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A B S T R A C T

We report a turn-on fluorescent probe for H2S through a cascade reaction using a new trap group 4-

(bromomethyl)benzoate, based on excited-state intramolecular proton transfer (ESIPT) sensing

mechanism. The probe showed good selectivity and high sensitivity towards H2S and it was capable

of detecting and imaging H2S in living HeLa cells, indicating its potential biological applications.

� 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
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1. Introduction

For centuries, hydrogen sulfide has been recognized as a toxic
molecular. When exposed to this colorless, flammable gas, which
has a distinctive smell of rotten eggs, people may suffer from
respiratory failure, loss of consciousness, sudden cardiac death,
hepatic and olfactory paralysis. However, more recent studies have
challenged this traditional view. H2S is now identified as the third
biological signaling molecular besides nitric oxide (NO) and carbon
monoxide (CO) and plays important roles in maintaining normal
physiology [1]. Endogenous H2S can be produced from sulfur-
containing biomolecules such as cysteine and homocysteine,
which is catalyzed by cystathionine beta synthase (CBS), cysteine
aminotransferase and mercaptopyruvate sulfurtransferase (CAT/
MST) [2,3]. These enzymes are widely spread in human tissues
ranging from the heart and vasculature, brain, kidney, liver, lungs,
indicating the important physiological roles of H2S in the body.
Besides, H2S can also be produced from non-enzymatic processes,
including release from sulfur stores and metabolism of polysulfide
48
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[4,5]. The abnormal level of H2S can resulted in many diseases,
such as Alzheimer’s disease, Down’s syndrome, diabetes, and liver
cirrhosis [6–9]. Therefore, methods for monitoring the production,
trafficking, and consumption of H2S in living systems are highly
desired.

Compared with the traditional methods including colorimetric
assays [10,11] and gas chromatography [12,13], fluorescent probes
present lots of advantages, such as rapid response, high sensitivity
and excellent selectivity [14–16]. Recently, several fluorescent
probes have been reported for the detection of H2S in living systems
[17–20]. Common strategies include: H2S mediated reduction of
azide to amine [21,22], H2S trapped by nucleophilic addition [23–
25], copper sulfide precipitation [26,27], and thiolysis of dinitro-
phenyl ether [28,29]. Among these, H2S trapped by nucleophilic
addition strategy has been widely applied. Fluorescent probes based
on this strategy usually take advantage of the dual nucleophilicity of
H2S. Such probes usually contain a H2S trap group with two
electrophilic reaction sites and a fluorescent reporter, which
discriminates the H2S from other biothiols.

Recently, excited state intramolecular proton transfer (ESIPT)
compounds have been widely used in designing sensors for anions
[30,31], cations [32,33], amino acids [34–36] and small neutral
molecules [37,38], because of their intrinsic properties, ultra-fast
reaction rate and huge bathochromic shift in the emission signal.
based fluorescent probe for detection of H2S with the assistance of
cclet.2016.04.023
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Fig. 2. Time-dependent fluorescence response of probe 1 (10 mmol/L) upon addition

of NaHS (200 mmol/L) in HEPES buffer (20 mmol/L, pH 7.4, containing 1 mmol/L

CTAB). lex = 310 nm, lem = 484 nm. Slits: 5/5 nm.
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rein, we reported a fluorescent probe using 2-2(hyroxyphe-
l)benzothiazole (HBT), a typical ESIPT molecule, as fluorescent
porter, and 4-(bromomethyl)benzoate as trap group, which
owed fast response to H2S through cascade reaction. As the
droxyl group was protected by 2-(bromomethyl)benzoate, the
T moiety of the probe showed enol-like fluorescence. The initial
cleophilic attack of H2S towards bromomethyl group would lead

 an intermediate thiol, which was followed by a cyclization
scade reaction towards the adjacent ester carbonyl to release the
T with keto emission. Thus, the detection of H2S was realized.

 Experimental

Probe 1 was synthesized using a simple procedure with HBT
d 2-(bromomethyl)benzoic acid as starting materials, 1-ethyl-3-
-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) as a
upling reagent, and 4-dimethylaminopyridine (DMAP) as cata-
st (Scheme 1).

2-(20-Hydroxy-30-methoxyphenyl)benzothiazole (HMBT): A solu-
n of 2-aminothiophenol (0.3 mL, 4.2 mmol) and o-vanillin

.48 g, 3.15 mmol) in EtOH (10 mL), aq. H2O2 (30%, 18.9 mmol)
d aq HCl (37%, 9.45 mmol) was stirred at rt for 90 min. The
lution was quenched by 10 mL H2O. The precipitate was filtered,
ied under vacuum and recrystallized from EtOH to afford the
sired product as a light brown solid (0.64 g, 79% yield). 1H NMR
DCl3, 400 MHz, ppm): d 12.75 (s, 1H), 8.01 (d, 1H, J = 7.6 Hz), 7.91
, 1H, J = 7.2 Hz), 7.51 (t, 1H, J = 6.8 Hz), 7.42 (t, 1H, J = 7.2 Hz), 7.33
d, 1H, J1 = 1.2 Hz, J2 = 8.0 Hz), 6.99 (dd, 1H, J1 = 1.2 Hz,
= 8.0 Hz), 6.91 (t, 1H, J = 8.0 Hz), 3.96 (s, 1H).
Probe 1: To a solution of EDCI (0.346 g, 1.5 mmol) in CH2Cl2

0 mL) was added 2-bromodomethylbenzoic acid (0.312 g,
5 mmol) followed by DMAP (0.012 g, 0.1 mmol) and HMBT
.346 g, 1 mmol). The mixture was stirred at room temperature
r 12 h and then filtered, washed with water. The filtrate was
ncentrated to afford the crude product, then purified by silica
l column chromatography (PE:CH2Cl2 = 1:1) to afford com-
und 1 as a white solid (0.24 g, 40%). 1H NMR (400 MHz, CDCl3,
m): d 8.41 (d, 1H, J = 4.0 Hz), 7.93–7.99 (m, 2H), 7.83 (d, 1H,

 4.0 Hz), 7.34–7.56 (m, 6H), 7.15 (d, 1H, J = 4.0 Hz,), 4.94–5.14
, 2H), 3.90 (s, 3H). 13C NMR (100 MHz,CDCl3): 164.2, 162.3,
3.0, 152.1, 140.0, 139.8, 138.1, 135.5, 134.0, 133.3, 132.3, 132.0,
0.9,129.0, 128.7, 128.5, 128.2, 127.7, 126.9, 126.3, 125.8, 125.3,
3.4, 122.1, 121.1, 121.5, 121.4, 114.2, 69.6, 56.4, 44.1,
.0. HRMS: calcd: 454.010, found: 454.011.
Scheme 1. Synthesis of pro
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3. Results and discussion

The proposed sensing mechanism is shown in Fig. 1. As the
hydroxyl group is protected by 2-(bromomethyl)benzoate, the
excited state intramolecular proton transfer (ESIPT) process was
forbidden. As a result, the HBT moiety of probe 1 shows enol-like
fluorescence. The initial nucleophilic attack of H2S towards
bromomethyl group would lead to an intermediate thiol, which
is followed by a cyclization cascade reaction towards the adjacent
ester carbonyl to release the HBT. Upon irradiation, the resulting
HBT generated the excited state intramolecular proton transfer
(ESIPT) tautomer, which shows keto emission. To identify the
proposed sensing mechanism, probe 1 was treated with excess
NaHS and Et3N in CH3CN. After the reaction, the HBT was released,
with the formation of cyclization product 4. All products were
separated and confirmed with 1H NMR (Figs. S1 and S2 in
Supporting information).

We first tested the absorption spectra of probe 1 in HEPES
buffer. However, the obvious variation of the absorption spectra of
1 in 12 h suggested that it was unstable in HEPES buffer, probably
due to its poor solubility in pure water (Fig. S3 in Supporting
information). Then we used 50% ethanol as co-solvent, and the
stability of 1 was improved (Fig. S4 in Supporting information). As
be 1 for detection of H2S.
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echanism of probe 1 for H2S.
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Fig. 3. (a) Fluorescence spectra of probe 1 (10 mmol/L) upon addition of NaHS (0–400 mmol/L) in HEPES buffer (20 mmol/L, pH 7.4, containing 1 mmol/L CTAB). (b)

Fluorescence response of probe 1 at 484 nm to NaHS concentration (0–100 mmol/L). Spectra were recorded after incubation with different concentrations of NaHS for 1 h.

lex = 310 nm, lem = 484 nm. Slits: 5/5 nm.
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shown in Fig. S5 in Supporting information, with the addition of
200 mmol/L NaHS in ethanol/HEPES buffer (1:1, v/v, 20 mmol/L, pH
7.4), the emission at 350 nm (which is attributed to the enol form)
decreased, followed by a new peak appearing at 484 nm (which is
attributed to the keto form). However, the fluorescence at 484 nm
was quite weak, as the intramolecular hydrogen bond is strongly
disturbed in polar solvents [39]. We speculated that the ESIPT
would be enhanced in the nonpolar core of CTAB micelles. Probe 1
was stable in HEPES buffer (20 mmol/L, pH 7.4) containing
1 mmol/L CTAB (Fig. S6 in Supporting information). As we
expected, upon addition of NaSH to probe 1, the original emission
at 350 nm decreased, and a significant fluorescence enhancement
at 484 nm of approximately 60-fold was observed (Fig. 2). In
contrast, an enhancement of only 5-fold was observed in ethanol/
HEPES buffer (1:1, v/v, 20 mmol/L, pH 7.4) (Fig. S5). The results
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indicated that ESIPT process was greatly enhanced with the
assistance of CTAB micelles. Therefore, the following studies were
carried out in HEPES buffer (20 mmol/L, pH 7.4, containing
1 mmol/L CTAB). The probe 1 (10 mmol/L) upon reaction with
NaHS (2 mmol/L) in HEPES buffer (20 mmol/L, pH 7.4, containing
1 mmol/L CTAB) exhibited a pseudo first order reaction kinetics
with rate constant k = 0.59 min�1 (t1/2 = 1.17 min), indicating the
fast response of 1 towards H2S (Fig. S7 in Supporting information).

Subsequently, quantitative response of probe 1 in HEPES buffer
(20 mmol/L, pH 7.4, containing 1 mM CTAB) towards H2S was
estimated. As shown in Fig. 3a, with the increasing concentrations
of NaHS, the original emission at 350 nm decreased, and a
significant fluorescence enhancement at 484 nm was observed.
Moreover, the fluorescence intensity of 484 nm showed linear
relationship with NaHS concentrations ranging from 0 to
100 mmol/L, suggesting the potential application for quantitative
determination of H2S (Fig. 3b). The detection limit for HS� was
estimated to be 0.50 mmol/L (S/N = 3), which is much lower than
the concentration required to cause physiological response [40].

To evaluate the selectivity of the probe to H2S, emission spectra
changes upon addition of 20 equivalents of different interfering
species, such as cysteine (Cys), glutathione (GSH), homocysteine
(Hcy), sodium acetate (CH3COONa), sodium fluoride (NaF), sodium
persulfate (Na2S2O4), sodium dihydrogen phosphate (NaH2PO4),
sodium sulfate (Na2SO4), sodium chloride (NaCl), sodium tartrate
(C4H4Na2O6), sodium gluconate (C6H11NaO7), sodium carbonate
(Na2CO3), sodium bicarbonate (NaHCO3), sodium nitrate (NaNO3),
sodium bromide (NaBr), sodium hydrogen sulfite (NaHSO3) were
studied. As shown in Fig. 4, in most cases, little change in emission
intensity was observed. In contrast, a great enhancement in
emission intensity was only observed when adding NaHS. Thus,
these results demonstrated that probe 1 has a high selectivity
towards H2S.

We further examined the capability of probe 1 to H2S in living
cells (Fig. 5). After incubated with probe 1 (20 mmol/L) for 45 min
in culture medium, HeLa cells showed almost no fluorescence in
e and (b) bright-field images of HeLa cells incubated with probe 1 for 45 min. (c)

l/L) for 30 min and further incubated with probe 1 for 45 min. Scale bar: 50 mm.

based fluorescent probe for detection of H2S with the assistance of
cclet.2016.04.023
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een channel. By contrast, when HeLa cells were pretreated with
HS (200 mmol/L) before incubated with probe 1 (20 mmol/L) for

 min, the obvious fluorescence was observed. It revealed that
obe 1 has potential for visualizing H2S levels in living cells.

 Conclusion

In conclusion, we designed and synthesized a novel fluorescent
obe 1 for the detection of H2S based on ESIPT mechanism with
e assistance of CTAB. As the hydroxyl group is protected by 2-
romomethyl)benzoate, probe 1 showed weak enol-like fluores-
nce at 350 nm. The 2-(bromomethyl)benzoate group showed
st response to H2S through cascade reaction and released free

T, which showed strong fluorescence at 484 nm in CTAB
icelles. The emission at 484 nm showed linear relationship with
e H2S concentration at 0–100 mmol/L with the detection limit of
50 mmol/L. The high selectivity and sensitivity of our probe to
S may give new insights for the development of fluorescent
obe to selectively detect H2S in biological systems.
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