that
µ(J0) = 0. Putting these two facts together, we conclude thatJ = J1 ∪ J2 up to a set of
µ-measure zero. Note thatv(f (z)) = v(z) unlessz is the critical point. Therefore, if we
neglect the grand orbit of the critical point which hasµ-measure zero, it follows that both
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J1 andJ2 must bef -invariant subsets of the Julia set. Ergodicity ofµ then shows that, up
to a set ofµ-measure zero, eitherJ = J1 or J = J2.

As an example, for theChebyshev polynomialz 7→ z2 − 2, the Julia set is the closed
interval[−2,2] on the real line. Here every point is the landing point of exactly two rays
except for the endpoints±2 where unique rays land, soJ = J2 in this case. There are
no other known examples of quadratic Julia sets with two rays landing at almost every
point. In fact, as I heard from J. Hubbard and later M. Lyubich, it is conjectured that a
polynomial Julia set has this propertyonly if it is a straight line segment, in which case
the map is conjugate to a Chebyshev polynomial, up to sign. In Part I of this paper, we
will confirm this conjecture for quadratic Julia sets which are locally-connected. Part II,
which is an expanded version of [SZ], considers the Julia sets of quadratic polynomials
with irrationally indifferent fixed points. By a completely different method we prove the
sharper statement that every biaccessible point inJ eventually maps to the critical point in
the Siegel case and to the Cremer fixed point otherwise. As a byproduct, it follows that the
set of biaccessible points in the Julia set has Brolin measure zero.

Addendum.Since the first version of this paper was circulated as a Stony Brook IMS
preprint in January of 1998, three successful attempts have been made by J. Kiwi,
S. Smirnov, and A. Zdunik to settle the above mentioned conjecture in its full generality.
Their methods prove a generalization of Theorem 1 of Part I of the present paper for
connected polynomial Julia sets.

1.2. Basic definitions. Let f : z 7→ z2 + c be a quadratic polynomial whose filled Julia
setK is locally-connected.f has two fixed points(1 ± √

1 − 4c )/2 which are distinct
if and only if c 6= 1/4. If c /∈ [1/4,∞), so that the two fixed points have distinct real
parts, then by convention the fixed point which is further to the left is calledα and the
other fixed point 1− α is calledβ. If α is attracting orα = β (⇔ c = 1/4), the Julia set
of f is a Jordan curve with a unique external ray landing at every point. Hence there are
no biaccessible points at all and Theorem 1 below is trivially true.So we may assume that
α 6= β andα is not attracting. It follows that eitherα ∈ J , or elseα is the center of a fixed
Siegel disk forf .

By anembedded arcinK we mean any subset ofK homeomorphic to the closed interval
[0,1] ⊂ R. SinceK is locally-connected, for any two pointsx, y ∈ K there exists an
embedded arcη in K which connectsx to y. If K has no interior so thatJ = K is full,
thenη is uniquely determined by the two endpointsx andy. If K does have an interior,
however, there is usually more than one choice forη. In what follows, we will show how
to choose a canonical embedded arc between any two points in the filled Julia set.

Suppose that int(K) is non-vacuous. Every componentU of this interior is a bounded
Fatou component whose closureU is homeomorphic to the closed unit diskD, sinceK is
locally-connected. According to Fatou and Sullivan (see, for example, [Mi1 ]), every such
component eventually maps to a periodic Fatou component which is either the immediate
basin of attraction of an attracting periodic point, an attracting petal for a parabolic periodic
point or a periodic Siegel disk. We refer to these cases simply ashyperbolic, parabolicand
Siegelcases. Note that in the hyperbolic and parabolic cases the critical point 0 belongs
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to a central Fatou component which we denote byU0. Also, by our assumption on theα-
fixed point, periodic Fatou components in the hyperbolic and parabolic cases form a cycle
of period>1.

Next, we would like to choose acenterc(U) in every bounded Fatou componentU
subject only to the following conditions:
(C1) c(−U) = −c(U);
(C2) if U contains the critical valuec = f (0), thenc(U) = c;
(C3) if U contains the fixed pointα, thenc(U) = α.

It follows from (C1) that whenever the critical point 0 belongs to the Fatou set, it is the
center of the corresponding Fatou componentU0: c(U0) = 0. Also (C3) corresponds to
the case where theα-fixed point is the center of a fixed Siegel diskU .

Given any bounded Fatou componentU , there exists a homeomorphismφ : U '−→ D

which is holomorphic inU with φ(c(U)) = 0. An arc inU of the formφ−1{reiθ : 0 ≤
a ≤ r ≤ b ≤ 1} is called aradial arc. Sinceφ is unique up to post-composition with a
rigid rotation ofD, radial arcs inU are well-defined.

Following [DH], we call an embedded arcI in K regulatedif, for every bounded Fatou
componentU , the intersectionI ∩U is either empty, a point or consists of radial arcs inU
(see also [Do3], where the word ‘legal’ is used for regulated).

LEMMA 1. Given any two pointsx, y ∈ K, there exists a unique regulated arcI inK with
endpointsx, y. Furthermore, ifη is any embedded arc inK which connectsx to y, then
I ∩ J ⊂ η ∩ J .

Proof. Take any embedded arcη in K with endpointsx, y. It is easy to see how one
can deformη to a regulated arcI . Let U be a bounded Fatou component whose closure
intersectsη. Choose any parametrizationh : [0,1] → K with η = h([0,1]), and define

t0 = inf{t ∈ [0,1] : h(t) ∈ U},
t1 = sup{t ∈ [0,1] : h(t) ∈ U }.

In other words,t0 is the first momentη hitsU andt1 is the last momentη stays inU . If
t0 6= t1, replace the sub-arc ofη from h(t0) to h(t1) by the radial arc fromh(t0) to c(U)
followed by the radial arc fromc(U) to h(t1) (see Figure 1). Ifh(t0) andh(t1) happen to
be on the same radial arc, simply connect the two by the radial arc between them.

Applying this construction to the intersection with every such Fatou component, we
obtain a regulated arcI with endpointsx, y. Evidently we have the inclusionI∩J ⊂ η∩J .

To prove uniqueness, suppose thatI andI ′ are both regulated, with the same endpoints
x, y. If I 6= I ′, then the complementC r (I ∪ I ′) has a bounded connected component
V . By the maximum principle,V is contained in some bounded Fatou componentU . It
follows that the boundary∂V must be contained in a union of at most four radial arcs in
U . But a finite union of radial arcs cannot bound an open set inU . Therefore,I = I ′. 2

The regulated arcI given by the above lemma is denoted by[x, y]. The open arc(x, y)
is defined by[x, y] r {x, y}, and similarly we can define the semi-open arc[x, y).

More generally, given finitely many pointsx, y, . . . , z in K, there is a unique smallest
connected set[x, y, . . . , z] ⊂ K made up of regulated arcs which contain all of these
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FIGURE 1. Deforming an embedded arc into a regulated arc.
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FIGURE 2. A tripod [x, y, z] with joint p.

points. In fact, this set is always a (finite) topological tree. We call[x, y, . . . , z] the
regulated treegenerated by{x, y, . . . , z}. A vertex of this tree with exactly one edge
attached to it is called anendof the tree. A point which is not an end is called aninterior
point of the tree. It follows easily from (C1) that

[−x,−y, . . . ,−z] = −[x, y, . . . , z]. (1.3)

In the case of three distinct points,[x, y, z] is either homeomorphic to a closed interval
or to a letter Y. The first case occurs if and only if one of the points belongs to the regulated
arc connecting the other two. In the second case, the three pointsx, y, z are ends of the
tree [x, y, z]. In other words, there is a unique interior pointp ∈ [x, y, z] such that
[x, p] ∩ [y, p] = [x, p] ∩ [z, p] = [y, p] ∩ [z, p] = {p} (see Figure 2). In this case,
we call[x, y, z] a tripod. Pointp is called thejoint of this tripod.

The regulated trees as defined above are not preserved by the dynamics off . In fact,
whenK has interior, the center of a bounded Fatou componentU is not necessarily mapped
by f to that off (U). Hence, regulated arcs inU do not map to regulated arcs inf (U).
This difficulty can be most conveniently overcome by deforming the polynomialf relative
to the Julia set into a new mapF which respects the centers. To this end, it suffices to
note that for every bounded Fatou componentU , there is a homeomorphism betweenU
and the cone over∂U which sendsc(U) to the cone point and restricts to the identity map
on ∂U . We can defineF so as to preserve this cone structure on various bounded Fatou
components. For example, for any componentU and anyp ∈ ∂U , take the Poincar´e
geodesic inU betweenc(U) andp and defineF : U → f (U) so as to map this geodesic
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isometrically to the unique Poincar´e geodesic betweenc(f (U)) andf (p) ∈ ∂f (U). (Note
that by our assumptionf (U) 6= U unlessU is a fixed Siegel disk for which theα fixed
point is the center. So in any caseα is still a fixed point ofF .) Apply this construction to
every bounded Fatou component and letF = f everywhere else. The mapF will be the
required modification off which satisfies the following properties.
(F1) F(c(U)) = c(F (U)) for every bounded Fatou componentU . In particular, by (C2),

whether or not the critical point 0 belongs to the Fatou set,F(0) = f (0) = c is
always the critical value off .

(F2) F = f on the closure of the basin of attraction of infinity.
(F3) F(z) = F(z′) ⇔ z = ±z′.
(F4) α andβ are the only fixed points ofF .

Also, since the support of the Brolin measure is the Julia set wheref andF agree, it
follows that properties (iii) and (v) in §1.1 also hold forF . In other words,
(F5) µ(F−1(A)) = µ(A) for any measurable setA ⊂ C, and
(F6) µ(F(A)) = 2µ(A) for any measurable setA ⊂ C for whichF |A is one-to-one.

LEMMA 2. Let x, y, . . . , z ∈ K. Suppose that the critical point0 is not an interior
point of the tree [x, y, . . . , z]. Then F maps [x, y, . . . , z] homeomorphically to
[F(x), F (y), . . . , F (z)].

In this case, we simply write

F : [x, y, . . . , z] '−→ [F(x), F (y), . . . , F (z)].
Proof. First let us show thatF restricted to[x, y, . . . , z] is injective. If not, it follows
from (F3) that[x, y, . . . , z] contains a pair±a of symmetric points. By (1.3), we see that
[a,−a] = −[a,−a]. Hence the 180◦ rotation from the arc[a,−a] to itself must have
a fixed point, namely the critical point 0. But this implies that 0 is an interior point of
[x, y, . . . , z], contrary to our assumption.

Therefore,F restricted to[x, y, . . . , z] is injective. The image treeF([x, y, . . . , z]) is
evidently connected and contains all of the image pointsF(x), F (y), . . . , F (z). Since all
the ends ofF([x, y, . . . , z]) are amongF(x), F (y), . . . , F (z), we conclude that it is also
minimal. To finish the proof, it is enough to show that the image of every regulated arc in
[x, y, . . . , z] is a regulated arc. But this follows from (F1) sinceF preserves the centers,
hence the radial arcs, in bounded Fatou components off . 2

Definition 1. By the spineof the filled Julia setK we mean the unique regulated arc
[−β, β] between theβ-fixed point and its preimage−β, which are the landing points
of the unique external raysR0 andR1/2, respectively. By (1.3), the spine is invariant under
the 180◦ rotationz 7→ −z. In particular, the critical point 0 always belongs to the spine.

Let z ∈ J be a biaccessible point, with a ray pair(Rt , Rs) landing atz and 0 <
t < s < 1. If z /∈ [−β, β], it follows that botht and s satisfy 0< t < s < 1/2 or
1/2 < t < s < 1. Consider the orbit of the ray pair(Rt , Rs) underf . Since there exists
an integern > 0 such that 1/2 ≤ 2ns − 2nt < 1, the corresponding raysf ◦n(Rt ) and
f ◦n(Rs) must belong to different sides of the curveR1/2 ∪ [−β, β] ∪ R0 (see Figure 3).
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Therefore,f ◦n(z) ∈ [−β, β]. This means that the setB of all biaccessible points in the
Julia set is contained in the union of preimages of the spine:

B ⊂
⋃

n≥0

f−n[−β, β]. (1.4)

1.3. Main theorem and supporting lemmas.Our main goal in Part I is to prove the
following result.

THEOREM 1. If the Julia setJ of the quadratic polynomialf : z 7→ z2 + c is locally-
connected, then the set of all biaccessible points inJ has Brolin measure zero unlessf is
the Chebyshev polynomialz 7→ z2 − 2 for which the corresponding measure is one.

By (1.4), it suffices to show that, for every non-Chebyshev quadratic, the Brolin measure
µ[−β, β] of the spine is zero.

The proof depends on several lemmas which will be given in this section and §1.4
below. Some of these lemmas are of independent interest in studying the combinatorial
structure of quadratic Julia sets. Unless otherwise stated, the Julia setJ is assumed to be
locally-connected.

LEMMA 3.
(a) Any point in the Julia setJ which belongs to the boundary of two Fatou components

is necessarily biaccessible.
(b) Let η be any embedded arc in the filled Julia setK andz be a point inη ∩ J which

is not an endpoint ofη. Then eitherz is biaccessible or it belongs to the boundary of
a unique bounded Fatou component.

Proof. (a) LetU andU ′ be two Fatou components withz ∈ ∂U ∩ ∂U ′. Assume that
z is not biaccessible. ThenK r {z} is connected, so there exists an embedded arcη

in K betweenc(U) andc(U ′) which avoidsz. By Lemma 1,I ∩ J ⊂ η ∩ J , where
I = [c(U), c(U ′)] = [c(U), z] ∪ [z, c(U ′)] is the unique regulated arc betweenc(U) and
c(U ′). It follows thatη must containz, which is a contradiction.

(b) If z is not biaccessible, thenK r {z} is connected. Hence, there exists an embedded
arcη′ in K between the two endpoints ofη which avoidsz. Take a bounded connected
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componentV of the complementC r (η ∪ η′) which containsz in its closure. By the
maximum principle,V must be contained in a bounded Fatou component. Hencez belongs
to the boundary of this bounded Fatou component. Uniqueness follows from part (a).2

COROLLARY 1. Let f : z 7→ z2 + c have a locally-connected Julia set. If theα-fixed
point is not attracting andα 6= β, then neither theβ-fixed point nor any of its preimages
can belong to the boundary of a bounded Fatou component off .

Proof. Assume there exists a bounded Fatou componentU with β ∈ ∂U . Thenβ ∈
∂U ∩ ∂f (U). If U = f (U), it must be a fixed Siegel disk by the above assumption.
But in this casef |∂U is conjugate to an irrational rotation so it cannot have a fixed point.
Therefore,U 6= f (U). By Lemma 3(a),β will be biaccessible. But this is impossible
since theβ-fixed point is always the landing point of the unique rayR0. 2

Remark 1.In the non-locally-connected case, it isnot known if theβ-fixed point can be
on the boundary of any bounded Fatou component. In fact, it is not known if there are
examples of quadratic polynomials with a fixed Siegel disk whose boundary is the whole
Julia set. Any such quadratic would provide a counterexample to the above corollary in the
non-locally-connected case.

LEMMA 4. If x /∈ [−β, β], then[−β, x, β] is a tripod.

Proof. Otherwise, we must have−β ∈ (x, β) or β ∈ (x,−β). In either case, it follows
that−β or β belongs to the interior of an embedded arc in the filled Julia set. Butβ is
the landing point of the unique rayR0. Since the orbit−β 7→ β does not pass through
the critical point, it follows that−β is also the landing point of the unique rayR1/2. By
Lemma 3(b), eitherβ or −β must be on the boundary of a bounded Fatou component,
which contradicts Corollary 1. 2

Here is a definition which will be used repeatedly in all subsequent arguments.

Definition 2. We define a projectionπ : K → [−β, β] as follows: forx ∈ [−β, β],
let π(x) = x. If x /∈ [−β, β], then[−β, x, β] is a tripod by Lemma 4, and we define
π(x) ∈ (−β, β) to be the joint of this tripod.

Note thatπ(x) can be described as the unique point in[−β, β] such that, for anyy on
the spine,[x, π(x)] ⊂ [x, y]. Set theoreticallyπ is a retraction fromK onto its spine.
However, whenK has interior,π is not continuous.

For simplicity, we denote the regulated arc[x, π(x)] by Ix . Sinceπ(−x) = −π(x), we
haveI−x = −Ix .

LEMMA 5. Theα-fixed point belongs to(−β,0).
Proof. First we prove thatα ∈ (−β, β). In fact, if α belonged toJ and were off the
spine, then the external rays which land atα would all belong to one side of the curve
R1/2 ∪ [−β, β] ∪ R0. This would contradict the fact that the angle-doubling map on the
circle has no forward orbit which is entirely contained in the interval(0,1/2) or (1/2,1).
On the other hand, ifα belonged to the Fatou set and were off the spine, then it would
have to be the center of a fixed Siegel disk whose closure by (C3) touches[−β, β] at the
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unique point 0. Take the external rayRt which lands at the critical valuec. Since the entire
orbit of c is on one side of the curveR1/2 ∪ [−β, β] ∪ R0, the forward orbit oft under the
doubling map must be entirely contained in one of the intervals(0,1/2) or (1/2,1), which
is again a contradiction. Therefore,α ∈ (−β, β).

Now suppose thatα ∈ (0, β). Then[α, β] ⊂ (0, β]. HenceF : [α, β] '−→ [α, β] by
Lemma 2. By (F4), there is no fixed point ofF in (α, β). Suppose that[α, β] ⊂ J . Then
f repels all points in[α, β] close toα andβ. Sincef = F on the Julia set, the same
must be true forF . Hence there has to be an attracting fixed point forF somewhere in
(α, β), which is a contradiction. Therefore,[α, β] intersects a bounded Fatou component
U . Passing to some iteratef ◦n(U) = F ◦n(U), we may as well assume thatU is periodic.
SinceF acts monotonically on[α, β], U must be fixed. HenceU is a Siegel disk with
c(U) = α. Now ∂U intersects[α, β] at a unique pointp which is not theβ-fixed point by
Corollary 1. ClearlyF(p) = p, which is a contradiction. This shows thatα ∈ (−β,0),
and completes the proof. 2

LEMMA 6. There exists anF -preimageω of 0 in (−β, α). The other preimage−ω is then
in (−α, β).
Proof. F : [−β, α] '−→ [β, α] by Lemma 2 since 0/∈ (−β, α) by Lemma 5. Again
by Lemma 5 we have 0∈ (β, α), which shows there exists a uniqueω ∈ (−β, α) with
F(ω) = 0. 2

Figure 4 shows the relative position of the points along the spine.

LEMMA 7. Let c = f (0) = F(0) be the critical value. Thenπ(c) ∈ [−β, α]. If
π(c) = −β, thenc = −β, in which casef (z) = z2 − 2.

Proof. By Lemma 2 we haveF : [0, β] '−→ [c, β] = Ic ∪ [π(c), β]. Since−α ∈ [0, β],
by (F3) and (F4) we must haveF(−α) = α ∈ [c, β]. This is possible only ifα ∈ [π(c), β],
which is equivalent toπ(c) ∈ [−β, α] (see Figure 5).

If π(c) = −β, thenc = −β by Lemma 4. It is easy to see thatz 7→ z2 − 2 is the only
quadratic polynomial with the critical orbit 07→ c 7→ β. 2

LEMMA 8. Suppose thatf is not the Chebyshev polynomial. Letf (ξ) = F(ξ) = −β.
Then ξ does not belong to the spine[−β, β]. Furthermore,π(ξ) ∈ [−α, α] and
F(π(ξ)) = π(c), with

c ∈ [−β, β] ⇔ π(ξ) = 0.
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Proof. First suppose thatπ(ξ) 6= 0. Replacingξ by −ξ if necessary, we may assume

thatπ(ξ) ∈ (0, β). ThenF : [ξ, β] '−→ [−β, β], hence−α ∈ [ξ, β] which implies
that−α ∈ [π(ξ), β] or, equivalently,π(ξ) ∈ (0,−α]. Also, since 0/∈ [ξ, β], c cannot
belong to the spine[−β, β]. By Lemma 7,π(c) ∈ (−β, α]. By Lemma 2 the set[ξ,0, β]
maps homeomorphically to the tripod[−β, c, β], hence it must also be a tripod, with
ξ /∈ [−β, β], and with the jointπ(ξ) mapped toπ(c) byF (see Figure 6).

Now suppose thatπ(ξ) = 0. Then by a similar argument the set[ξ,0, β] = [ξ, β]
still maps homeomorphically to the spine[−β, β], since it does not contain a pair of
symmetric points about the origin. In particular,c must belong to the spine. By Lemma 7,
c = π(c) ∈ (−β, α]. 2

COROLLARY 2. F maps[0,±π(ξ)] to Ic and±Iξ to [−β, π(c)] homeomorphically (see
Figure 6).

Thus in all non-Chebyshev cases we have the situation illustrated in Figure 6 (except
thatIc may collapse to a point iff[−π(ξ), π(ξ)] may collapse to a point, or alternatively
π(c)may coincide withα). Here

±ξ F7→ −β F7→ β, ±π(ξ) F7→ π(c) and ± ω
F7→ 0

F7→ c,

whereω lies somewhere between−β andα.
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LEMMA 9. Suppose thatf is not the Chebyshev polynomial. Then the Brolin measure
µ[−β, β] of the spine is zero if and only ifµ(Ic) = 0.

Note that the conditionµ(Ic) = 0 is trivially satisfied ifc = π(c) belongs to the spine.
The latter happens, for example, when the Julia set off (z) = z2 + c with c ∈ R is full.
When the Julia set is full, it is conjectured that the critical value belongs to the spine if and
only if c is real.

Proof. By Lemma 8, for one preimageξ of −β, we haveπ(ξ) ∈ [0,−α], and then
the other preimage−ξ satisfiesπ(−ξ) ∈ [α,0]. For simplicity, let z0 = π(ξ) and
zn = F ◦n(z0). It follows from Corollary 2 that

F−1([−β, β] ∪ Ic) = [−β, β] ∪ Iξ ∪ −Iξ . (1.5)

By property (ii) in §1.1 and (F5), we have

µ(Iξ ) = µ(−Iξ ) = 1
2µ(Ic). (1.6)

Note thatz1 = π(c) ∈ (−β, α] by Lemmas 7 and 8. By Corollary 2, (F6) and (1.6),

µ[−β, z1] = µ(F(Iξ )) = 2µ(Iξ ) = µ(Ic). (1.7)

If µ[−β, β] = 0, thenµ[−β, z1] = 0, henceµ(Ic) = 0 by (1.7). Conversely, ifµ(Ic) = 0,
thenµ[−β, z1] = 0. To proveµ[−β, β] = 0, we distinguish two cases.

Case 1.z1 ∈ [ω, α]. Thenµ[−β,ω] ≤ µ[−β, z1] = 0. Henceµ[0, β] = 2µ[−β,ω] = 0,
which by symmetry impliesµ[−β, β] = 0.

Case 2.z1 ∈ (−β,ω). Then z2 = F(z1) ∈ F(−β,ω) = (0, β) andµ[z2, β] =
2µ[−β, z1] = 0. If z2 ∈ [0,−ω], thenµ[−ω, β] = 0 and it follows by an argument
similar to Case 1 thatµ[−β, β] = 0. So let us assume thatz2 ∈ (−ω, β). We can
repeat the above argument by consideringz3 = F(z2) ∈ (0, β). If z3 ∈ [0,−ω], we have
µ[−β, β] = 0, otherwisez3 ∈ (−ω, β) and we continue. If this process never stops, it
follows thatzn ∈ (−ω, β) and(zn+1, β] ⊃ [zn, β] for all n. The limit of the monotone
sequence{zn} will then be a fixed point ofF in (−ω, β), which contradicts (F4). 2

1.4. The proof. The idea of the proof of Theorem 1 is as follows. We consider thenth
iterate ofc = f (0) = F(0), cn = F ◦n(c). Under the assumptionµ(Ic) > 0, we show
thatcn cannot belong to the spine and the Brolin measure of the arcIcn tends to infinity as
n → ∞, which is clearly impossible sinceµ(J ) = 1. Hence we must haveµ(Ic) = 0. By
Lemma 9, this proves the theorem.

Definition 3. Let I1 andI2 be two regulated arcs in the filled Julia setK. We say thatI1
andI2 overlapif the intersectionI1∩I2 contains more than one point. It follows thatI1∩I2
is a non-degenerate regulated arcI in K. We often say thatI1 andI2 overlap alongI .

It is not hard to check that forx, y ∈ K r [−β, β], the arcsIx andIy overlap if and
only if x andy belong to the same connected component ofKr [−β, β]. In particular, we
must haveπ(x) = π(y).
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LEMMA 10. Letx ∈ K r [−β, β]. Then one and only one of the following cases occurs:

(a) Ix andIξ (or −Iξ ) overlap along an arcIy . ThenF maps[x, y] homeomorphically
to IF (x) = [F(x), F (y)].

(b) π(x) ∈ (−π(ξ), π(ξ)). Then F maps Ix homeomorphically to the arc
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F(Ix) = [F(x), F (π(x))]. In this case,IF (x) and Ic overlap alongIF (π(x)) =
[F(π(x)), π(c)].

(c) π(x) /∈ (−π(ξ), π(ξ)) and Ix and ±Iξ do not overlap. ThenF maps Ix
homeomorphically toIF (x).

Proof. (a) If x ∈ Iξ or −Iξ , then y = x and the result is trivial. Otherwise,
[ξ, x, π(x) = ±π(ξ)] maps homeomorphically to[−β, F (x), π(c)] (see Figure 7). Hence
F(y) = π(F(x)) and the result follows.

(b) If π(x) ∈ (−π(ξ), π(ξ)), thenF(π(x)) ∈ Ic r {π(c)}, henceIF (x) andIc overlap
alongIF (π(x)) (see Figure 8).

(c) Sinceπ(x) /∈ (−π(ξ), π(ξ)), F(π(x)) ∈ [−β, β]. So the claim is proved once we
show thatπ(F(x)) = F(π(x)). If these two points were distinct, then the non-degenerate
arc I = [π(F(x)), F (π(x))] ⊂ [−β, β] would be contained in[F(x), F (π(x))] (see
Figure 9). HenceF−1(I) would be a non-degenerate arc inIx ∩ Iξ or Ix ∩ −Iξ , which
would contradict our assumption. 2

Let us putm = µ(Ic). By (1.6), we haveµ(±Iξ ) = m/2.

COROLLARY 3. If x ∈ K r [−β, β] andµ(Ix) ≥ 2m, thenµ(IF(x)) ≥ 3
2µ(Ix).

Proof. By Lemma 10 one and only one of the cases (a)–(c) occurs. In case (b), we
haveµ(IF(x)) = µ(F(Ix)) + µ(IF(π(x))) ≥ µ(F(Ix)) = 2µ(Ix) and in case (c),
µ(IF(x)) = 2µ(Ix). In case (a),

µ(IF(x)) = µ[F(x), F (y)] = 2µ[x, y]
= 2(µ(Ix)− µ(Iy))

≥ 2(µ(Ix)− µ(±Iξ ))
= 2µ(Ix)−m

≥ (3/2)µ(Ix),

which proves the corollary. 2

Proof of Theorem 1.Consider the orbit of the critical value{c = c0, c1, c2, . . . }, where
cn = F ◦n(c). Letm = µ(Ic) > 0, and apply Lemma 10 to the pointx = c. Clearly the
only possible cases are (a) and (c) from Lemma 10, sinceπ(c) /∈ (−π(ξ), π(ξ)).

In case (c) we obtain the estimateµ(Ic1) ≥ 2m. This, by repeated application of
Corollary 3, will lead to the estimateµ(Icn+1) ≥ (3/2)nµ(Ic1) which tends to infinity
asn → ∞ and therefore is impossible.

In case (a),Ic and−Iξ overlap along someIy with F(y) ∈ (−β, π(c)) andµ(Ic1) =
µ[c1, F (y)] = 2µ[c, y] ≥ m. Apply Lemma 10 this time tox = c1. Note that the
only possible case is (c), sinceπ(c1) ∈ [−β, π(c)). This gives the estimateµ(Ic2) =
2µ(Ic1) ≥ 2m. Hence successive applications of Corollary 3 will give the estimate
µ(Icn+1) ≥ (3/2)nµ(Ic2), which again contradicts the fact that the Brolin measure of the
Julia set is finite.

The contradiction shows thatm = µ(Ic) must be zero, and this completes the proof of
Theorem 1 by Lemma 9. 2
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1.5. Further discussion. Finally, we consider the following result, which is a
consequence of Theorem 1 as well as the fact that the Julia set has no compact forward-
invariant proper subsets of positive Brolin measure.

THEOREM 2. Letf : z 7→ z2 + c be a quadratic polynomial with locally-connected filled
Julia setK. If we exclude the Chebyshev case and the cases where theα-fixed point off
is attracting orα = β, then every embedded arc inK has Brolin measure zero.

The exceptional cases correspond respectively toc = −2 where the Julia set is a straight
line segment,c in the ‘main cardioid’ of the Mandelbrot set where the Julia set is a quasi-
circle andc = 1/4 where the Julia set is a Jordan curve but not a quasi-circle. Roughly
speaking, the theorem says that, in any other case, embedded arcs are buried in the filled
Julia set so that they are almost invisible from the basin of infinity.

We make the following elementary observation for the proof.

LEMMA 11. Let A ⊂ J be forward-invariant underf , i.e. f (A) ⊂ A. Then either
µ(A) = 0 or µ(A) = 1. In particular, ifA is compact andA 6= J , thenµ(A) = 0.

Proof. Let γ : T → J be the Carath´eodory loop andE = γ−1(A). ThenE is forward-
invariant under the doubling mapd : T → T defined byd(t) = 2t (mod 1). We prove that
`(E) = 0 or`(E) = 1, wherè denotes the Lebesgue measure onT. Let `(E) > 0 and let
x be a point of density ofE. Given anε > 0, we can find ann > 0 and an intervalS ⊂ T

centered atx such that̀ (S) = 2−n and`(S ∩E) ≥ (1− ε)`(S). Apply thenth iterated◦n
onS and used◦n(E) ⊂ E to estimate

1 − ε ≤ 2n`(S ∩ E) = `(d◦n(S ∩ E)) ≤ `(T ∩E) = `(E).

Since this is true for everyε > 0, we must havè(E) = 1. 2

COROLLARY 4. Still assuming thatK is locally-connected, the Brolin measure of the
union of the boundaries of bounded Fatou components off is zero unless theα-fixed
point is attracting orα = β in which case the corresponding measure is one.

Proof. Since every bounded Fatou component eventually enters a cycle of Fatou
components of the formU1 7→ U2 7→ · · · 7→ Up 7→ U1, it suffices to prove that
µ(A) = 0, whereA = ⋃p

j=1 ∂Uj . This set is compact and forward-invariant underf ,
so by Lemma 11 ifµ(A) > 0, thenA = J must be the case. But this implies thatf has
only p bounded Fatou components. It is easy to see that this can happen only ifp = 1, in
which case the component is either the immediate basin of attraction for an attracting fixed
point or the attracting petal for a parabolic fixed point. 2

As an illustrative example, consider a quadratic polynomialf whoseα-fixed point is the
center of a Siegel diskU with rotation numberθ of constant type (an example is provided
by f : z 7→ z2 − 0.390 5408− 0.586 7879i, whereθ = (

√
5 − 1)/2 is the golden mean).

By [Pe], the filled Julia set is locally-connected. The critical point 0∈ ∂U is the landing
point of exactly two rays(Rs, Rs+1/2), where

s =
∑

0<p/q<θ

2−(q+1). (1.8)



Biaccessibility in quadratic Julia sets 1873

Since the orbit of 0 is dense on∂U , the set of anglest for which γ (t) ∈ ∂U coincides
with the closure of the orbit ofs under the doubling map on the circle. This set is known
to be an invariant Cantor setC of measure zero in the interval[s, s + 1/2] ⊂ T [BS].
It follows that the set of allt for which γ (t) belongs to the boundary of a bounded Fatou
component is the countable union of Cantor sets consisting ofC and all its preimages under
the doubling map. This set has Lebesgue measure zero, hence the union of the boundaries
of all bounded Fatou components will have Brolin measure zero.

Proof of Theorem 2.Let η ⊂ K be any embedded arc. LetB be the set of biaccessible
points inJ andB ′ be the set of all points inJ which belong to the boundary of a bounded
Fatou component. By Theorem 1 and Corollary 4, we haveµ(B) = µ(B ′) = 0. On the
other hand, by Lemma 3(b), everyz ∈ η ∩ J is either an endpoint or it belongs toB ∪ B ′.
Hence,µ(η) = µ(η ∩ J ) ≤ µ(B ∪ B ′) = 0. 2

COROLLARY 5. A locally-connected quadratic Julia set is not a countable union of
embedded arcs unless it is a straight line or a Jordan curve.

2. Part II: The Siegel and Cremer cases
2.1. Introduction. Consider a quadratic polynomial

f : z 7→ z2 + c (2.1)

in the complex planeC. A fixed point z = f (z) is called indifferent if the multiplier
λ = f ′(z) has the forme2πiθ , where therotation numberθ belongs toR/Z. We callz
irrationally indifferentif θ is irrational so thatλ is on the unit circle but not a root of unity.

Let z be an irrationally indifferent fixed point off . When f is holomorphically
linearizable aboutz, we call z a Siegelfixed point. On the other hand, whenz is non-
linearizable, it is called aCremerfixed point.

The two fixed pointsα andβ have multipliersλ = 2α and 2− λ = 2β. It follows that
only theα-fixed point can be indifferent. The critical value parameterc is then given by

c = λ(2 − λ)/4.

Therefore, the set of all quadratic polynomials which have an indifferent fixed point is
a cardioid in thec-plane parametrized byλ on the unit circle. The set of quadratic
polynomials with an irrationally indifferent fixed point is then a dense subset of this
cardioid. We call a quadratic polynomialf in (2.1)Siegelor Cremerif the α-fixed point is
irrationally indifferent and has the corresponding property.

It follows from classical Fatou–Julia theory that the filled Julia setK and the Julia
setJ = ∂K are connected whenf is Siegel or Cremer. Every connected component of
the interior ofK is a topological disk called abounded Fatou componentof f . In the
Siegel case, the componentS of the interior ofK containing the fixed pointα is called the
Siegel diskof f on which the action off is holomorphically conjugate to the rigid rotation
z 7→ e2πiθ z.

Sincef (z) = f (−z) by (2.1),J is invariant under the 180◦ rotationτ : z 7→ −z. If
U is an open Jordan domain in the plane such thatU ∩ τ (U) = ∅, it follows thatf is
univalent in some Jordan domainV containing the closureU .
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According to Fatou and Sullivan, every bounded Fatou component must eventually map
to the immediate basin of attraction of an attracting periodic point, to an attracting petal
for a parabolic periodic point or to a periodic Siegel disk forf [Mi1 ]. On the other hand,
by [Do1] a polynomial of degreed ≥ 2 can have at most (d − 1) non-repelling periodic
orbits. It follows that, in the Siegel case, every bounded Fatou component eventually maps
to the Siegel diskS centered atα. In the Cremer case, however, we simply conclude that
K has no interior, so thatK = J .

2.2. Arithmetical conditions. It is well known that the behavior of orbits near the
indifferent fixed point is intimately connected to the arithmetical properties of the rotation
number 0< θ < 1. There are certain classes of irrational numbers which are of special
interest in holomorphic dynamics and in this paper we will be working with some of them.
Let

θ = 1

a1 + 1

a2 + 1

. . .

be the continued fraction expansion ofθ , where all theai are positive integers, and let

pn

qn
= 1

a1 + 1

a2 + 1

. . . + 1

an

be thenth rational approximation ofθ . We say that:
• θ is of constant type(we writeθ ∈ CT ) if supn an < +∞;
• θ is Diophantine(we writeθ ∈ D) if there exist positive constantsC andν such that

for every rational number 0≤ p/q < 1, we have|θ − p/q| > C/qν (this condition
is equivalent to supn(logqn+1/logqn) < +∞);

• θ is of Yoccoz type(we write θ ∈ H) if every analytic circle diffeomorphism with
rotation numberθ is analytically linearizable (an explicit arithmetical description of
H is given by Yoccoz although it is not easy to explain; see [Yo2]).
A closely related condition, which we denote byH′, is defined as follows:θ ∈ H′
if and only if every analytic circle diffeomorphism with rotation numberθ , with no
periodic orbit in some neighborhood of the circle, is analytically linearizable [PM1].

• θ is of Brjuno type(we writeθ ∈ B) if it satisfies the condition
∞∑

n=1

logqn+1

qn
< +∞. (2.2)

We have the proper inclusionsH ⊂ H′ andCT ⊂ D ⊂ H ⊂ B. It is not hard to show that
D, henceH,H′ andB, are sets of full measure inR/Z.

By the theorem of Brjuno–Yoccoz [Yo1], f is a Siegel quadratic polynomial if and only
if θ ∈ B.
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2.3. Basic results. Very little is known about the topology of the Julia set off in
the Siegel or Cremer case or the dynamics off on its Julia set. The following theorem
summarizes the basic results in the Cremer case.

THEOREM 3. Letf in (2.1) be a Cremer quadratic polynomial, so thatθ /∈ B. Then:

(a) the Julia setJ cannot be locally-connected[Su];
(b) every neighborhood of the Cremer fixed pointα contains infinitely many repelling

periodic orbits off [Yo1];
(c) the critical point0 is recurrent, i.e. it belongs to the closure of its orbit{f ◦n(0)}n>0

[Ma];
(d) the critical point0 is not accessible fromC r J [Ki ].

See also [Sø] for the so-called ‘Douady’s non-landing theorem’, which says that for a
generic Cremer quadratic polynomial there is an external ray which accumulates on the
Cremer fixed point and its preimage. Perez-Marco [PM2] has shown that for every Cremer
quadratic polynomial there exists an external ray whose prime-end impression contains the
Cremer fixed point and its preimage. Both results shed some light on why the Julia set of
a Cremer quadratic polynomial fails to be locally-connected.

In the Siegel case, we know a little more, but still the situation is far from being fully
understood.

THEOREM 4. Letf in (2.1) be a Siegel quadratic polynomial, so thatθ ∈ B. LetS denote
the Siegel disk off . Then we have the following.

(a) If θ ∈ CT , then the boundary∂S is a quasi-circle which contains the critical point0
[Do2]. The Julia setJ is locally-connected and has measure zero[Pe].

(b) If θ ∈ H, then0 ∈ ∂S [He1].
(c) For some rotation numbersθ ∈ BrH, the entire orbit of0 is disjoint from∂S [He2].

In this case,J cannot be locally-connected[Do2].
(d) For everyθ ∈ B, the critical point0 is recurrent.

Part (b) was proved by Herman forθ ∈ D, but his proof works equally well forθ ∈ H.
We will include a very short proof for the latter case in §2.4. The proof of part (d) goes as
follows. By classical Fatou–Julia theory every point in∂S is in the closure of the orbit of 0
[Mi1 ], so recurrence is immediate if 0∈ ∂S. If 0 /∈ ∂S and 0 is not recurrent, then by [Ma]
the invariant set∂S is expanding, i.e. there is a constantλ > 1 and a positive integerk such
that |(f ◦k)′(z)| > λ for all z ∈ ∂S. It follows that the same inequality holds over some
neighborhoodU of ∂S, and we may as well assume thatU∩S is invariant. Take a small disk
V b U ∩S. Sincef ◦k|U∩S is holomorphically conjugate to the rigid rotationz 7→ e2πikθz,
there exists a sequencenj → ∞ such thatf ◦knj converges uniformly to the identity map
onV asj → ∞. But this is impossible since for allz ∈ V , |(f ◦knj )′(z)| > λnj → ∞.

Comparing the two theorems, we notice that the Cremer case and the Siegel case with
0 /∈ ∂S share many properties. This is a general philosophy which is partially explained by
the theory of ‘hedgehogs’ introduced recently by Perez-Marco [PM1] (see §2.4 below).

Inspired by this similarity, one expects the following to be true.
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CONJECTURE. Letf be a Siegel quadratic polynomial and0 /∈ ∂S. Then:
(i) every neighborhood of∂S contains infinitely many repelling periodic orbits off ;
(ii) the critical point0 is not accessible fromC rK.

By an argument similar to [Ki ], one can show that (i) implies (ii) (see also Proposition 3
in §2.4).

2.4. Hedgehogs. Let f be a Siegel or Cremer quadratic polynomial as in (2.1). Let
U be a simply connected domain with compact closure which contains the closure of the
Siegel diskS in the linearizable case, or the indifferent fixed pointα in the non-linearizable
case. Suppose thatf is univalent in a neighborhood of the closureU . Then there exists a
setH = HU with the following properties:
(i) α ∈ H ⊂ U ;
(ii) H is compact, connected and full;
(iii) ∂H ∩ ∂U is non-empty;
(iv) ∂H ⊂ J ;
(v) f (H) = H .

Note thatH has non-empty interior if and only ifα is linearizable. In this case our
assumption thatf is univalent onU implies that the critical point is off the boundary of
the Siegel disk. ClearlyH ⊃ S.

Such anH is called ahedgehogfor the restrictionf |U : U → C (see Figure 10(a) for
the Cremer case and Figure 10(b) for the Siegel case). (We would like to emphasize that
the topology of a hedgehog is infinitely more complicated than anything we can possibly
sketch!) The existence of such totally invariant sets is proved by Perez-Marco [PM1].

Note that in the Siegel case, one can have totally invariant setsH with the above
properties (i)–(v) even if∂U intersects the closureS. But in this case the existence of
H is not hard to show because we can simply takeH asS or a compact invariant piece
with analytic boundary inside the Siegel disk (see Figures 10(c) and (d)).

Hedgehogs turn out to be useful because of the following nice construction. Uniformize
the complementCrH by the Riemann mapφ : CrH → CrD and consider the induced
mapg = φ ◦ f ◦ φ−1 which is defined (by (v) above) and holomorphic in an open annulus
{z ∈ C : 1 < |z| < r}. Use the Schwarz reflection principle to extendg to the annulus
{z ∈ C : r−1 < |z| < r}. The restriction ofg to the unit circleT will then be a real-analytic
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diffeomorphism whose rotation number is exactly(1/2πi) logf ′(α) = θ ∈ R/Z (see
[PM1]). This allows us to transfer results from the more developed theory of circle
diffeomorphisms to the less explored theory of indifferent fixed points of holomorphic
maps.

Using the above construction, it is not hard to prove the following fact (see [PM2]).

PROPOSITION1. Letp be a point in a hedgehogH which is biaccessible from outside of
H . Thenp ∈ ∂S in the Siegel case andp = α in the Cremer case.

In fact, let us assume that we are in the Siegel case andp /∈ ∂S. Then one can find
a simple arcγ in C r H which starts and terminates atp and does not encircle the
indifferent fixed pointα. LetD be the bounded connected component ofC r (H ∪ γ ).
EvidentlyD is disjoint fromS. The topological diskD′ = φ(D) is bounded by the
simple arcφ(γ ) and an intervalI on the unit circle. (The fact thatφ(γ ) actually lands
from both sides on the unit circle follows from general theory of conformal mappings; see,
for example, [Po, Proposition 2.14].) Sinceg has irrational rotation number on the unit
circle T, for some integerN we have

⋃N
i=0 g

◦i (I ) = T. By choosingγ close enough to
H , we can assume thatg, g◦2, . . . , g◦N are all defined onD′ and

⋃N
i=0 g

◦i (D′) contains
an entire outer neighborhood ofT. It follows that

⋃N
i=0 f

◦i (D) covers an entire deleted
neighborhood ofH . Therefore, some iteratef ◦i (D) intersects∂S. Sincef ◦i is univalent
onD ∪ S, it follows thatD ∩ ∂S 6= ∅, which contradicts our assumption. The proof in the
Cremer case is similar.

The construction of the circle maps associated with hedgehogs as described above gives
short proofs for some interesting facts. As the first example, we prove that there are no
periodic points on∂S when the critical point 0 is off this boundary, a fact that will be
used in the proof of Theorem 5 below. One can find a proof of this result in [PM1] for
indifferent germs, but the fact that we are working with polynomials makes the proof even
shorter.

First we need the following lemma.

LEMMA 12. Let f be a Siegel quadratic polynomial as in (2.1) whose critical point0 is
off the boundary∂S of the Siegel disk. Then the closureS is full andf acts injectively
on it.

It is reasonable to speculate that the closure of any bounded Fatou component for a
quadratic polynomial is full. This is known to be true except when the polynomial has a
periodic Siegel diskS with the critical point on its boundary∂S. In this case, we do not
know if ∂S can separate the plane into more than two connected components (a so-called
‘Lakes of Wada’ example in plane topology [HY ]).

Proof. (Compare [He1, PM2].) Sincef (z) = f (−z) for all z, if f is not injective onS,
there must be a pair of symmetric pointsp and−p = τ (p) in ∂S. SinceJ has a 180◦
rotational symmetry,f−1(S) = S ∪ τ (S). Sop and−p also belong to∂(τ (S)). Consider
the connected componentV of C r (S ∪ τ (S)) which contains the critical point 0. Since
V is open and∂V ⊂ J , it follows from the maximum principle thatV has to be a bounded
Fatou component off . This contradicts the fact that 0∈ J .
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Let us now assume thatS is not full and letU be a bounded component ofC r S. Since
∂U ⊂ ∂S ⊂ J , it follows again from the maximum principle thatU has to be a bounded
Fatou component off , hence it eventually maps toS, i.e.f ◦n(U) = S for somen ≥ 1.
Therefore,f ◦n−1(U) = τ (S). But the boundary off ◦n−1(U) is a subset of∂S, which
implies that the common boundary∂S ∩ ∂(τ (S)) is non-empty. This contradicts the fact
thatf |∂S is injective. 2

PROPOSITION2. Let f be a Siegel quadratic polynomial whose critical point0 is off the
boundary∂S. Then there are no periodic points on∂S.

Proof. By the above lemmaS is full andf acts injectively on it, so we can find a Jordan
domainU containingS such thatf |U is univalent. Consider a hedgehogH = HU for
the restrictionf |U . ClearlyH ⊃ S. Suppose that there is a periodic point on∂S which
is necessarily repelling. Then there exists a rational external rayR landing at this point,
hencef ◦n(R) = R for somen ≥ 1 (see, for example, [Mi1 ]). Consider the induced map
g = φ ◦ f ◦ φ−1 as described above, and look at the arcγ = φ(R). It is a standard fact
thatγ has to land at some pointp ∈ T [Po] andg◦n(p) = p. But this contradicts the fact
that the rotation number ofg is irrational. 2

In the second application, we prove Theorem 4(b): we want to show thatθ ∈ H

implies 0 ∈ ∂S. If not, by Lemma 12S is full andf |S is univalent. Consider a Jordan
domainU , a hedgehogHU and the induced circle mapg as in the above proof. Since
the rotation number ofg belongs toH, g is analytically linearizable. The linearization
can be extended holomorphically to an annulus neighborhood of the unit circleT. Pulling
this neighborhood back, we find a larger domain containingS on whichf is linearizable,
which contradicts the definition of a Siegel disk.

As a final application, we prove the following.

PROPOSITION3. Let f be a Siegel quadratic polynomial whose critical point0 is off the
boundary∂S. If θ ∈ H′, the critical point0 is not accessible fromC rK.

Proof. Consider the hedgehog construction as in the proof of Proposition 2 or the above
proof for Theorem 4(b). If there are no periodic orbits in some neighborhood of∂S, it
follows thatg has no periodic orbit in some neighborhood ofT either. Since the rotation
number ofg is θ ∈ H′, g has to be linearizable. Now we can get a contradiction as in
the above proof for Theorem 4(b). So every neighborhood of∂S must contain infinitely
many periodic orbits. The fact that this implies non-accessibility of 0 follows easily by an
argument similar to that of [Ki ]. 2

2.5. Wakes. To see the behavior of rays near infinity, it will be convenient to add a circle
at infinity T∞ ' R/Z to the complex plane to obtain a closed diskc© topologized in the
natural way. We denote the point limr→∞ re2πit on T∞ simply by∞ · e2πit . The action
of f in (2.1) on the complex plane extends continuously toc© by

f (∞ · e2πit ) = ∞ · e4πit , (2.3)

which is just the doubling map onT∞. Note that the symmetryf (z) = f (−z) also extends
to c© if we define−∞ · e2πit = ∞ · e2πi(t+1/2).
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Definition. Letf be a quadratic polynomial as in (2.1) with connected Julia set. Letz 6= α

be a biaccessible point inJ with two distinct raysR andR′ landing on it. We call(R,R′) a
ray pair. By the Jordan curve theorem,R∪R′∪{z} cuts the plane into two open topological
disks. By thewakeW of the ray pair(R,R′) we mean the connected component of
C r (R ∪ R′ ∪ {z}) which does not contain the fixed pointα. The other component is
called theco-wakeand it is denoted by̌W . Pointz is called theroot ofW . Theanglea(W)
of the wake is just the (normalized) measure ofW ∩ T∞. Clearlya(W)+ a(W̌) = 1 (see
Figure 11(a)).

Since distinct external rays are disjoint, it follows that any two wakes with distinct roots
are either disjoint or nested.

In the following lemma we collect basic properties of wakes (compare [GM ] or [Mi2 ]).

LEMMA 13. Let z ∈ J be a biaccessible point,z 6= α, and letW be a wake with rootz.
(a) If z 6= 0, thena(W) > 1/2 if and only ifW contains the critical point0.
(b) If a(W) = 1/2, thenz must be the critical point0. Conversely, if there is any rayR

landing at0, thenR′ = τ (R) also lands at0 and the two rays span a wakeW with
a(W) = 1/2.

(c) Let a(W) < 1/2 andf (z) 6= α. Thenf (W) is a wake or a co-wake with rootf (z),
depending on whether−α /∈ W or −α ∈ W . In either case,f : W → f (W) is a
conformal isomorphism anda(f (W)) = 2a(W).

Proof. LetW be the wake of a ray pair(R,R′).
(a) Let 0 ∈ W anda(W) < 1/2. Consider the symmetric regionτ (W) whose angle

is equal toa(W). W andτ (W) intersect since both contain 0 (see Figure 11(b)). On the
other hand,W ∩ τ (W) ∩ T∞ = ∅ becausea(W) < 1/2. SinceW andτ (W) are both
homeomorphic to closed disks, it follows that the ray pairs(R,R′) and(τ (R), τ (R′))must
intersect, which is a contradiction. Therefore,a(W) > 1/2 if 0 ∈ W .

On the other hand, leta(W) > 1/2. Then the angle of the co-wakěW has to be less
than 1/2, so by the above argument 0/∈ W̌ or 0 ∈ W . This proves (a).

(b) If a(W) = 1/2, thenR′ = τ (R). Hencez = τ (z) by continuity, which means that
z = 0. The converse is trivial.
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(c) If a(W) < 1/2, then the ray pairs(R,R′) and (τ (R), τ (R′)) cut the plane into
simply connected domainsW , τ (W) and an open setU , which is either a simply connected
domain or the disjoint union of two simply connected domains depending on whetherz 6= 0
or z = 0. By (a), 0 /∈ W ∪ τ (W). Consider the ray pair(f (R), f (R′)) landing atf (z),
and letW ′ be the corresponding wake. The pull-back ofW ′ by f either consists of the
disjoint unionW t τ (W) or the open setU (see Figure 11(c)). In the first case,f mapsW
toW ′ isomorphically and−α /∈ W . In the second case, however, we must have−α ∈ W ,
α ∈ τ (W), and bothW andτ (W) map isomorphically to the co-wakěW ′. The fact that
a(f (W)) = 2a(W) simply follows from (2.3). 2

2.6. The main theorem. Now we are in a position to state and prove the main theorem
of Part II.

THEOREM 5. Let f be a quadratic polynomial as in (2.1) which has an irrationally
indifferent fixed pointα. Letz be a biaccessible point in the Julia set off . Then:
• in the Siegel case, the orbit ofz must eventually hit the critical point0;
• in the Cremer case, the orbit ofz must eventually hit the fixed pointα.

(Compare [SZ] where this same result for the Cremer case is proved by a somewhat
different argument.)

In the Siegel case, if the critical point 0 is accessible, then exactly two rays land there
(see Corollary 7 below). This happens, for example, whenθ ∈ CT , since in this case
by Theorem 4(a) the Julia set is locally-connected. On the other hand, for some rotation
numbersθ ∈ B ∩ H′, the critical point is not accessible so that there are no biaccessible
points in the Julia set (see Corollary 6 below).

In the Cremer case, if the fixed pointα is accessible, then infinitely many rays land
there. In fact, ifRt lands atα, thent is irrational and everyR2nt lands atα also. However,
there is no known example where one can decide whetherα is accessible or not.

The proof of Theorem 5 is based on the following lemma.

LEMMA 14. Let f be a Siegel or Cremer quadratic polynomial as in (2.1). Assume that
there exists a biaccessible point inJ whose orbit never hits the critical point0 or the fixed
pointα. Then there exists a ray pair which separatesα from 0.

Proof. Let z ∈ J be such a biaccessible point and(R,R′) be a ray pair which lands at
z. Consider the associated wakeW0 with root z. Sincez 6= 0, we havea(W0) 6= 1/2 by
Lemma 13(b). Ifa(W0) > 1/2, then 0∈ W0 by Lemma 13(a) and(R,R′) separatesα
from 0. Let us consider the case wherea(W0) < 1/2. If −α ∈ W0, then(R,R′) must
separate−α from 0 because, by Lemma 13(a), 0/∈ W0. It follows that the symmetric ray
pair (τ (R), τ (R′)) separatesα from 0. If, however,−α /∈ W0, then, by Lemma 13(c),
W1 = f (W0) is a wake with rootz1 = f (z) with anglea(W1) = 2a(W0).

Now we can replaceW0 by W1 in the above argument. If eithera(W1) > 1/2 or
a(W1) < 1/2 and−α ∈ W1, we can find a ray pair separatingα from 0. Otherwise, we
consider the new wakeW2 = f (W1) with anglea(W2) = 22a(W0). Since each passage
Wi 7→ Wi+1 implies doubling the angles, this process must stop at some stage, and this
proves the lemma. 2
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Proof of Theorem 5.It will be more convenient to consider the Cremer case first. Suppose
that the orbit ofz never hitsα. Since the critical point is not accessible by Theorem 3(d),
Lemma 14 gives us a ray pair(R,R′) landing at some pointp ∈ J which separatesα
from 0. LetW be the corresponding wake with rootp and consider the co-wakěW . The
restriction off to the closure ofW̌ is univalent since otherwise this closure would intersect
the closure of the symmetric domainτ (W̌), which is impossible sincea(W̌) < 1/2. To
work with a Jordan domain in the plane we cut offW̌ along an equipotential curve and call
the resulting domainU (see Figure 12(a)).

Let us consider a slightly larger Jordan domainV ⊃ U with compact closure such that
f |V is still univalent. The hedgehogHV for the restrictionf |V : V → C has to reach the
boundary ofV . SinceHV is connected and intersectsU , it has to intersect the boundary
of U as well. ButHV ⊂ J and∂U ∩ J = {p}. Hencep ∈ HV . Sincep is biaccessible
from outside of the Julia set, it follows thatHV r {p} is disconnected. Therefore,p is
biaccessible from outside ofHV . This contradicts Proposition 1, and finishes the proof of
the theorem in the Cremer case.

Let us now assume that we are in the Siegel case. If the orbit ofz eventually hits the
critical point 0, there is nothing to prove. Otherwise, since this orbit trivially cannot hit the
fixed pointα ∈ S, we are again in the situation of Lemma 14. Therefore, there exists a ray
pair (R,R′) landing at a pointp ∈ J which separatesα from 0. In particular, the critical
point 0 is off the boundary∂S of the Siegel disk. Then the same argument as in the Cremer
case with an application of Proposition 1 shows thatp must belong to∂S.

As before, letW be the wake of the ray pair(R,R′), with rootp. Then by construction
W contains the critical point 0 while the co-wakěW contains the Siegel diskS and has
its boundary touchingS only atp. The pointp is not periodic by Proposition 2. Hence,
the successive imagespn = f ◦n(p) ∈ ∂S are all contained inW̌ for n ≥ 1. Therefore,
each wakeWn corresponding to the ray pair(f ◦n(R), f ◦n(R′)), with root pointpn, is also
contained inW̌ (see Figure 12(b)). In particular, none of these wakes contain the critical



1882 S. Zakeri

point. Hence,a(Wn+1) = 2a(Wn) < 1/2 for all n by Lemma 13(c), which is clearly
impossible. The contradiction shows that the orbit ofz must eventually hit the critical
point. 2

By Proposition 3, we have the following corollary.

COROLLARY 6. Let f be a Siegel quadratic polynomial with0 /∈ ∂S andθ ∈ H′. Then
there are no biaccessible points inJ at all.

By Lemma 13(b), every wake with angle 1/2 must have its root at the critical point 0.
The converse is not true for arbitrary quadratic polynomials. For example, the real
Feigenbaum mapz 7→ z2 − 1.401 155. . . has four distinct external rays landing on its
critical point (compare with [JH]). However, in the case of a Siegel quadratic polynomial,
the critical point 0 is the landing point ofat mostone ray pair(Rs, τ (Rs)) (in the Cremer
case, there are no such ray pairs by Theorem 3(d)). This is non-trivial and follows from the
statement that every Siegel or Cremer quadratic on the boundary of the main cardioid of
the Mandelbrot set is the landing point of a unique parameter ray [GM ]. In fact, one can
explicitly compute the angles of the candidate ray pair(Rs, τ (Rs)) which may land at 0
from equation (1.8) in Part I. It is interesting that the uniqueness of such ans also follows
from Theorem 5.

COROLLARY 7. Letf be a Siegel quadratic polynomial as in (2.1). Then, no point in the
Julia setJ is the landing point of more than two rays. In particular, at most one ray pair
lands at the critical point0.

Proof. By Theorem 5 it suffices to prove the corollary for the critical point. Suppose
that there is a ray pair(R,R′) which lands at 0 such thatR′ 6= τ (R). It follows that
(f (R), f (R′)) is a ray pair which lands at the critical valuec. By Theorem 5, the orbit
of c must eventually hit the critical point 0. But this means that 0 is periodic, which is
impossible. 2
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me, which play an important role in both parts of the present paper. In particular, he
suggested the idea of working with wakes, which simplified and unified part of the proof
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