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Abstract This paper consists of two nearly independent parts, both of which discuss
the common theme of biaccessible points in the Julia/sef a quadratic polynomial
fizm 2 4c.

In Part I, we assume that is locally-connected. We prove that the Brolin measure of
the set of biaccessible points (through the basin of attraction of infinity)srzero except
whenf(z) = z2—2 is the Chebyshev map for which the corresponding measure is one. As
a corollary, we show that a locally-connected quadratic Julia set is not a countable union
of embedded arcs unless it is a straight line or a Jordan curve.

In Part Il, we assume thaft has an irrationally indifferent fixed point. If z is a
biaccessible point id, we prove that the orbit of eventually hits the critical point of
in the Siegel case, and the fixed painin the Cremer case. As a corollary, it follows that
the set of biaccessible points.ihhas Brolin measure zero.

1. Partl: The locally-connected case
1.1. Introduction. Let f : z — z2 4 ¢ be a quadratic polynomial in the complex plane
C. Recall that thdilled Julia setof f is

K = {z € C : the orbit{ f*"(z)},>0 is bounded
and thelulia setof f is the topological boundary of the filled Julia set:
J =0K.

Both sets are non-empty and compact, and the filled Julia set is full, i.e. the complement
C ~ K is connected. Le¢ : C ~ D —> C . K be the unique conformal isomorphism,
normalized ag/ (o0) = oo andy’(o0) = 1, which conjugates the squaring mapfto

V() = f(Y (). (1.1)

(The inversey 1 is often called th@bttchercoordinate.) By thexternal rayR, we mean
the image of the radial lingy (re?™*) : r > 1}, wherer € T = R/Z is theangleof the ray.
We say thai; landsatz € J if lim,_1 ¢ (re?') = z. A pointz € J is calledaccessible
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if there exists a simple arc i@ ~. K which starts at infinity and terminatesatAccording

to a theorem of Lindelf (see, for exampleHu, Theorem 12.10]); is accessible exactly
when there exists an external ray landingatWe call z biaccessibléf it is accessible
through at least two distinct external rays. By a theorem of F. and M. Ri&i43,[K ~ {z}

is disconnected wheneveiis biaccessible. It is interesting that the converse is also true.
More precisely, if there are at least> 1 connected components &f - {z}, then at least

n distinct external rays land at(see, for exampleMc, Theorem 6.6]).

Let us denote by (¢) the radial limit lim._.1 ¥ (re2"*). According to a classical
theorem of Fatou (se®[, Theorem 11.32]) (¢) exists for almost every e T in the sense
of the Lebesgue measure. For all such angl@édollows from (1.1) thaty conjugates the
doubling map to the action of on the Julia set:

Y@ = f(y@)). (1.2)

When K, or equivalentlyJ, is locally-connected, it follows from the theorem of
Caratlg€odory (seeRo, Theorem 2.6]) that is defined and continuous on the whole circle.
In this case, the surjective map: T — J is called theCaratheodory loop Evidently the
biaccessible points idf correspond to the points whepefails to be one-to-one.

Whether or not/ is locally-connected, the Lebesgue measure on the citgleshes
forward by y to a probability measurg on the Julia set. Complex analysts callthe
harmonic measuren J, but in the context of holomorphic dynamigsis called theBrolin
measurelt has the following nice properties.

(i) The support ofx is the whole Julia set, witp(J) = 1.

(i)  w is invariant under the 180rotationz +— —z, i.e. u(—A) = n(A) for every
measurable set C J.

(iiiy pis f-invariant, i.equ(f~1(A)) = n(A) for every measurable sgtc J.

(iv) wis ergodicin the sense that for every measurableiset. with f~1(4) = A, we
haveu(A) =0oru(A) =1.

All of these properties are immediate consequences of the corresponding properties of
the Lebesgue measure and the angle-doubling map on the unit circle. Properties (ii) and
(iii) are equivalent to the next property, which will be used repeatedly in this paper.

(V) w(f(A)) = 2u(A) for every measurable sdt C J for which the restrictionf |4 is
one-to-one.

Brolin proved that with respect to the measuréhe backward orbits of typical points
have an asymptotically uniform distributioBH]. Lyubich has proved that is the unique
measure of maximal entropy log2. He has also constructed such invariant measures of
maximal entropy for arbitrary rational maps of the Riemann spHhsrk [

Forz € J, letv(z) denote the number of external rays which land.afIn Milnor's
terminology Mi2], this is called thevalenceof z.) For 0< n < oo define the measurable
setJ, = {z € J : v(z) = n}. Itfollows from elementary plane topology that the union
U,>3 Jn is at most countable (seB¢, Proposition 2.18]). On the other hand, the fact that
almost every external ray (with respect to the Lebesgue measitgZyriands, shows that
u(Jo) = 0. Putting these two facts together, we conclude that J; U J> up to a set of
u-measure zero. Note thaf f(z)) = v(z) unlessz is the critical point. Therefore, if we
neglect the grand orbit of the critical point which hasneasure zero, it follows that both
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J1 andJ2 must bef-invariant subsets of the Julia set. Ergodicityuothen shows that, up
to a set ofu-measure zero, eithgr= J; or J = Js.

As an example, for th€hebyshev polynomial — z2 — 2, the Julia set is the closed
interval[—2, 2] on the real line. Here every point is the landing point of exactly two rays
except for the endpoint&2 where unique rays land, sb = J> in this case. There are
no other known examples of quadratic Julia sets with two rays landing at almost every
point. In fact, as | heard from J. Hubbard and later M. Lyubich, it is conjectured that a
polynomial Julia set has this propeuyly if it is a straight line segment, in which case
the map is conjugate to a Chebyshev polynomial, up to sign. In Part | of this paper, we
will confirm this conjecture for quadratic Julia sets which are locally-connected. Part Il,
which is an expanded version d8%], considers the Julia sets of quadratic polynomials
with irrationally indifferent fixed points. By a completely different method we prove the
sharper statement that every biaccessible poiriténentually maps to the critical pointin
the Siegel case and to the Cremer fixed point otherwise. As a byproduct, it follows that the
set of biaccessible points in the Julia set has Brolin measure zero.

AddendumSince the first version of this paper was circulated as a Stony Brook IMS
preprint in January of 1998, three successful attempts have been made by J. Kiwi,
S. Smirnov, and A. Zdunik to settle the above mentioned conjecture in its full generality.
Their methods prove a generalization of Theorem 1 of Part | of the present paper for
connected polynomial Julia sets.

1.2. Basic definitions. Let f : z — z2 + ¢ be a quadratic polynomial whose filled Julia
setK is locally-connected.f has two fixed point$l + +/1 — 4c¢)/2 which are distinct

if and only if ¢ # 1/4. If ¢ ¢ [1/4, 00), so that the two fixed points have distinct real
parts, then by convention the fixed point which is further to the left is calleshd the

other fixed point 1- « is calleds. If « is attracting olx = 8 (< ¢ = 1/4), the Julia set

of f is a Jordan curve with a unique external ray landing at every point. Hence there are
no biaccessible points at all and Theorem 1 below is trivially t&@we may assume that

a # B anda is not attracting It follows that eithek € J, or elsex is the center of a fixed
Siegel disk forf.

By anembedded arm K we mean any subset & homeomorphic to the closed interval
[0,1] c R. SinceK is locally-connected, for any two points y € K there exists an
embedded arg in K which connects to y. If K has no interior so that = K is full,
thenn is uniquely determined by the two endpointandy. If K does have an interior,
however, there is usually more than one choicejfom what follows, we will show how
to choose a canonical embedded arc between any two points in the filled Julia set.

Suppose that iiK) is non-vacuous. Every compondiitof this interior is a bounded
Fatou component whose closWeis homeomorphic to the closed unit diBk sincek is
locally-connected. According to Fatou and Sullivan (see, for examidid,]], every such
component eventually maps to a periodic Fatou component which is either the immediate
basin of attraction of an attracting periodic point, an attracting petal for a parabolic periodic
point or a periodic Siegel disk. We refer to these cases simglyparbolic parabolicand
Siegelcases. Note that in the hyperbolic and parabolic cases the critical point 0 belongs
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to a central Fatou component which we denotd /gy Also, by our assumption on the
fixed point, periodic Fatou components in the hyperbolic and parabolic cases form a cycle
of period>1.

Next, we would like to choose eenterc(U) in every bounded Fatou compondiit
subject only to the following conditions:

(C1) ¢(=U) = —c();
(C2) if U contains the critical value = f(0), thenc(U) = c;
(C3) if U contains the fixed point, thenc(U) = «.

It follows from (C1) that whenever the critical point O belongs to the Fatou set, it is the
center of the corresponding Fatou componégt c(Up) = 0. Also (C3) corresponds to
the case where the-fixed point is the center of a fixed Siegel digk

Given any bounded Fatou componéntthere exists a homeomorphigim U =D
which is holomorphic inJ with ¢(c(U)) = 0. An arc inU of the formg—1{re’? : 0 <
a <r < b < 1}is called aradial arc. Since¢ is unique up to post-composition with a
rigid rotation ofD, radial arcs inJ are well-defined.

Following [DH], we call an embedded afcin K regulatedif, for every bounded Fatou
component/, the intersectior N U is either empty, a point or consists of radial arc&/in
(see alsolDo3], where the word ‘legal’ is used for regulated).

LEmMMA 1. Given any two points, y € K, there exists a unigue regulated arin K with
endpointsx, y. Furthermore, ify is any embedded arc ik which connects to y, then
INJcnnlJ.

Proof. Take any embedded aFcin K with endpointsx, y. It is easy to see how one
can deformy to a regulated aré. Let U be a bounded Fatou component whose closure
intersects;. Choose any parametrizatian [0, 1] — K with n = k([0, 1]), and define

to = inf{r € [0, 1] : h(¢) € U},
t1 =supt €[0,1]: h(r) € U}.

In other wordsyg is the first momeny hits U andt; is the last momeni stays inU. If
to # t1, replace the sub-arc affrom h(tp) to h(t1) by the radial arc fronk (7o) to c(U)
followed by the radial arc from(U) to h(t1) (see Figure 1). 1h(ro) andh(z1) happen to
be on the same radial arc, simply connect the two by the radial arc between them.

Applying this construction to the intersection with every such Fatou component, we
obtain a regulated arcwith endpointsc, y. Evidently we have the inclusianJ c nnNJ.

To prove uniqueness, suppose thaind/’ are both regulated, with the same endpoints
x,y. If I # I, then the complemer \ (/ U I) has a bounded connected component
V. By the maximum principleV is contained in some bounded Fatou comporiéntt
follows that the boundar§V must be contained in a union of at most four radial arcs in
U. But a finite union of radial arcs cannot bound an open sét.itherefore] = I’. O

The regulated ar¢ given by the above lemma is denoted[by y]. The open ar¢x, y)
is defined by{x, y] \ {x, y}, and similarly we can define the semi-open @arcy).

More generally, given finitely many poinis y, ..., z in K, there is a unique smallest
connected seftx, y,...,z] € K made up of regulated arcs which contain all of these
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FIGURE 1. Deforming an embedded arc into a regulated arc.
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FIGURE 2. A tripod [x, y, z] with joint p.

points. In fact, this set is always a (finite) topological tree. We Eally, ..., z] the
regulated treegenerated byx, y, ..., z}. A vertex of this tree with exactly one edge
attached to it is called aendof the tree. A point which is not an end is callediaterior
pointof the tree. It follows easily from (C1) that

[—x,—y,...,—z]l=—[x,y,...,z]. (1.3)

In the case of three distinct points,, y, z] is either homeomorphic to a closed interval
orto a letter Y. The first case occurs if and only if one of the points belongs to the regulated
arc connecting the other two. In the second case, the three pointg are ends of the
tree [x, y, z]. In other words, there is a unique interior poimte [x, y, z] such that
[x, p1 N1y, p]l = [x, pl N[z, p] = Ly, p]l N[z, p] = {p} (see Figure 2). In this case,
we call[x, y, z] atripod. Pointp is called thgoint of this tripod.

The regulated trees as defined above are not preserved by the dynarnjicindact,
whenk has interior, the center of a bounded Fatou compobiesinot necessarily mapped
by f to that of f(U). Hence, regulated arcs i do not map to regulated arcs fiU).

This difficulty can be most conveniently overcome by deforming the polynofnialative

to the Julia set into a new map which respects the centers. To this end, it suffices to
note that for every bounded Fatou compon&nthere is a homeomorphism betwegn

and the cone ovaéiU which sends(U) to the cone point and restricts to the identity map
ondU. We can defing” so as to preserve this cone structure on various bounded Fatou
components. For example, for any compon&nand anyp € aU, take the Poincar’
geodesic inJ between:(U) andp and defineF : U — f(U) so as to map this geodesic
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isometrically to the unique Poinaageodesic betweerif (U)) and f(p) € f (U). (Note

that by our assumptioff (U) # U unlessU is a fixed Siegel disk for which the fixed

point is the center. So in any cages still a fixed point ofF.) Apply this construction to
every bounded Fatou component andAet= f everywhere else. The mapwill be the
required modification of which satisfies the following properties.

(F1) F(c(U)) = c¢(F(U)) for every bounded Fatou componént In particular, by (C2),
whether or not the critical point 0 belongs to the Fatou $&f) = f(0) = c is
always the critical value of.

(F2) F = f onthe closure of the basin of attraction of infinity.

(F3) F(z) = F(Z) & z = %7

(F4) «a andp are the only fixed points af.

Also, since the support of the Brolin measure is the Julia set wfiexed F agree, it
follows that properties (iii) and (v) in 81.1 also hold fBr In other words,

(F5) w(F~1(A)) = u(A) for any measurable set c C, and

(F6) w(F(A)) =2u(A) for any measurable sdt C C for which F| 4 is one-to-one.

LEMMA 2. Letx,y,...,z € K. Suppose that the critical poirft is not an interior
point of the tree[x,y,...,z]. Then F maps[x,y,...,z] homeomorphically to
[F(x), F(), ..., F(2)].

In this case, we simply write
Filx,y.....2] = [F(x), F()..... F@)].

Proof. First let us show thaf restricted to[x, y, ..., z] is injective. If not, it follows
from (F3) that[x, y, ..., z] contains a pait-a of symmetric points. By (1.3), we see that
[a, —a] = —[a, —a]. Hence the 180rotation from the arda, —a] to itself must have
a fixed point, namely the critical point 0. But this implies that O is an interior point of
[x,y,...,z], contrary to our assumption.

Therefore,F restricted tdx, y, ..., z] is injective. The image tre€([x, y,...,z]) is
evidently connected and contains all of the image palts), F(y), ..., F(z). Since all
the ends ofF ([x, y, ..., z]) are amongF(x), F(y), ..., F(z), we conclude that it is also
minimal. To finish the proof, it is enough to show that the image of every regulated arc in
[x,y,...,z] is a regulated arc. But this follows from (F1) sinfepreserves the centers,
hence the radial arcs, in bounded Fatou components of |

Definition 1. By the spine of the filled Julia setk we mean the unique regulated arc
[—B8, B] between the3-fixed point and its preimage 8, which are the landing points
of the unique external ray andRy,,, respectively. By (1.3), the spine is invariant under
the 180 rotationz — —z. In particular, the critical point O always belongs to the spine.

Let z € J be a biaccessible point, with a ray p&R;, R;) landing atz and 0 <
t <s < 1 Ifz ¢ [—8, B], it follows that bothr ands satisfy 0 < r < s < 1/2 or
1/2 <t < s < 1. Consider the orbit of the ray paiR;, R;) under f. Since there exists
an integem > 0 such that 12 < 2's — 2"t < 1, the corresponding rays°"(R;) and
f°"(Rs) must belong to different sides of the curRe,> U [—8, 81 U Ro (see Figure 3).
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F(Ry).

)

FIGURE 3.

Therefore,f°"(z) € [—8, 1. This means that the sét of all biaccessible points in the
Julia set is contained in the union of preimages of the spine:

Bc | -8 81 (1.4)

n>0

1.3. Main theorem and supporting lemmasOur main goal in Part | is to prove the
following result.

THEOREM1. If the Julia setJ of the quadratic polynomiaf : z — z2 + ¢ is locally-
connected, then the set of all biaccessible points fras Brolin measure zero unlegsis
the Chebyshev polynomial- z2 — 2 for which the corresponding measure is one.

By (1.4), it suffices to show that, for every non-Chebyshev quadratic, the Brolin measure
ul[—B, B] of the spine is zero.

The proof depends on several lemmas which will be given in this section and §1.4
below. Some of these lemmas are of independent interest in studying the combinatorial
structure of quadratic Julia sets. Unless otherwise stated, the Jullasassumed to be
locally-connected.

LEMMA 3.

(@) Any pointin the Julia sef which belongs to the boundary of two Fatou components
is necessarily biaccessible.

(b) Letn be any embedded arc in the filled Julia $£tandz be a point inp N J which
is not an endpoint of. Then eithet is biaccessible or it belongs to the boundary of
a unique bounded Fatou component.

Proof. (a) LetU and U’ be two Fatou components withe dU N dU’. Assume that
z is not biaccessible. TheK - {z} is connected, so there exists an embeddedyarc
in K betweenc(U) andc(U’) which avoidsz. By Lemma 1,/ N J C n N J, where
I = [c(U), c(UN] = [c(U), z]1U [z, c(U")] is the unique regulated arc betwe#it/) and
c(U"). It follows thatny must contair, which is a contradiction.

(b) If z is not biaccessible, thek \ {z} is connected. Hence, there exists an embedded
arcn’ in K between the two endpoints gfwhich avoids;. Take a bounded connected
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componentV of the complement ~\ (n U n’) which containg in its closure. By the
maximum principley must be contained in a bounded Fatou component. Hebekngs
to the boundary of this bounded Fatou component. Uniqueness follows from partda).

COROLLARY 1. Let f : z — z? + ¢ have a locally-connected Julia set. If thefixed
point is not attracting and # 8, then neither the-fixed point nor any of its preimages
can belong to the boundary of a bounded Fatou componefit of

Proof. Assume there exists a bounded Fatou compobemiith § € dU. Theng €

aU NnafU). If U = f(U), it must be a fixed Siegel disk by the above assumption.
But in this casef |y is conjugate to an irrational rotation so it cannot have a fixed point.
Therefore U # f(U). By Lemma 3(a),8 will be biaccessible. But this is impossible
since theg-fixed point is always the landing point of the unique Ry |

Remark 1.In the non-locally-connected case, itrist known if the 8-fixed point can be

on the boundary of any bounded Fatou component. In fact, it is not known if there are
examples of quadratic polynomials with a fixed Siegel disk whose boundary is the whole
Julia set. Any such quadratic would provide a counterexample to the above corollary in the
non-locally-connected case.

LEMMA 4. If x ¢ [—8, B], then[—3, x, B] is a tripod.

Proof. Otherwise, we must haveg € (x, 8) or 8 € (x, —B). In either case, it follows
that —B or g belongs to the interior of an embedded arc in the filled Julia set.sBat

the landing point of the unique rafg. Since the orbit-g +— B does not pass through
the critical point, it follows that-g is also the landing point of the unique r&y,>. By
Lemma 3(b), eithep or —8 must be on the boundary of a bounded Fatou component,
which contradicts Corollary 1. |

Here is a definition which will be used repeatedly in all subsequent arguments.

Definition 2. We define a projectior : K — [—3, 8] as follows: forx € [—8, B8],
letr(x) = x. If x ¢ [—8, B], then[—8, x, B] is a tripod by Lemma 4, and we define
m(x) € (=B, B) to be the joint of this tripod.

Note thatrz (x) can be described as the unique poinf-#pB, 8] such that, for any on
the spine[x, m(x)] C [x, y]. Set theoreticallyr is a retraction fromK onto its spine.
However, wherk has interior;r is not continuous.

For simplicity, we denote the regulated &x¢ 7 (x)] by I,. Sincer (—x) = —m(x), we
havel_, = —I,.

LEMMA 5. Thea-fixed point belongs t¢— 3, 0).

Proof. First we prove thatr € (—8, 8). In fact, if « belonged toJ and were off the
spine, then the external rays which landwatvould all belong to one side of the curve
R1/2 U [—8, B1U Ro. This would contradict the fact that the angle-doubling map on the
circle has no forward orbit which is entirely contained in the intef@all/2) or (1/2, 1).

On the other hand, i& belonged to the Fatou set and were off the spine, then it would
have to be the center of a fixed Siegel disk whose closure by (C3) to{ielse#] at the
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FIGURE4.

unique point 0. Take the external r&y which lands at the critical value Since the entire
orbit of ¢ is on one side of the curv@y > U [—B, 81U R, the forward orbit of under the
doubling map must be entirely contained in one of the inter@@l$/2) or (1/2, 1), which
is again a contradiction. Thereforee (—8, B).

Now suppose that € (0, 8). Then[a, 8] C (O, B]. HenceF : [«, B] = [«, B] by
Lemma 2. By (F4), there is no fixed point &fin («, 8). Suppose thd, 8] C J. Then
f repels all points irfe, 8] close toow andB. Sincef = F on the Julia set, the same
must be true forF. Hence there has to be an attracting fixed pointAosomewhere in
(a, B), which is a contradiction. Thereforgy, 8] intersects a bounded Fatou component
U. Passing to some iteraf®” (U) = F°"(U), we may as well assume thitis periodic.
Since F acts monotonically ofi, 8], U must be fixed. Hencé# is a Siegel disk with
¢(U) = a. Now U intersectd«, 8] at a unique poinp which is not thes-fixed point by
Corollary 1. ClearlyF(p) = p, which is a contradiction. This shows thate (—g8, 0),
and completes the proof. m|

LEMMA 6. There exists af-preimagew of 0in (— 8, ). The other preimage w is then
in (—a, B).

Proof. F : [—8, «] = [8,a] by Lemma 2 since O¢ (—pB,«a) by Lemma 5. Again
by Lemma 5 we have & (8, @), which shows there exists a uniquee (—8, @) with
F(w) =0. a

Figure 4 shows the relative position of the points along the spine.

LEMMA 7. Letc = f(0) = F(0) be the critical value. Them(c) € [—8,«]. If
7(c) = —B, thenc = —B, in which casef (z) = z2 — 2.

Proof. By Lemma 2 we havé : [0, 8] = [c, B] = I. U[n(c), B]. Since—a € [0, B],
by (F3) and (F4) we must have&(—a) = « € [c, 8]. Thisis possible onlyi& € [7(c), 8],
which is equivalenttar (c) € [—8, «] (see Figure 5).

If 7(c) = —B, thenc = —pB by Lemma 4. It is easy to see that> z2 — 2 is the only
quadratic polynomial with the critical orbit®> ¢ — 8. |

LEMMA 8. Suppose thaf is not the Chebyshev polynomial. L&) = F(§) = —8.
Then ¢ does not belong to the spirfe-38, 8]. Furthermore,7(¢§) € [—a,«] and
F(r(§)) = n(c), with

cel-B. Bl () =0
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FIGUREDS.

FIGURE®G.

Proof. First suppose that(§) # 0. Replacings by —¢ if necessary, we may assume
thatz(§) € (0,8). ThenF : [€, B8] = [—B8, B], hence—a € [€, B] which implies
that—a € [ (&), B] or, equivalently;z(§) € (0, —«]. Also, since 0¢ [&, 8], ¢ cannot
belong to the sping—3, 8]. By Lemma 7;7(c) € (—p8, «]. By Lemma 2 the s€f, 0, 8]
maps homeomorphically to the tripde-8, ¢, 81, hence it must also be a tripod, with
& ¢ [—B, B], and with the jointz (¢§) mapped tor (c) by F (see Figure 6).

Now suppose that (§) = 0. Then by a similar argument the 4ét 0, 8] = [£, B]
still maps homeomorphically to the spirie 8, 8], since it does not contain a pair of
symmetric points about the origin. In particulamust belong to the spine. By Lemma 7,
c=m(c) e (—B,al. i

COROLLARY 2. F maps[0, £ (&)] to I, and+/¢ to [—8, w(c)] homeomorphically (see
Figure 6).

Thus in all non-Chebyshev cases we have the situation illustrated in Figure 6 (except
that 7. may collapse to a point iff—m (£), 7 (£)] may collapse to a point, or alternatively
7 (c) may coincide withy). Here

e gl g tr@) b ) and +ors 0 c,

wherew lies somewhere betweens anda.
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LEMMA 9. Suppose thay is not the Chebyshev polynomial. Then the Brolin measure
ul[—B, B] of the spine is zero if and only if(1.) = O.

Note that the conditiop(Z.) = 0 is trivially satisfied ifc = 7 (c) belongs to the spine.
The latter happens, for example, when the Julia set(@f = z° + ¢ with ¢ € R is full.
When the Julia set is full, it is conjectured that the critical value belongs to the spine if and
only if ¢ is real.

Proof. By Lemma 8, for one preimage of —8, we haver(¢) € [0, —«], and then
the other preimage-¢ satisfiest(—£) € [a,0]. For simplicity, letzo = 7 (§) and
zn = F°"(z0). It follows from Corollary 2 that

FH (=B, B1U L) = [, BIU I U — 5. (1.5)
By property (ii) in 1.1 and (F5), we have
wle) = u(—Ir) = 3u(le). (1.6)
Note thatz; = 7 (c) € (—8, «] by Lemmas 7 and 8. By Corollary 2, (F6) and (1.6),
ul—=B, 21l = w(F 1)) = 2ule) = u(le). (1.7)

If u[—B, B1 = 0, thenu[—8, z1] = 0, henceau (1) = 0 by (1.7). Conversely, if.(I.) = 0,
thenu[—B, z1] = 0. To proveu[—pB, B] = 0, we distinguish two cases.

Casel.z1 € [w, a]. Thenu[—B, w] < u[—B, z1] = 0. Henceu[O, B8] = 2u[—B, w] =0,
which by symmetry implieg[— 8, 8] = O.

Case 2.z1 € (—B,w). Thenzy = F(z1) € F(—B,w) = (0, 8) and u[z2, ] =
2ul—pB,z1] = 0. If z2 € [0, —w], thenu[—w, B] = 0 and it follows by an argument
similar to Case 1 that[—8, 8] = 0. So let us assume that € (—w, 8). We can
repeat the above argument by consideting= F(z2) € (0, 8). If z3 € [0, —w], we have
ul—B, B] = 0, otherwisezz € (—w, B) and we continue. If this process never stops, it
follows thatz, € (—w, 8) and(z,+1, 8] D [zn, B] for all n. The limit of the monotone
sequencéz,} will then be a fixed point o in (—w, 8), which contradicts (F4). |

1.4. The proof. The idea of the proof of Theorem 1 is as follows. We considenthe
iterate ofc = f(0) = F(0), ¢, = F°*(c). Under the assumptiop(/.) > 0, we show
thatc, cannot belong to the spine and the Brolin measure of thé.atends to infinity as
n — oo, which is clearly impossible singe(/) = 1. Hence we must havye(/.) = 0. By
Lemma 9, this proves the theorem.

Definition 3. Let I1 and I> be two regulated arcs in the filled Julia 9ét We say that’;
and/, overlapif the intersection’y N I, contains more than one point. It follows thiah I,
is a non-degenerate regulated &iio K. We often say that; and /> overlap alongl.

It is not hard to check that for, y € K \ [—8, B8], the arcsl, andI, overlap if and
only if x andy belong to the same connected componerk of [— 8, 8]. In particular, we
must haver (x) = 7 (y).
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FIGURE7.

FIGURES8.

FIGURE9.

LEMMA 10. Letx € K ~ [—8, B]. Then one and only one of the following cases occurs:
(a) I, and[; (or —I¢) overlap along an ard,. ThenF maps[x, y] homeomorphically

to Ipy = [F(x), F(y)].
(b) nw(x) € (—m(&),n(&)). Then F maps I, homeomorphically to the arc



Biaccessibility in quadratic Julia sets 1871

F(I;) = [F(x), F((x))]. In this case,/r) and I. overlap alonglr () =
[F(m(x)), m(c)].

() #n(x) ¢ (—mw(&),n(&)) and I, and £Ir do not overlap. ThenF maps I,
homeomorphically tdr ..

Proof. (a) If x € I or —I¢, theny = x and the result is trivial. Otherwise,
&, x, m(x) = £ (§)] maps homeomorphically fe-8, F(x), w(c)] (see Figure 7). Hence
F(y) = n(F(x)) and the result follows.

(b) If 7 (x) € (—m (&), w (%)), thenF (w(x)) € I. \ {m(c)}, hencelr ) andI. overlap
along/r(x) (see Figure 8).

(c) Sincerr(x) ¢ (—nm (&), w(§)), F(w(x)) € [—B, B]. So the claim is proved once we
show thatr (F(x)) = F (i (x)). If these two points were distinct, then the non-degenerate
arcl = [n(F(x)), F(r(x))] C [—8, 8] would be contained ifF (x), F(m(x))] (see
Figure 9). Hence” ~1(1) would be a non-degenerate arcfinN It or I, N —Ig, which
would contradict our assumption. m|

Let us putm = pu(I.). By (1.6), we haveu(£lz) = m/2.
COROLLARY 3. If x € K \[—8, Blandu(Iy) = 2m, thenu(Ip ) > %M(Ix)-

Proof. By Lemma 10 one and only one of the cases (a)—(c) occurs. In case (b), we
have u(Irw) = wFUx) + nwlraEey)) = wFUx) = 2u(ly) and in case (c),
wIp@xy)) = 2u(ly). In case (a),

wp@)) = ulFx), F(y)] = 2ulx, y]
= 2(u(lx) — u(ly))
> 2(u(ly) — p(xlg))
=2u(ly) —m
> (3/2)u(ly),

which proves the corollary. m|

Proof of Theorem 1Consider the orbit of the critical value = co, c1, ¢2, ...}, where
cp = F°"(c). Letm = u(l;) > 0, and apply Lemma 10 to the point= c¢. Clearly the
only possible cases are (a) and (c) from Lemma 10, sirieg ¢ (—m(£), 7 (§)).

In case (c) we obtain the estimatgl.,) > 2m. This, by repeated application of
Corollary 3, will lead to the estimatg(/.,.,) > (3/2)"u(l.,) which tends to infinity
asn — oo and therefore is impossible.

In case (a)/. and—1I¢ overlap along somé, with F(y) € (=B, 7(c)) andu(l,) =
wulc1, F(y)] = 2ufc, y] = m. Apply Lemma 10 this time toc = c¢3. Note that the
only possible case is (c), sineg(c1) € [—8, 7 (c)). This gives the estimatg(l.,) =
2u(l.,) = 2m. Hence successive applications of Corollary 3 will give the estimate
w(le,.) = (3/2)"u(l.,), which again contradicts the fact that the Brolin measure of the
Julia set is finite.

The contradiction shows that = ©(1,) must be zero, and this completes the proof of
Theorem 1 by Lemma 9. |
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1.5. Further discussion. Finally, we consider the following result, which is a
consequence of Theorem 1 as well as the fact that the Julia set has no compact forward-
invariant proper subsets of positive Brolin measure.

THEOREM?2. Let f : z — z2 + ¢ be a quadratic polynomial with locally-connected filled
Julia setK . If we exclude the Chebyshev case and the cases whesefiked point off
is attracting ore = 8, then every embedded arc khhas Brolin measure zero.

The exceptional cases correspond respectivalyto—2 where the Julia set is a straight
line segment; in the ‘main cardioid’ of the Mandelbrot set where the Julia set is a quasi-
circle andc = 1/4 where the Julia set is a Jordan curve but not a quasi-circle. Roughly
speaking, the theorem says that, in any other case, embedded arcs are buried in the filled
Julia set so that they are almost invisible from the basin of infinity.

We make the following elementary observation for the proof.

LEMMA 11. Let A C J be forward-invariant underf, i.e. f(A) C A. Then either
uw(A) =0o0r u(A) = 1. In particular, if A is compact andi £ J, thenu(A) = 0.

Proof. Lety : T — J be the Caratkddory loop andE = y ~1(A). ThenE is forward-
invariant under the doubling map: T — T defined byd () = 2t (mod 1). We prove that
L(E) =0o0r¢(E) = 1, where denotes the Lebesgue measuré&lohet ¢(E) > 0 and let
x be a point of density of. Given ans > 0, we can find am > 0 and an intervaf Cc T
centered at such that’(S) = 27" and{(S N E) > (1 — £)£(S). Apply thenth iterated*”
on S and usel°"(E) C E to estimate

1—e<2USNE)=Ld(SNE)) <&TNE)={E).
Since this is true for every > 0, we must havé(E) = 1. |

COROLLARY 4. Still assuming thatk is locally-connected, the Brolin measure of the
union of the boundaries of bounded Fatou componentg & zero unless the-fixed
point is attracting ore = 8 in which case the corresponding measure is one.

Proof. Since every bounded Fatou component eventually enters a cycle of Fatou
components of the fornyy — U — --- — U, — Us, it suffices to prove that
w(A) = 0, whereA = Uf=13Uj- This set is compact and forward-invariant unger

so by Lemma 11 iju(A) > 0, thenA = J must be the case. But this implies thathas

only p bounded Fatou components. It is easy to see that this can happen pnly 1f in

which case the component is either the immediate basin of attraction for an attracting fixed
point or the attracting petal for a parabolic fixed point. |

As an illustrative example, consider a quadratic polynorfilahosex-fixed point is the
center of a Siegel disk with rotation numbe#é of constant type (an example is provided
by f : z — z% — 0.390 5408- 0.586 7879, whered = (/5 — 1)/2 is the golden mean).
By [P€, the filled Julia set is locally-connected. The critical poik @U is the landing
point of exactly two ray$R;, Rs+1/2), where

s= Y 27wt (1.8)
O<p/q<06
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Since the orbit of 0 is dense &, the set of angles for which y (1) € dU coincides

with the closure of the orbit of under the doubling map on the circle. This set is known

to be an invariant Cantor sé€t of measure zero in the intervid, s + 1/2] ¢ T [BS)].

It follows that the set of alt for which y (¢) belongs to the boundary of a bounded Fatou
componentis the countable union of Cantor sets consistingeofd all its preimages under

the doubling map. This set has Lebesgue measure zero, hence the union of the boundaries
of all bounded Fatou components will have Brolin measure zero.

Proof of Theorem 2Let n € K be any embedded arc. L8tbe the set of biaccessible
points inJ andB’ be the set of all points id which belong to the boundary of a bounded
Fatou component. By Theorem 1 and Corollary 4, we hay®) = «(B’) = 0. On the
other hand, by Lemma 3(b), everye n N J is either an endpoint or it belongs BU B’'.
Henceu(m) =u(nnNJ) <u(BUB)=0. O

COROLLARY 5. A locally-connected quadratic Julia set is not a countable union of
embedded arcs unless it is a straight line or a Jordan curve.

2. Partll: The Siegel and Cremer cases
2.1. Introduction. Consider a quadratic polynomial

fizr2+c¢ (2.1)

in the complex plan€C. A fixed pointz = f(z) is calledindifferentif the multiplier
A = f'(z) has the forme2"? where therotation numbem belongs toR/Z. We callz
irrationally indifferentif 6 is irrational so thak is on the unit circle but not a root of unity.

Let z be an irrationally indifferent fixed point of. When f is holomorphically
linearizable about, we call z a Siegelfixed point. On the other hand, whenis non-
linearizable, it is called &remerfixed point.

The two fixed pointsr andg have multipliers. = 2o and 2— A = 28. It follows that
only thea-fixed point can be indifferent. The critical value parameterthen given by

c=r2—n)/4

Therefore, the set of all quadratic polynomials which have an indifferent fixed point is
a cardioid in thec-plane parametrized by on the unit circle. The set of quadratic
polynomials with an irrationally indifferent fixed point is then a dense subset of this
cardioid. We call a quadratic polynomiglin (2.1) Siegelor Cremerif the «-fixed point is
irrationally indifferent and has the corresponding property.

It follows from classical Fatou—Julia theory that the filled Julia Ketand the Julia
setJ = 9K are connected wheyi is Siegel or Cremer. Every connected component of
the interior of K is a topological disk called hounded Fatou component f. In the
Siegel case, the componehof the interior ofK containing the fixed poirt is called the
Siegel dislof f on which the action of is holomorphically conjugate to the rigid rotation
2> 2Tt

Since f(z) = f(—z) by (2.1),J is invariant under the 18Qrotationzt : z > —z. If
U is an open Jordan domain in the plane such that 7(U) = ¢, it follows that f is
univalent in some Jordan domalihicontaining the closurg.
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According to Fatou and Sullivan, every bounded Fatou component must eventually map
to the immediate basin of attraction of an attracting periodic point, to an attracting petal
for a parabolic periodic point or to a periodic Siegel disk fofMil]. On the other hand,
by [Do]] a polynomial of degreed > 2 can have at mosti(— 1) non-repelling periodic
orbits. It follows that, in the Siegel case, every bounded Fatou component eventually maps
to the Siegel disks centered at. In the Cremer case, however, we simply conclude that
K has nointerior, so tha&t = J.

2.2. Arithmetical conditions. It is well known that the behavior of orbits near the

indifferent fixed point is intimately connected to the arithmetical properties of the rotation
number O< 6 < 1. There are certain classes of irrational numbers which are of special
interest in holomorphic dynamics and in this paper we will be working with some of them.

Let

1
0=

ai +
1
a + —

be the continued fraction expansiongofwhere all thes; are positive integers, and let

P 1

qn 1

az +

. 1
i
dp

be thenth rational approximation af. We say that:

° 0 is of constant typéwe writed € CT) if sup, a, < +oo;

. 6 is Diophantine(we writed € D) if there exist positive constanésandv such that
for every rational number & p/q < 1, we havgd — p/q| > C/q" (this condition
is equivalent to syplogg,+1/109¢,) < +0o0);

. 0 is of Yoccoz typdwe write 6 € H) if every analytic circle diffeomorphism with
rotation numbe# is analytically linearizable (an explicit arithmetical description of
‘H is given by Yoccoz although it is not easy to explain; sé&?]).

A closely related condition, which we denote BY, is defined as followst € H’
if and only if every analytic circle diffeomorphism with rotation numidewith no
periodic orbit in some neighborhood of the circle, is analytically linearizaid1].

° 6 is of Brjuno type(we write6 € B) if it satisfies the condition

. loggn+1

n=1 4n

< +o00. (2.2)

We have the proper inclusiofté C #' andCT C D C ‘H C B. Itis not hard to show that
D, henceH, H' andB, are sets of full measure R/Z.

By the theorem of Brjuno—YoccoX$1], f is a Siegel quadratic polynomial if and only
if 0 € B.
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2.3. Basic results. Very little is known about the topology of the Julia set ffin
the Siegel or Cremer case or the dynamics‘adn its Julia set. The following theorem
summarizes the basic results in the Cremer case.

THEOREM3. Let f in (2.1) be a Cremer quadratic polynomial, so tiéag 5. Then:

(@) the Julia set/ cannot be locally-connectd&u];

(b) every neighborhood of the Cremer fixed paintontains infinitely many repelling
periodic orbits off [Yo1l];

(c) the critical point0 is recurrent, i.e. it belongs to the closure of its orpjt°” (0)},,~0
[Ma];

(d) the critical pointQ is not accessible froft \ J [Ki].

See also $4 for the so-called ‘Douady’s non-landing theorem’, which says that for a
generic Cremer quadratic polynomial there is an external ray which accumulates on the
Cremer fixed point and its preimage. Perez-MaRM2] has shown that for every Cremer
quadratic polynomial there exists an external ray whose prime-end impression contains the
Cremer fixed point and its preimage. Both results shed some light on why the Julia set of
a Cremer quadratic polynomial fails to be locally-connected.

In the Siegel case, we know a little more, but still the situation is far from being fully
understood.

THEOREM4. Let f in (2.1) be a Siegel quadratic polynomial, so that 5. LetS denote

the Siegel disk of . Then we have the following.

(&) If6 € CT,thenthe boundarys is a quasi-circle which contains the critical poidt
[Do2]. The Julia sev is locally-connected and has measure Zgidg.

(b) 1If6 € H,then0 e 35 [He]].

(c) For some rotation numbetse B\ H, the entire orbit oD is disjoint fromad S [HeZ].
In this case,J cannot be locally-connectd®o?].

(d) Foreveryé e B, the critical pointO is recurrent.

Part (b) was proved by Herman fére D, but his proof works equally well fot € .
We will include a very short proof for the latter case in §2.4. The proof of part (d) goes as
follows. By classical Fatou—Julia theory every poindifiis in the closure of the orbit of O
[Mi1], so recurrence is immediate if®dS. If 0 ¢ 35 and O is not recurrent, then byg]
the invariant sed S is expanding, i.e. there is a constant 1 and a positive integérsuch
that|(f°%)'(z)] > A forall z € 8S. It follows that the same inequality holds over some
neighborhood’ of 35, and we may as well assume tlians is invariant. Take a small disk
V € UNS. Sincef°!|yns is holomorphically conjugate to the rigid rotatiom> ¢27%0z,
there exists a sequengg — oo such thatf < converges uniformly to the identity map
onV asj — oco. But this is impossible since for alle V, |(f°K%)/(z)| > A" — oo.
Comparing the two theorems, we notice that the Cremer case and the Siegel case with
0 ¢ 4.5 share many properties. This is a general philosophy which is partially explained by
the theory of ‘hedgehogs’ introduced recently by Perez-Maerdd]] (see §2.4 below).
Inspired by this similarity, one expects the following to be true.



1876 S. Zakeri

%U I u I u @ u
|
@ (b) © ()

FIGURE 10.

CONJECTURE Let f be a Siegel quadratic polynomial addz 3S. Then:
(i) every neighborhood &S contains infinitely many repelling periodic orbits ¢f
(ii)  the critical pointO is not accessible frof \ K.

By an argument similar tdq{i], one can show that (i) implies (ii) (see also Proposition 3
in §2.4).

2.4. Hedgehogs. Let f be a Siegel or Cremer quadratic polynomial as in (2.1). Let
U be a simply connected domain with compact closure which contains the closure of the
Siegel diskS in the linearizable case, or the indifferent fixed paini the non-linearizable
case. Suppose thitis univalent in a neighborhood of the closure Then there exists a
setH = Hy with the following properties:

() aeHCU,

(i)  H is compact, connected and full;

(i) 9H N AU is non-empty;

(iv) 9H cC J;

() f(H)=H.

Note thatH has non-empty interior if and only i is linearizable. In this case our
assumption thaf is univalent onU implies that the critical point is off the boundary of
the Siegel disk. Clearlyl > .

Such anH is called ahedgehodor the restrictionf|y : U — C (see Figure 10(a) for
the Cremer case and Figure 10(b) for the Siegel case). (We would like to emphasize that
the topology of a hedgehog is infinitely more complicated than anything we can possibly
sketch!) The existence of such totally invariant sets is proved by Perez-Maktt] [

Note that in the Siegel case, one can have totally invariant Betgith the above
properties (i)—(v) even iBU intersects the closurg. But in this case the existence of
H is not hard to show because we can simply tadkas S or a compact invariant piece
with analytic boundary inside the Siegel disk (see Figures 10(c) and (d)).

Hedgehogs turn out to be useful because of the following nice construction. Uniformize
the complement ~. H by the Riemann map : C~. H — C~.D and consider the induced
mapg = ¢ o f o ¢~L which is defined (by (v) above) and holomorphic in an open annulus
{z € C:1 < |z] < r}. Use the Schwarz reflection principle to extentb the annulus
{z € C:r~1 < |z] < r}. The restriction of to the unit circleT will then be a real-analytic
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diffeomorphism whose rotation number is exadtly2ri)log f'(e) = 6 € R/Z (see
[PM1]). This allows us to transfer results from the more developed theory of circle
diffeomorphisms to the less explored theory of indifferent fixed points of holomorphic
maps.

Using the above construction, it is not hard to prove the following fact B&]).

PROPOSITIONL. Let p be a point in a hedgehod which is biaccessible from outside of
H. Thenp € a5 in the Siegel case ang = « in the Cremer case.

In fact, let us assume that we are in the Siegel casepagddS. Then one can find
a simple arcy in C ~. H which starts and terminates atand does not encircle the
indifferent fixed pointw. Let D be the bounded connected componentof (H U y).
Evidently D is disjoint fromS. The topological diskD’ = ¢(D) is bounded by the
simple arcg(y) and an interval on the unit circle. (The fact that(y) actually lands
from both sides on the unit circle follows from general theory of conformal mappings; see,
for example, Po, Proposition 2.14].) Since has irrational rotation number on the unit
circle T, for some integeiV we haveUfV=0 g°(I) = T. By choosingy close enough to
H, we can assume thgt g°2, ..., g°V are all defined oD’ and U,N=o g° (D) contains
an entire outer neighborhood @f It follows thatUlN=0 f° (D) covers an entire deleted
neighborhood ofd. Therefore, some iteratg (D) intersects)S. Since f° is univalent
onD U S, it follows thatD N 85 # @, which contradicts our assumption. The proof in the
Cremer case is similar.

The construction of the circle maps associated with hedgehogs as described above gives
short proofs for some interesting facts. As the first example, we prove that there are no
periodic points oS when the critical point O is off this boundary, a fact that will be
used in the proof of Theorem 5 below. One can find a proof of this resuRN] for
indifferent germs, but the fact that we are working with polynomials makes the proof even
shorter.

First we need the following lemma.

LEMMA 12. Let f be a Siegel quadratic polynomial as in (2.1) whose critical pOirg
off the boundary s of the Siegel disk. Then the closufds full and f acts injectively
on it.

It is reasonable to speculate that the closure of any bounded Fatou component for a
quadratic polynomial is full. This is known to be true except when the polynomial has a
periodic Siegel diskS with the critical point on its boundargs. In this case, we do not
know if 35 can separate the plane into more than two connected components (a so-called
‘Lakes of Wada’ example in plane topologyY ]).

Proof. (Compare Hel, PM2.) Since f(z) = f(—z) for all z, if f is not injective onS,
there must be a pair of symmetric poinisand—p = t(p) in 3S. SinceJ has a 180
rotational symmetryf —1(S) = S U 7(S). Sop and—p also belong td (z(S)). Consider
the connected componetitof C . (S U 7(S)) which contains the critical point 0. Since
VisopenandV cC J, it follows from the maximum principle that has to be a bounded
Fatou component of . This contradicts the fact that® J.
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Let us now assume thatis not full and letU be a bounded component®f« S. Since
aU c aS c J, it follows again from the maximum principle that has to be a bounded
Fatou component of , hence it eventually maps 1 i.e. f°"(U) = S for somen > 1.
Therefore,f°"~Y(U) = 7(S). But the boundary off>"~1(U) is a subset 08, which
implies that the common boundady N 3(z(S)) is non-empty. This contradicts the fact
that f s is injective. O

PROPOSITIONZ2. Let f be a Siegel quadratic polynomial whose critical pdiris off the
boundarydS. Then there are no periodic points 01.

Proof. By the above lemmd is full and f acts injectively on it, so we can find a Jordan
domainU containingS such thatf | is univalent. Consider a hedgehaty = Hy for
the restrictionf|y. Clearly H O S. Suppose that there is a periodic point@siwhich

is necessarily repelling. Then there exists a rational externakrianding at this point,
hencef°"(R) = R for somen > 1 (see, for exampleMil]). Consider the induced map
g = ¢ o f o ¢~ L as described above, and look at the pre- ¢ (R). It is a standard fact
thaty has to land at some poipte T [Po] andg®"(p) = p. But this contradicts the fact
that the rotation number @fis irrational. |

In the second application, we prove Theorem 4(b): we want to showsthat H
implies 0 € 3S. If not, by Lemma 125 is full and f|5 is univalent. Consider a Jordan
domainU, a hedgehodg{y and the induced circle map as in the above proof. Since
the rotation number of belongs to?, g is analytically linearizable. The linearization
can be extended holomorphically to an annulus neighborhood of the unitirélalling
this neighborhood back, we find a larger domain contaiisitog which f is linearizable,
which contradicts the definition of a Siegel disk.

As a final application, we prove the following.

PrROPOSITION3. Let f be a Siegel quadratic polynomial whose critical pdiis off the
boundarydS. If & € H', the critical point0 is not accessible frorfl \ K.

Proof. Consider the hedgehog construction as in the proof of Proposition 2 or the above
proof for Theorem 4(b). If there are no periodic orbits in some neighborhodd oit
follows thatg has no periodic orbit in some neighborhoodlbéither. Since the rotation
number ofg is & € H’, g has to be linearizable. Now we can get a contradiction as in
the above proof for Theorem 4(b). So every neighborhoo@lSofust contain infinitely
many periodic orbits. The fact that this implies non-accessibility of O follows easily by an
argument similar to that oi]i]. m|

2.5. Wakes. To see the behavior of rays near infinity, it will be convenientto add a circle
at infinity Too ~ R/Z to the complex plane to obtain a closed digktopologized in the
natural way. We denote the point lim., r¢?** on Ty simply by oo - ¢27*, The action

of fin (2.1) on the complex plane extends continuouslgidy

f(00- ety = o0 . AT (2.3)

which is just the doubling map df. Note that the symmetry(z) = f(—z) also extends
to © if we define—oo - €2 = o0 - 27I(1+1/2),



Biaccessibility in quadratic Julia sets 1879

@ (b) ©

FIGURE11.

Definition. Let f be a quadratic polynomial as in (2.1) with connected Julia setz ket

be a biaccessible point ihwith two distinct raysk andR’ landing on it. We cal(R, R') a
ray pair. By the Jordan curve theorem®|J R’ U{z} cuts the plane into two open topological
disks. By thewake W of the ray pair(R, R’) we mean the connected component of
C ~ (R U R’ U {z}) which does not contain the fixed poimt The other component is
called theco-wakeand it is denoted by¥. Pointz is called theoot of W. Theanglea(W)

of the wake is just the (normalized) measuréiof To,. Clearlya(W) + a(W) =1 (see
Figure 11(a)).

Since distinct external rays are disjoint, it follows that any two wakes with distinct roots
are either disjoint or nested.
In the following lemma we collect basic properties of wakes (compaké]or [Mi2]).

LEMMA 13. Letz € J be a biaccessible point,# «, and letW be a wake with root.

(@) If z £0,thena(W) > 1/2if and only if W contains the critical poin®.

(b) If a(W) = 1/2, thenz must be the critical poind. Conversely, if there is any rai
landing at0, thenR’ = 7(R) also lands a0 and the two rays span a wak& with
a(W)=1/2.

(c) Leta(W) < 1/2and f(z) # a. Thenf (W) is a wake or a co-wake with rogt(z),
depending on whethera ¢ W or —a € W. In eithercasef : W — f(W)isa
conformal isomorphism and( f (W)) = 2a(W).

Proof. Let W be the wake of aray paiR, R').

(a8) Let 0e W anda(W) < 1/2. Consider the symmetric regiar{W) whose angle
is equal toa(W). W andt (W) intersect since both contain O (see Figure 11(b)). On the
other handW N t(W) N To, = ¥ becauser(W) < 1/2. SinceW andt(W) are both
homeomorphic to closed disks, it follows that the ray pakitsR’) and(z (R), T(R’)) must
intersect, which is a contradiction. Therefat€¢W) > 1/2if0 € W.

On the other hand, let(W) > 1/2. Then the angle of the co-wakl# has to be less
than %/2, so by the above argumentOW or 0 € W. This proves (a).

(b) If a(W) = 1/2, thenR’ = 7(R). Hencez = t(z) by continuity, which means that
z = 0. The converse is trivial.
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(c) If a(W) < 1/2, then the ray pair¢R, R’) and (z(R), T(R’)) cut the plane into
simply connected domairig, (W) and an open séf, which is either a simply connected
domain or the disjoint union of two simply connected domains depending on whegher
orz = 0. By (a), 0¢ W U t(W). Consider the ray paitf (R), f(R")) landing atf (z),
and letW’ be the corresponding wake. The pull-backisf by f either consists of the
disjoint unionW u = (W) or the open selV (see Figure 11(c)). In the first casémapsW
to W’ isomorphically and-a ¢ W. In the second case, however, we must hawes W,

a € (W), and bothW andz (W) map isomorphically to the co-wak&’. The fact that
a(f(W)) = 2a(W) simply follows from (2.3). O

2.6. The main theorem. Now we are in a position to state and prove the main theorem
of Part II.

THEOREMS. Let f be a quadratic polynomial as in (2.1) which has an irrationally
indifferent fixed poin&. Letz be a biaccessible point in the Julia set f Then:

e in the Siegel case, the orbit gimust eventually hit the critical poir

e in the Cremer case, the orbit efmust eventually hit the fixed poimt

(Compare §£Z] where this same result for the Cremer case is proved by a somewhat
different argument.)

In the Siegel case, if the critical point O is accessible, then exactly two rays land there
(see Corollary 7 below). This happens, for example, wiea C7, since in this case
by Theorem 4(a) the Julia set is locally-connected. On the other hand, for some rotation
number®) € B N H’, the critical point is not accessible so that there are no biaccessible
points in the Julia set (see Corollary 6 below).

In the Cremer case, if the fixed poiatis accessible, then infinitely many rays land
there. In fact, ifR; lands at, thent is irrational and everyRa:; lands atx also. However,
there is no known example where one can decide whetlieaccessible or not.

The proof of Theorem 5 is based on the following lemma.

LEMMA 14. Let f be a Siegel or Cremer quadratic polynomial as in (2.1). Assume that
there exists a biaccessible pointinwhose orbit never hits the critical poiftor the fixed
pointa. Then there exists a ray pair which separatesom 0.

Proof. Let z € J be such a biaccessible point at®, R") be a ray pair which lands at
z. Consider the associated wakg with rootz. Sincez # 0, we haven(Wp) # 1/2 by
Lemma 13(b). lfa(Wp) > 1/2, then Oe Wy by Lemma 13(a) andR, R’) separates
from 0. Let us consider the case wher@Vp) < 1/2. If —a € Wp, then(R, R’) must
separate-a from 0 because, by Lemma 13(a)g0Wy. It follows that the symmetric ray
pair (t(R), T(R’)) separates from 0. If, however,—a ¢ Wy, then, by Lemma 13(c),
W1 = f(Wp) is a wake with root1 = f(z) with anglea(W1) = 2a(Wp).

Now we can replacéVy by Wj in the above argument. If eitheqW;) > 1/2 or
a(W1) < 1/2 and—«a € Wy, we can find a ray pair separatingfrom 0. Otherwise, we
consider the new wak#, = f(W1) with anglea(W,) = 2%a(Wp). Since each passage
W; — W,;41 implies doubling the angles, this process must stop at some stage, and this
proves the lemma. m|
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Proof of Theorem 51t will be more convenient to consider the Cremer case first. Suppose
that the orbit of; never hitse. Since the critical point is not accessible by Theorem 3(d),
Lemma 14 gives us a ray paiR, R’) landing at some poinp € J which separates

from 0. LetW be the corresponding wake with roptand consider the co-wak&. The
restriction of / to the closure of¥ is univalent since otherwise this closure would intersect
the closure of the symmetric domaitiW), which is impossible since(W) < 1/2. To
work with a Jordan domain in the plane we cut@ffalong an equipotential curve and call
the resulting domail/ (see Figure 12(a)).

Let us consider a slightly larger Jordan dom&irp U with compact closure such that
f 57 is still univalent. The hedgehaldy for the restrictionf|y : V — C has to reach the
boundary ofV. SinceHy is connected and intersedis it has to intersect the boundary
of U as well. ButHy c J andaU N J = {p}. Hencep € Hy. Sincep is biaccessible
from outside of the Julia set, it follows théy ~ {p} is disconnected. Therefore, is
biaccessible from outside @fy. This contradicts Proposition 1, and finishes the proof of
the theorem in the Cremer case.

Let us now assume that we are in the Siegel case. If the orbiegéntually hits the
critical point 0, there is nothing to prove. Otherwise, since this orbit trivially cannot hit the
fixed pointa € S, we are again in the situation of Lemma 14. Therefore, there exists a ray
pair (R, R") landing at a poinp € J which separates from 0. In particular, the critical
point 0 is off the boundary S of the Siegel disk. Then the same argument as in the Cremer
case with an application of Proposition 1 shows thatust belong t@S.

As before, letW be the wake of the ray paiR, R’), with root p. Then by construction
W contains the critical point 0 while the co-wakeé contains the Siegel disk and has
its boundary touching only at p. The pointp is not periodic by Proposition 2. Hence,
the successive images, = f°"(p) € 9§ are all contained iV for n > 1. Therefore,
each wakéV,, corresponding to the ray paif " (R), f°"(R’)), with root pointp,, is also
contained inW (see Figure 12(b)). In particular, none of these wakes contain the critical
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point. Hencea(W,4+1) = 2a(W,) < 1/2 for all n by Lemma 13(c), which is clearly
impossible. The contradiction shows that the orbitzahust eventually hit the critical
point. m|

By Proposition 3, we have the following corollary.

COROLLARY 6. Let f be a Siegel quadratic polynomial with¢ 95 and® € H’. Then
there are no biaccessible points.nat all.

By Lemma 13(b), every wake with angl¢éZmust have its root at the critical point O.
The converse is not true for arbitrary quadratic polynomials. For example, the real
Feigenbaum map — z? — 1.401 155 .. has four distinct external rays landing on its
critical point (compare withJH]). However, in the case of a Siegel quadratic polynomial,
the critical point O is the landing point @t mostone ray paitR;s, T(R;)) (in the Cremer
case, there are no such ray pairs by Theorem 3(d)). This is non-trivial and follows from the
statement that every Siegel or Cremer quadratic on the boundary of the main cardioid of
the Mandelbrot set is the landing point of a unique parameter@y][ In fact, one can
explicitly compute the angle of the candidate ray paiR;, T (R,)) which may land at 0
from equation (1.8) in Part . It is interesting that the uniqueness of sushakso follows
from Theorem 5.

COROLLARY 7. Let f be a Siegel quadratic polynomial as in (2.1). Then, no pointin the
Julia setJ is the landing point of more than two rays. In particular, at most one ray pair
lands at the critical poin®.

Proof. By Theorem 5 it suffices to prove the corollary for the critical point. Suppose
that there is a ray paifR, R’) which lands at 0 such tha&’ # t(R). It follows that
(f(R), f(R)) is a ray pair which lands at the critical value By Theorem 5, the orbit

of ¢ must eventually hit the critical point 0. But this means that 0 is periodic, which is
impossible. m|
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REFERENCES
[Br] H. Brolin. Invariant sets under iteration of rational functioAskiv for Math. 6 (1965), 103-144.
[BS] S. Bullett and P. Sentenac. Ordered orbits of the shift, square roots, and the devil's stiMiaidse.

Proc. Camb. Phil. Socl15(1994), 451-481.



[Do1]
[Do2]

[Do3]

[DH]
[EL]

[GM]
[Hel]
[He2]

[HY]
[JH]

[Ki]
[Ly]

[Ma]
[Mc]

[Mi1]
[Mi2]

[PM1]
[PM2]
[Pe]
[Po]
[Ru]
[sZ]
[Se]
[Su]

[Yo1]
[Yo2]

Biaccessibility in quadratic Julia sets 1883

A. Douady. Systemes dynamiques holomorpleterisquel05-106(1983), 36—63.

A. Douady. Disques de Siegel at aneaux de HerrSBaminar Bourbaki, Asterisque2—-153(1987),
151-172.

A. Douady. Description of compact sets @ Topological Methods in Modern Mathematics, A
Symposium in Honor of John Milnor’s Sixtieth Birthd@ublish or Perish, 1993, pp. 429-466.

A. Douady and J. Hubbard. Etude dynamique des polynomes complexeSrsdly Notes1984—85.
A. Eremenko and M. Lyubich. The dynamics of analytic transformatidesingrad Math. J.1
(1990), 563-634.

L. Goldberg and J. Milnor. Fixed points of polynomial mapsAhn. Sci. Ec. Norm. Su@6 (1993),
51-98.

M. Herman. Are there critical points on the boundaries of singular dom&@oes?®n. Math. Phy€99
(1985), 593-612.

M. Herman. Conjugaison quasisymetrique des diffeomorphismes des cercle a des rotations et
applications aux disques singuliers de Sielynuscript

J. Hocking and G. Younglopology Addison-Wesley, 1961.

Y. Jiang and J. Hu. The Julia set of the Feigenbaum quadratic polynomial is locally-connected.
Preprint, 1993.

J. Kiwi. Non-accessible critical points of Cremer polynomi@&INY at Stony Brook IMS Preprjnt
1996/2.

M. Lyubich. Entropy properties of rational endomorphisms of the Riemann speged. Th. &
Dynam. Sys3 (1983), 351-385.

R. Mafie. On a lemma of Fato®ol. Soc. Bras. Ma24 (1993), 1-12.

C. McMullen. Complex Dynamics and Renormalization (Annals of Math Studies, P3iceton
University Press, 1994.

J. Milnor. Dynamics in One Complex Variable: Introductory Lectyrasd edn. Vieweg, 2000.

J. Milnor. Periodic orbits, external rays, and the Mandelbrot set: an expository acéstetisque
261(2000), 277-333.

R. Perez-Marco. Fixed points and circle mafista Math.179(1997), 243-294.

R. Perez-Marco. Topology of Julia sets and hedgeh®gepublications Math. Orsayl994.

C. Petersen. Local connectivity of some Julia sets containing a circle with an irrational rofetian.
Math. 177(1996), 163-224.

C. PommerenkeBoundary Behavior of Conformal MapSpringer, 1992.

W. Rudin.Real and Complex Analysi8rd edn. McGraw-Hill, 1987.

D. Schleicher and S. Zakeri. On biaccessible points in the Julia set of a Cremer quadratic polynomial.
SUNY at Stony Brook IMS Preprjrit998/1(b), to appear iRroc. Amer. Math. Soc.

D. Sgrensen. Accumulation theorems of quadratic polynoniaggd. Th. & Dynam. Sy4.6(1996),
555-590.

D. Sullivan. Conformal dynamical systerfisecture Notes in Mathematics, 1008pringer, 1983,
pp. 725-752.

J. C. Yoccoz. Petits diviseurs en dimensior\&terisque231(1995).

J. C. Yoccoz. Recent developments in dynami®c. Int. Congress of Mathematicians imich,
vol. I. Birkhauser, 1994.



