

Tetrahedron Letters 42 (2001) 1363-1365

TETRAHEDRON LETTERS

Polymer-assisted solution-phase library synthesis of 4-alkoxy-2-hydroxy-3,5,6-trifluorobenzoic acids

Ian R. Hardcastle,* Amelia Moreno Barber, Jonathan H. Marriott and Michael Jarman

CRC Centre for Cancer Therapeutics at the Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK Received 8 May 2000; revised 17 November 2000; accepted 5 December 2000

Abstract—The efficient synthesis of a small library of 4-alkoxy-2-hydroxy-3,5,6-trifluorobenzoic acids is described via the fluoride mediated alkylation of 5,6,8-trifluoro-7-hydroxy-2-methyl-benzo[1,3]dioxin-4-one with a collection of structurally diverse bromo-alkanes. The use of ion-exchange resins during the reaction sequence enabled the preparation of the majority of the products in 82-98% purity without the need for chromatography. © 2001 Elsevier Science Ltd. All rights reserved.

We have previously reported the synthesis of 4-farnesyloxy-2-hydroxy-3,5,6-trifluorobenzoic acid (1a) during a search for novel inhibitors of the enzyme farnesyl transferase (FTase) an important target for cancer therapy.¹ Similarly, we have reported the solid-phase synthesis of a library of 1-alkoxy-3-hydroxy-4-nitro-2,5,6-trifluorobenzenes via Mitsunobu alkylation of the corresponding phenol with a diverse collection of alcohols.² We required a rapid, efficient and general route to 4alkoxy-2-hydroxy-3,5,6-trifluorobenzoic acids (1) to provide a small library of compounds of sufficient purity for biological evaluation against FTase.

Efficient methods for the alkylation of solid-phase-tethered alcohols and phenols are rarely reported.³ The use of solid-phase bases such as conventional ion-exchange resins⁴ and polymer supported organic bases,⁵ however, has proved popular to promote alkylation. One advantage of this approach is that the alkylation reaction liberates the product from the resin, thus yielding pure product. Polymer-supported scavenging reagents have also been used extensively to provide clean, efficient reaction sequences.^{6–8} In this paper we report the synthesis and alkylation of 5,6,8-trifluoro-7-hydroxy-2-methyl-benzo[1,3]dioxin-4-one (**2**) with a collection of structurally diverse bromoalkanes, followed by deprotection and purification using polymer-supported scavenging reagents to provide a library of 4-alkoxy-2-hydroxy-3,5,6-trifluorobenzoic acids (**1**).

The key intermediate protected o-hydroxybenzoic acid **2** was prepared from the pentafluorophenyl ester **6**, which was prepared by an improved route modified from that previously published (Scheme 1).¹ Pen-

Scheme 1. Reagents and conditions: (a) PhCH₂Br, Cs₂CO₃, DMF; (b) PhCH₂OH, KO'Bu, THF; (c) H₂, Pd-C, MeOH-H₂O; (d) $C_6F_5OCOCF_3$, pyridine, CH₂Cl₂; (e) i. CH₃CHO, DABCO; ii. BioRad AG 50W X-4 H⁺, MeOH.

^{*} Corresponding author. Current address: Department of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.; e-mail: i.r.hardcastle@ncl.ac.uk

Figure 1. Structures of diverse alkyl bromides (7).

tafluorobenzoic acid was converted to the benzyl ester 3, which was subjected to a double nucleophilic aromatic substitution with potassium benzylalkoxide to give the 2,4-substituted product (4) in 62% yield, accompanied by the 2,4,6-trisubstituted product (ca. 12%). Hydrogenolysis smoothly deprotected 4 to give the *o*-hydroxybenzoic acid derivative **5** in 91% yield. Conversion of acid 5 to the activated pentafluorophenyl ester 6 under standard conditions enabled conversion to the 1,3-benzodioxinone 2 by treatment with DABCO in neat acetaldehyde.9 The resulting DABCO salt precipitated from the reaction mixture. The phenol 2 was liberated by passing a methanolic solution of the salt through a cation exchange column (BioRad AG 50W X-4 H⁺ form), and was isolated in 45% yield, based on 6.

Alkylation of phenol **2** with geranyl bromide using cesium carbonate as base gave the sodium salt of the product **1b** following deprotection in good yield (82%). However, as anticipated, the electron-poor phenoxide ion was unreactive towards simple alkyl bromides, thus a more general method was sought. Initial attempts to alkylate the phenoxide generated on solid-phase with either weakly basic Amberlite[®] IRA-68, strongly basic Amberlite[®] IRA-900,⁴ or the polystyrene supported guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (PTBD)⁵ met with failure.

The use of fluoride as a base for *O*-alkylation of phenols, including acidic phenols, e.g. 2-nitrophenol, has been reported.^{10–13} Alkylation of phenol (**2**) was attempted with a selection of fluoride bases, i.e. CsF, KF on alumina, Et_4NF , *n*-Bu₄NF on alumina. The optimal conditions were found to be cesium fluoride (5 equiv.) as base, alkyl bromide (7) (3 equiv.), in DMF with vigorous stirring at 60°C.

A selection of 20 diverse bromoalkanes (7c–v, Fig. 1) was chosen from a list of commercially available chemicals using a 2D dissimilarity clustering program.¹⁴ Alkylation of **2** under the optimal conditions with the majority of bromoalkanes (7c–v) proceeded smoothly to give the products **8** (Scheme 2). The DMF and volatile alkyl bromides were removed by evaporation. Unreacted phenol **2** was removed from the filtered reaction mixture by sequential treatment with (a) Am-

berlyst 15 acid resin in THF to protonate any unreacted cesium phenoxide ion and (b) Amberlyst A-21 basic resin to sequester the unreacted phenol 2, leaving a mixture of the product 8 and remaining unreacted bromoalkane (7c-v). Deprotection was effected with aqueous sodium hydroxide (0.5 M) in dioxane (1:3) to give the o-hydroxybenzoic acid sodium salts, which were converted to the corresponding acids 1 by treatment with acidic Dowex 50WX2-200 resin in ethanol/ water (1:1). The acids were sequestered from the crude mixture with basic Amberlyst A-21 and purified by repeated washing with THF, then released from the resin by treatment with 20% aq. formic acid in THF. The solvent was evaporated and the products analysed by LCMS, and ¹H and ¹⁹F NMR spectroscopy. The crude yields, estimated purities and molecular masses found are summarised in Table 1.

The results show that for 11 of the 20 alkyl bromides (7c-m) chosen the desired product was formed with an isolable yield. In three cases the product (1n-p) was observed in the LCMS, but the concentration was judged to be insufficient for further purification. The failed reactions could be attributed to the presence of a β -ketone in the alkyl bromide (7p,q,v), poor solubility (7s,t,v), or reactivity towards the fluoride base (7u). In six of the cases the product (1c,e,f,i-k) was formed in >80% purity and 13-46% yield without the need for further purification. In five cases (1d,g,h,l,m) preparative TLC purification was required to provide sufficiently pure product, albeit in low yield. Products (1c-m) were assayed for activity versus farnesyl transferase and geranylgeranyl transferase I according to

Scheme 2. Reagents and conditions: (a) i. RBr (7c–v), CsF, DMF; ii. Amberlyst 15, THF; iii. Amberlyst A-21, THF; (b) i. aq. NaOH (0.5 M), dioxane; ii. Dowex 50WX2-200, H_2O , EtOH; iii. Amberlyst A-21, THF; iv. 20% formic acid, H_2O , THF.

Table 1.

Alkyl bromide (7)	Product (1)	Yield (%)	Purity (%) ^a	HPLC-ESMS data ^c calcd/found [M-H] ⁻
c	с	31	82	275/275
d	d	25	94 ^b (60)	330/330
e	e	36	87	311/311
f	f	46	97	375/375
g	g	18	85 ^b (59)	267/267
ĥ	ĥ	14	100 ^b (71)	451/451
i	i	13	96	426/426
j	j	24	95	297/297
k	k	34	98	345/345
1	1	2	93 ^b (20)	331/331
m	m	10	86 ^b (57)	297/297
n	n	Nd	14	433/433
0	0	Nd	52	385/385
р	р	Nd	49	370/370
q–v	q–v	0	0	-

^a Analysis by LCMS (C18 reverse phase Supelco Discovery 50×4.6 mm column; gradient elution 90–10% 0.1% aq. formic acid/methanol, 1.0 ml/min for 10 min) by area integration.

^b Following purification by preparative TLC.

^c Obtained using a Finnigan LCQ ion trap mass spectrometer.

published procedures.¹⁵ None of the compounds displayed significant activity against the target enzymes.

In conclusion, we have prepared a library of diverse 4-alkoxy-2-hydroxy-3,5,6-trifluorobenzoic acids (1c-m). The utility of fluoride as a base in alkylation reactions with poorly nucleophilic phenols has been demonstrated. Solid-phase reagents have been used throughout the synthetic route to provide the desired compounds in a rapid, efficient manner. Biological evaluation of the library has demonstrated the poor activity of this group of compounds against the target enzymes.

Acknowledgements

This work was supported by grants from the Cancer Research Campaign (SP2330/0201) and CRC Technology (A.M.B.). We thank Dr. B. Nutley and A. Hayes for providing LCMS data and Dr. M. G. Rowlands for enzyme assays.

References

1. Jarman, M.; Marriott, J. H.; Neidle, S. GB 97/01096,

1997.

- Moreno Barber, A.; Hardcastle, I. R.; Rowlands, M. G.; Nutley, B. P.; Marriott, J. H.; Jarman, M. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 623–626.
- Furth, P. S.; Reitman, M. S.; Gentles, R.; Cook, A. F. Tetrahedron Lett. 1997, 38, 6643–6646.
- 4. Parlow, J. J. Tetrahedron Lett. 1996, 37, 5257-5260.
- 5. Xu, W.; Mohan, R.; Morrissey, M. M. Tetrahedron Lett. 1997, 38, 7337–7340.
- Habermann, J.; Ley, S. V.; Scicinski, J. J.; Scott, J. S.; Smits, R.; Thomas, A. J. Chem. Soc., Perkin Trans. 1 1999, 2425–2427.
- Habermann, J.; Ley, S. V.; Smits, R. J. Chem. Soc., Perkin Trans. 1 1999, 2421–2423.
- Caldarelli, M.; Habermann, J.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 1999, 107–110.
- Perlmutter, P.; Puniani, E. Tetrahedron Lett. 1996, 37, 3755–3756.
- Miller, J. M.; So, K. H.; Clark, J. H. Can. J. Chem. 1979, 57, 1887–1889.
- 11. Clark, J. H. Chem. Rev. 1980, 80, 429-452.
- Ando, T.; Yamawaki, J.; Kawate, T.; Sumi, S.; Hanafusa, T. Bull. Chem. Soc. Jpn. 1982, 55, 2504–2507.
- 13. Sato, T.; Otera, J. Synlett 1995, 336-338.
- 14. ChemX; 1999; Oxford Molecular Ltd.
- Hardcastle, I. R.; Rowlands, M. G.; Moreno Barber, A.; Grimshaw, R. M.; Mohan, M.; Nutley, B. P.; Jarman, M. *Biochem. Pharmacol.* 1999, 57, 801–809.