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Labile cyclohexadienones were isolated for the first time in
good yields in the photo-Fries rearrangement of partially
blocked naphthyl esters. Upon direct excitation at 313 nm, 1,4-
dimethylnaphth-2-yl and 2,4-dimethylnaphth-1-yl 2,4,6-trimeth-
ylbenzoates afforded 1-acyl-2-naphthalenone and 2- and 4-acyl-
1-naphthalenones, respectively. This isolation is of particular
importance as a direct mechanistic proof and also as a conven-
ient route to these thermally less-accessible compounds.

The photo-Fries rearrangement of aryl esters has been stud-
ied extensively and reviewed frequently with an emphasis on its
synthetic advantage of the unique positional selectivity of the re-
arrangement.1 The mechanism of the photo-Fries rearrange-
ment has also been investigated in considerable detail, in con-
trast to the thermal Fries-rearrangement, in which ionic inter-
mediates are involved. CIDNP experiments revealed that the
photoreaction occurs in the singlet manifold to give the acyl–ar-
yloxy radical pair;2 this radical pair recombines to cyclohexadi-
enone intermediate(s), which eventually tautomerize to the cor-
responding acylphenol derivatives, as shown in Scheme 1. A
recent flash photolysis study on the photo-Fries rearrangement
of phenyl acetate revealed the intervention of two different tran-
sient species, the decay profiles of which are nicely correlated
with the formations of o- and p-acetylphenols, thus supporting
the assignment of these intermediates to the ortho- and para-cy-
clohexadienones (Scheme 1).3

We have recently investigated the photochemistry of partial-
ly and fully blocked aryl esters.4 Irradiation of these aryl esters in
neutral solutions predominantly affords the photodecarboxyla-
tion and photo-Fries rearrangement products, while the addition
of alcohol and a catalytic amount of acid to the solution switched
the photoreactivity to transesterification, which is well under-
stood in the framework of the photo-Fries reaction mechanism,
involving the initial CO–O bond cleavage and subsequent rear-
rangement to the ortho and para positions to give the corre-
sponding cyclohexadienones. However, all attempts to isolate
or detect such intermediates were unsuccessful at least with me-
sityl and related substituted phenyl esters, probably owing to the
thermal and/or photochemical instability of the intermediates.

Here, we report the first successful isolation of such cyclohexa-
dienoid intermediates obtained in the photolysis of blocked
naphthyl esters, which unambiguously reveals its intervention
in the photo-Fries rearrangement.

Since unblocked 1-naphthyl arenecarboxylates are known to
undergo photo-Fries rearrangements to give the corresponding
2- and 4-aroylnaphthols,5 we first chose 2,4-dimethylnaphth-1-
yl 2,4,6-trimethylbenzoate (1) as substrate, which was synthe-
sized from 2,4-dimethynaphth-1-ol.6 A hexane solution of 1
(2.5mM), placed in a donut-shaped Pyrex vessel, was irradiated
at �40 �C under Ar with a 300-W medium-pressure Hg lamp
(� > 280 nm). After irradiation for 2 h, the photolyzate was con-
centrated, and the residue was purified by column chromatogra-
phy over alumina with hexane eluent to yield 4-cyclohexadie-
none (2)7 in 22% isolated yield (Scheme 2). Cage-escape
product, 2,4-dimethylnaphthol (4), was also obtained, along with
trace amounts of radical escape products 5–8. In contrast, no or-
tho-isomer 3 or decarboxylation product was isolated by the
above photolysis/work-up procedures. In a similar photolysis
in acetonitrile, 2 was isolated in 15% yield. The lack of 3 is a lit-
tle puzzling, since the spin density of 2,4-dimethylnaphthoxy
radical (calculated at the B3LYP/EPRII level) is similarly large
at the 2- and 4-positions (Figure 1), suggesting the facile forma-
tion of both isomers. However, the formation of a small amount
of 3 was detected at low conversions by HPLC analysis, but 3
was photochemically labile under the irradiation conditions par-
ticularly upon prolonged irradiations (� > 280 nm), probably
owing to the longer �max of 3 (�320 nm) than that of 2
(�260 nm).

In order to minimize the secondary photodecomposition of 3
(and presumably of 2 as well), we irradiated the sample solution
at 313 nm with a medium-pressure Hg lamp fitted with an aque-
ous K2CrO4 filter. Upon irradiation at 313 nm for 1 h, ester 1
gave the isomeric cyclohexadienones (2 and 3)8 and naphthol
4 in 26, 22, and 15% yields based on consumption of substrate,
respectively, at 15% conversion as determined by the HPLC
analysis. The ortho-rearranged cyclohexadienone 3, which elut-
ed slightly later than 2, was isolated by preparative HPLC on a
Kanto ODS column (150mm � 4.6mm, � = 5mm) with aque-

O

O

OHOH

OO

O

O
+

+

hν

O

H

O
O

H

O

O

O

1 *

Photo-Fries Rearrangement

Scheme 1.

O O

hν  (313 nm) 

Mes
O

O
Mes

O

+

O
Mes

1 2 3

Mes = OH

OC6H13

O

C6H13Mes

O

Mes
Mes

O

O

HMes

+

+++

4

5 6 7 8

+

Scheme 2.

254 Chemistry Letters Vol.33, No.3 (2004)

Copyright � 2004 The Chemical Society of Japan



ous acetonitrile as eluent. Prolonged irradiations led to increased
yields of 2 and the complete loss of 3.

We further performed the photolysis of 1,4-dimethylnaphth-
2-yl 2,4,6-trimethylbenzoate (9).10 Irradiation (� > 280 nm; 2 h)
at �40 �C gave 1-acylcyclohexadienone 1011 in 22% isolated
yield, along with 6-acylnaphthol 11 in 13% and naphthol 13 in
13% (Scheme 3). A small amount of 12 was also detected.
The absence of 8-acylnaphthol may be due to the larger heat
of formation for this rearrangement (Figure 1).

4-Benzoyl-4-methyl-2,5-cyclohexadienone and its deriva-
tives have already been prepared but requires wearisome mul-
ti-step syntheses.12 To the best of our knowledge, no 2-acylcy-
clohexadienone derivative has been isolated so far. In contrast,
the present photorearrangement allows us to conveniently pre-
pare and isolate such benzocyclohexadienones in appreciable
yields as ortho- and para-rearranged products.

In summary, we have shown for the first time that acylcyclo-
headienone intermediates are involved in the photo-Fries rear-
rangement, by employing naphthyl esters that carry methyl
groups at the photo-Fries rearrangement-susceptible positions.13

Studies on thermal and photochemical behavior of these chemi-
cally intriguing species are in progress.
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Figure 1. Calculated spin densities of relevant radical species.
Vaules in the parentheses are the heats of formation (in kcal/
mol) of relevant 2,4,6-trimethylbenzoyl dimethylbeozocyclo-
hexadienones derived from each radical species.9
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