

New d⁰ Transition Metal Iodates: Synthesis, Structure, and Characterization of BaTi(IO₃)₆, LaTiO(IO₃)₅, Ba₂VO₂(IO₃)₄·(IO₃), $K_2MoO_2(IO_3)_4$, and BaMoO₂(IO₃)₄· H_2O

Kang Min Ok and P. Shiv Halasyamani*

Department of Chemistry and Center for Materials Chemistry, 136 Fleming Building, University of Houston, Houston, Texas 77204-5003

Received November 8, 2004

Five new d⁰ transition metal iodates, BaTi(IO₃)₆, LaTiO(IO₃)₅, Ba₂VO₂(IO₃)₄·(IO₃), K₂MoO₂(IO₃)₄, and BaMoO₂(IO₃)₄·H₂O, have been synthesized by hydrothermal methods using Ba(OH)₂·8H₂O, La₂O₃, K₂CO₃, TiO₂, V₂O₅, MoO₃, and HIO₃ as reagents. The structures of these compounds were determined by single-crystal X-ray diffraction. All of the reported materials have zero-dimensional or pseudo-one-dimensional crystal structures composed of MO₆ (M = Ti⁴⁺, V⁵⁺, or Mo⁶⁺) octahedra connected to IO₃ polyhedra. Infrared and Raman spectroscopy, thermogravimetric analysis, and UV-vis diffuse reflectance spectroscopy are also presented. Crystal data: BaTi(IO₃)₆, trigonal, space group *R*-3 (No. 148), with a = b = 11.4711(10) Å, c = 11.1465(17) Å, V = 1270.2(2) Å³, and Z = 3; LaTiO(IO₃)₅, monoclinic, space group $P2_1/n$ (No. 14), with a = 7.4798(10) Å, b = 18.065(2) Å, c = 10.4843(14) Å, b = 91.742(2)°, b = 10.4843(14) Å, b = 11.4816(12)°, b = 11.481

Introduction

In oxide materials, cationic distortions are the driving force for a host of technologically important physical properties such as ferroelectricity, piezoelectricity, and second-harmonic generation. Two families of cations are commonly observed in distorted oxide environments, octahedrally coordinated d^0 transition metals (Ti⁴⁺, Nb⁵⁺, W⁶⁺, etc.) and lone pair cations (Se⁴⁺, Te⁴⁺, I⁵⁺, etc.). With both families, second-order Jahn–Teller (SOJT) type distortions are thought to be the cause for the cationic displacement.^{1–7} For octahedrally coordinated d^0 transition metals, the cationic distortion can occur along an edge (local C_2 direction), face (local C_3 direction), or corner (local C_4 direction) of the octahedron,⁸

 $[\]mbox{*}$ Author to whom correspondence should be addressed. E-mail: psh@uh.edu.

⁽¹⁾ Opik, U.; Pryce, M. H. L. Proc. R. Soc. London 1957, A238, 425.

⁽²⁾ Bader, R. F. W. Mol. Phys. 1960, 3, 137.

⁽³⁾ Bader, R. F. W. Can. J. Chem. 1962, 40, 1164.

⁽⁴⁾ Pearson, R. G. J. Am. Chem. Soc. 1969, 91, 4947.
(5) Pearson, R. G. J. Mol. Struct. (THEOCHEM) 1983, 103, 25.

⁽⁶⁾ Wheeler, R. A.; Whangbo, M.-H.; Hughbanks, T.; Hoffmann, R.; Burdett, J. K.; Albright, T. A. J. Am. Chem. Soc. 1986, 108, 2222.

⁽⁷⁾ Kunz, M.; Brown, I. D. J. Solid State Chem. 1995, 115, 395.

whereas with the lone pair cation a nonbonded electron pair is observed on the cation that "pushes" away the oxide ligands. P-17 As previously discussed, these cationic displacements can be described as primary distortions. Secondary distortions also occur and are defined as the interaction between the dottal transition metal octahedron and the lone pair cation polyhedron. We recently reviewed all of the oxide materials that contain octahedrally coordinated dottal transition metals and lone pair cations and made a number of

⁽⁸⁾ Goodenough, J. B. Annu. Rev. Mater. Sci. 1998, 28, 1.

⁽⁹⁾ Sidgwick, N. V.; Powell, H. M. Proc. R. Soc. London 1940, A176, 153.

⁽¹⁰⁾ Gillespie, R. J.; Nyholm, R. S. Q. Rev., Chem. Soc. 1957, 11, 339.

⁽¹¹⁾ Orgel, L. J. Chem. Soc. 1959, 3815.

⁽¹²⁾ Lefebvre, I.; Lannoo, M.; Allan, G.; Ibanez, A.; Fourcade, J.; Jumas, J. C. Phys. Rev. Lett. 1987, 59, 2471.

⁽¹³⁾ Lefebvre, I.; Szymanski, M. A.; Olivier-Fourcade, J.; Jumas, J. C. Phys. Rev. B 1998, 58, 1896.

⁽¹⁴⁾ Watson, G. W.; Parker, S. C. J. Phys. Chem. B 1999, 103, 1258.

⁽¹⁵⁾ Watson, G. W.; Parker, S. C.; Kresse, G. Phys. Rev. B 1999, 59, 8481.

⁽¹⁶⁾ Seshadri, R.; Hill, N. A. Chem. Mater. 2001, 13, 2892.

⁽¹⁷⁾ Waghmare, U. V.; Spaldin, N. A.; Kandpal, H. C.; Seshadri, R. Phys. Rev. B 2003, 67, 125111-1.

⁽¹⁸⁾ Welk, M. E.; Norquist, A. J.; Arnold, F. P.; Stern, C. L.; Poeppelmeier, K. R. *Inorg. Chem.* **2002**, *41*, 5119.

Table 1. Crystallographic Data for BaTi(IO₃)₆, LaTiO(IO₃)₅, Ba₂VO₂(IO₃)₄•(IO₃), K₂MoO₂(IO₃)₄, and BaMoO₂(IO₃)₄•H₂O

formula	BaTi(IO ₃) ₆	LaTiO(IO ₃) ₅	$Ba_2VO_2(IO_3)_4 \cdot (IO_3)$	$K_2MoO_2(IO_3)_4$	BaMoO ₂ (IO ₃) ₄ •H ₂ O
fw	1234.64	1077.31	1232.12	905.74	980.88
space group	R-3 (No. 148)	$P2_1/n$ (No. 14)	$P2_1/c$ (No. 14)	C2/c (No. 15)	$P2_1/n$ (No. 14)
a (Å)	11.4711(10)	7.4798(10)	7.5012(9)	12.959(2)	13.3368(17)
b (Å)	11.4711(10)	18.065(2)	33.032(4)	6.0793(9)	5.6846(7)
c (Å)	11.1465(17)	10.4843(14)	7.2150(9)	17.748(3)	18.405(2)
α (deg)	90	90	90	90	90
β (deg)	90	91.742(2)	116.612(2)	102.410(4)	103.636(2)
γ (deg)	120	90	90	90	90
$V(Å^3)$	1270.2(2)	1416.0(3)	1598.3(3)	1365.5(4)	1356.0(3)
Z	3	4	4	4	4
T (°C)	293.0(2)	293.0(2)	293.0(2)	293.0(2)	293.0(2)
λ(Å)	0.71073	0.71073	0.71073	0.71073	0.71073
$\rho_{\rm calcd}$ (g cm ⁻³)	4.842	5.054	5.120	4.406	4.805
$\mu \text{ (mm}^{-1})$	13.811	14.528	15.192	10.684	12.996
$R(F)^a$	0.0221	0.0286	0.0369	0.0269	0.0274
$R_{\rm w}(F_{\rm o}{}^2)^b$	0.0580	0.0758	0.0848	0.0674	0.0616

 $^{{}^{}a}R(F) = \sum ||F_{o}| - |F_{c}||/\sum |F_{o}|. {}^{b}R_{w}(F_{o}^{2}) = [\sum w(F_{o}^{2} - F_{c}^{2})^{2}/\sum w(F_{o}^{2})^{2}]^{1/2}.$

Table 2. Selected Bond Distances (Å) for BaTi(IO₃)₆, LaTiO(IO₃)₅, Ba₂VO₂(IO₃)₄·(IO₃), K₂MoO₂(IO₃)₄, and BaMoO₂(IO₃)₄·H₂O

BaTi(IO ₃) ₆		LaTiO(IO ₃) ₅		$Ba_2VO_2(IO_3)_4 \cdot (IO_3)$		$K_2MoO_2(IO_3)_4$		$BaMoO_2(IO_3)_4 {\boldsymbol{\cdot}} H_2O$	
BaTi(IO ₃ I(1)-O(1) I(1)-O(2) I(1)-O(3) Ti(1)-O(2) × 6	1.791(5) 1.858(5) 1.808(5) 1.939(5)	I(1)-O(1) I(1)-O(2) I(1)-O(4) I(2)-O(5) I(2)-O(6) I(2)-O(7) I(3)-O(8) I(3)-O(10) I(4)-O(3) I(4)-O(11) I(4)-O(12) I(5)-O(14) I(5)-O(15)	1.839(5) 1.831(5) 1.802(5) 1.812(5) 1.826(5) 1.794(5) 1.819(5) 1.820(5) 1.801(5) 1.806(5) 1.789(5) 1.803(5) 1.803(5)	I(1)-O(1) I(1)-O(2) I(1)-O(3) I(2)-O(4) I(2)-O(5) I(2)-O(6) I(3)-O(7) I(3)-O(8) I(3)-O(9) I(4)-O(10) I(4)-O(11) I(4)-O(12) I(5)-O(13) I(5)-O(14)	1.816(7) 1.844(6) 1.808(7) 1.832(7) 1.797(7) 1.809(7) 1.794(6) 1.866(6) 1.802(7) 1.788(7) 1.788(7) 1.822(6) 1.796(7)	$\begin{array}{c} K_2MoO_2(IC)\\ \hline I(1)-O(1)\\ I(1)-O(2)\\ I(1)-O(2)\\ I(1)-O(3)\\ I(2)-O(4)\\ I(2)-O(5)\\ I(2)-O(6)\\ Mo(1)-O(1)\times 2\\ Mo(1)-O(4)\times 2\\ Mo(1)-O(7)\times 2\\ \end{array}$	1.912(4) 1.828(4) 2.337(4) 1.794(4) 1.840(4) 1.798(4) 1.784(4) 1.955(4) 2.238(4) 1.710(4)	BaMoO ₂ (IO) I(1)-O(1) I(1)-O(2) I(1)-O(3) I(2)-O(4) I(2)-O(5) I(2)-O(6) I(3)-O(7) I(3)-O(8) I(3)-O(9) I(4)-O(10) I(4)-O(11) I(4)-O(12) Mo(1)-O(2) Mo(1)-O(4)	1.813(4) 1.884(4) 1.786(4) 1.897(4) 1.807(4) 1.779(4) 1.846(4) 1.788(4) 1.788(4) 1.797(4) 1.784(4) 1.962(4) 2.006(4)
		I(5)-O(15) I(5)-O(16) Ti(1)-O(1) Ti(1)-O(3) Ti(1)-O(6) Ti(1)-O(9) Ti(1)-O(13) Ti(1)-O(15)	1.823(5) 1.815(5) 2.038(5) 2.117(5) 1.970(5) 2.042(5) 1.695(5) 1.987(5)	I(5)-O(14) I(5)-O(15) V(1)-O(2) V(1)-O(4) V(1)-O(13) V(1)-O(16) V(1)-O(17)	1.796(7) 1.784(7) 1.975(6) 2.245(7) 1.975(6) 2.164(7) 1.639(7) 1.646(7)			Mo(1)-O(4) Mo(1)-O(7) Mo(1)-O(10) Mo(1)-O(13) Mo(1)-O(14)	2.006(4) 2.196(4) 2.191(4) 1.709(4) 1.699(4)

observations regarding the out-of-center distortion of the d⁰ transition metal. 19 First, the magnitude of the distortion scales as $Mo^{6+} > V^{5+} > W^{6+} > Nb^{5+} > Ta^{5+} > Ti^{4+}$, similar to the electronegativity of these cations.²⁰ Second, corner (C₄) and edge (C₂) type displacements are most commonly observed for Ti⁴⁺ and V⁵⁺, whereas edge and face (C₃) distortions are preferred for Mo⁶⁺ and W⁶⁺. All three types of distortions, edge, face, and corner, are found with Nb5+ and Ta5+. Third, for the d0 transition metal to undergo an out-of-center distortion, at least one of the oxide ligands needs to be terminal or bonded to another d⁰ transition metal. In other words, when all six oxide ligands of the d⁰ transition metal are further bonded to a lone pair cation, the transition metal is undistorted. We rationalized this by noting that the lone pair cation is in a "predistorted" coordination environment. Thus, any additional distortion would be unfavorable.

We report in this paper the synthesis, structure, and characterization of five new d⁰ transition metal iodates, BaTi-(IO₃)₆, LaTiO(IO₃)₅, Ba₂VO₂(IO₃)₄•(IO₃), K₂MoO₂(IO₃)₄, and BaMoO₂(IO₃)₄•H₂O. We also examine the various cationic

displacements and discuss these displacements with respect to primary and secondary distortion concepts.

Experimental Section

Reagents. K₂CO₃ (Alfa Aesar, 99%), Ba(OH)₂*8H₂O (Alfa Aesar, 98+%), La₂O₃ (99.9%), TiO₂ (Aldrich, 99.9+%), V₂O₅ (Aldrich, 98+%), MoO₃ (Aldrich, 99+%), and HIO₃ (Aldrich, 99.5+%) were used as received.

Syntheses. For BaTi(IO₃)₆, 0.500 g (1.58 \times 10⁻³ mol) of Ba- $(OH)_2 \cdot 8H_2O$, 0.200 g (2.50 × 10⁻³ mol) of TiO₂, and 5.000 g (2.84 \times 10⁻² mol) of HIO₃ were combined with 10 mL of H₂O. For LaTiO(IO₃)₅, 0.300 g (9.21 \times 10⁻⁴ mol) of La₂O₃, 0.200 g (2.50 $\times 10^{-3}$ mol) of TiO₂, and 5.000 g (2.84 $\times 10^{-2}$ mol) of HIO₃ were combined with 10 mL of H₂O. For Ba₂VO₂(IO₃)₄•(IO₃), 0.500 g (1.58 \times 10⁻³ mol) of Ba(OH)₂•8H₂O, 0.200 g (1.10 \times 10⁻³ mol) of V_2O_5 , and 5.000 g (2.84 \times 10⁻² mol) of HIO₃ were combined with 10 mL of H_2O . For $K_2MoO_2(IO_3)_4$, 0.300 g (2.17 × 10^{-3} mol) of K_2CO_3 , 0.300 g (2.08 × 10⁻³ mol) of MoO₃, and 5.000 g (2.84 \times 10⁻² mol) of HIO₃ were combined with 10 mL of H₂O. For $BaMoO_2(IO_3)_4 \cdot H_2O$, 0.500 g (1.58 × 10⁻³ mol) of $Ba(OH)_2 \cdot 8H_2O$, $0.500 \text{ g} (3.47 \times 10^{-3} \text{ mol}) \text{ of MoO}_3$, and $5.000 \text{ g} (2.84 \times 10^{-2} \text{ mol})$ mol) of HIO₃ were combined with 10 mL of H₂O. The respective solutions were placed in 23-mL Teflon-lined autoclaves and subsequently sealed. The autoclaves were gradually heated to 230

⁽¹⁹⁾ Halasyamani, P. S. Chem. Mater. 2004, 16, 3586.

⁽²⁰⁾ Eng, H. W.; Barnes, P. W.; Auer, B. M.; Woodward, P. M. J. Solid State Chem. 2003, 175, 94.

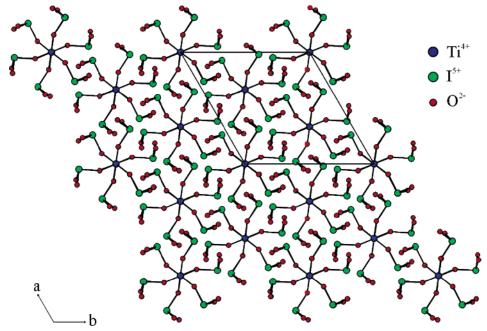


Figure 1. Ball-and-stick representation of BaTi(IO₃)₆ in the ab-plane. The Ba²⁺ cations have been removed for clarity.

°C, held for 4 d, and cooled slowly to room temperature at a rate of 6 °C h⁻¹. The mother liquor was decanted from the products. The products were recovered by filtration and washed with water and ethanol. For Ba₂VO₂(IO₃)₄•(IO₃), pale yellow plates crystals were found in 69% yield based on V₂O₅. For BaTi(IO₃)₆, LaTiO-(IO₃)₅, BaMoO₂(IO₃)₄•H₂O, and K₂MoO₂(IO₃)₄, colorless crystals, the only product from the reaction, were recovered in 79%, 81%, 78%, and 76% yields, respectively, based on the corresponding d⁰ transition metal oxide.

Single-Crystal X-ray Diffraction. For BaTi(IO₃)₆ a colorless cube $(0.06 \times 0.08 \times 0.10 \text{ mm}^3)$, for LaTiO(IO₃)₅ a colorless block $(0.12\times0.16\times0.22~mm^3),$ for $Ba_2VO_2(IO_3)_4{\mbox{\tiny \bullet}}(IO_3)$ a light yellow plate $(0.02 \times 0.06 \times 0.12 \text{ mm}^3)$, for BaMoO₂(IO₃)₄•H₂O a colorless block $(0.12 \times 0.20 \times 0.22 \text{ mm}^3)$, and for $K_2MoO_2(IO_3)_4$ a colorless block $(0.16 \times 0.22 \times 0.46 \text{ mm}^3)$ were used for single-crystal data analyses. Data were collected using a Siemens SMART diffractometer equipped with a 1K CCD area detector using graphite monochromated Mo Ka radiation. A hemisphere of data was collected using a narrow-frame method with scan widths of 0.30° in ω , and an exposure time of 25 s per frame. The first 50 frames were remeasured at the end of the data collection to monitor instrument and crystal stability. The maximum correction applied to the intensities was <1%. The data were integrated using the Siemens SAINT program,21 with the intensities corrected for Lorentz, polarization, air absorption, and absorption attributable to the variation in the path length through the detector faceplate. ψ -scans were used for the absorption correction on the hemisphere of data. The data were solved and refined using SHELXS-97 and SHELXL-97, respectively.^{22,23} All of the atoms were refined with anisotropic thermal parameters and converged for $I > 2\sigma(I)$. All calculations were performed using the WinGX-98 crystallographic software package.²⁴ During the course of the refinement for BaTi-

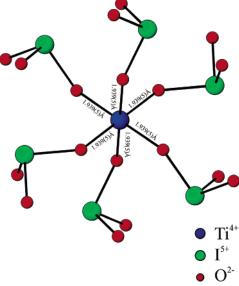
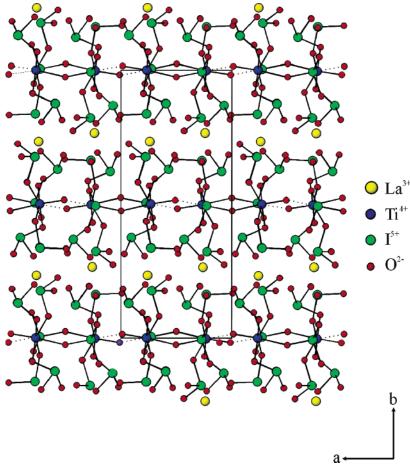


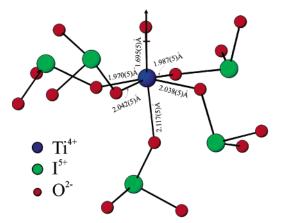
Figure 2. Ball-and-stick representation of the [Ti(IO₃)₆]²⁻ anionic unit in BaTi(IO₃)₆. All six oxide ligands linked to Ti⁴⁺ are also bonded to an I⁵⁺ cation. Thus, the Ti4+ cation is in an undistorted environment with six equal Ti-O bonds.

(IO₃)₆, we determined that fractional occupancy must occur in the barium atoms to retain charge balance. Fractional occupancy of 0.500(3) was refined for Ba²⁺. Relevant crystallographic data and selected bond distances are given in Tables 1 and 2, respectively.

Powder X-ray Diffraction. Powder X-ray diffraction was used to confirm the phase purity of each sample. The X-ray powder diffraction data were collected on a Scintag XDS2000 diffractometer at room temperature (Cu K α radiation, θ - θ mode, flat plate geometry) equipped with Peltier germanium solid-state detector in the 2θ range 5-60° with a step size of 0.02°, and a step time of 1


Infrared and Raman Spectroscopy. Infrared spectra were recorded on a Matteson FTIR 5000 spectrometer in the 400-4000 cm⁻¹ range, with the sample pressed between two KBr pellets. Raman spectra were recorded at room temperature on a Digilab

⁽²¹⁾ SAINT, version 4.05: Program for Area Detector Absorption Correction; Siemens Analytical X-ray Instruments: Madison, WI, 1995.


⁽²²⁾ Sheldrick, G. M. SHELXS-97-A program for automatic solution of crystal structures; University of Goettingen: Goettingen, Germany,

⁽²³⁾ Sheldrick, G. M. SHELXL-97-A program for crystal structure refinement; University of Goettingen: Goettingen, Germany, 1997.

⁽²⁴⁾ Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.

Figure 3. Ball-and-stick representation of LaTiO(IO₃)₅ in the *ab*-plane. The dashed lines indicate long I—O interactions giving the structure a pseudo-one-dimensional topology.

Figure 4. Ball-and-stick representation of the $[TiO(IO_3)_5]^{3-}$ anionic unit in LaTiO(IO₃)₅. Note that the Ti^{4+} undergoes an out-of-center displacement toward an apical oxide ligand, along the local C_4 direction. The arrow indicates the approximate direction of the local dipole moment in the TiO_6 octahedron.

FTS 7000 spectrometer equipped with a germanium detector with the powder sample placed in separate capillary tubes. Excitation was provided by a Nd:YAG laser at a wavelength of 1064 nm, and the output laser power was 500 mW. The spectral resolution was \sim 4 cm⁻¹, and 100 scans were collected for each sample.

UV—**Vis Diffuse Reflectance Spectroscopy.** UV—vis diffuse reflectance data for all of the reported crystalline samples were collected with a Varian Cary 500 scan UV—vis—NIR spectrophotometer over the spectral range 200—1500 nm at room temperature.

Poly(tetrafluoroethylene) was used as a reference material. Reflectance spectra were converted to absorbance with the Kubelka–Munk values.²⁵

Thermogravimetric Analysis. Thermogravimetric analyses were carried out on a TGA 2950 thermogravimetric analyzer (TA instruments). The sample was contained within a platinum crucible and heated in air at a rate of 10 °C min⁻¹ to 800 °C.

Results

Structures. BaTi(IO₃)₆. The zero-dimensional BaTi(IO₃)₆ consists of a TiO₆ octahedron linked to six IO₃ polyhedra that are separated by Ba²⁺ cations (see Figure 1). In connectivity terms, the structure may be written as {[TiO_{6/2}]²⁻6[IO_{1/2}O_{2/1}]⁰}²⁻, with charge balance maintained by the Ba²⁺ cations. Each Ti⁴⁺ cation is bonded to six oxygen atoms in an octahedral environment with a unique Ti-O bond distance of 1.939(5) Å. All six oxygen atoms linked to the Ti⁴⁺ cation are further bonded to an I⁵⁺ cation. The I⁵⁺ cations are bonded to three oxygen atoms in a distorted trigonal pyramidal environment with I-O bond distances ranging from 1.791(5) to 1.858(5) Å (see Figure 2). The bond distances are consistent with similar compounds previously reported.²⁶⁻³¹ Bond valence calculations^{32,33} resulted in values of 2.22, 4.95, and 4.29 for Ba²⁺, I⁵⁺, and Ti⁴⁺, respectively.

⁽²⁵⁾ Kubelka, P.; Munk, F. Z. Tech. Phys. 1931, 12, 593.

⁽²⁶⁾ Schellhaas, F.; Hartl, H.; Frydrych, R. *Acta Crystallogr.* **1972**, *B28*, 2834.

⁽²⁷⁾ Alcock, N. W. Acta Crystallogr. 1972, B28, 2783.

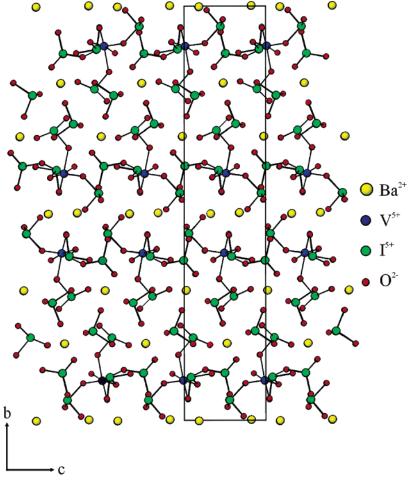


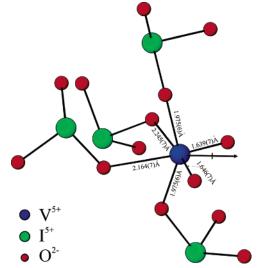
Figure 5. Ball-and-stick representation of Ba₂VO₂(IO₃)₄·(IO₃) in the bc-plane. Note the "free" [IO₃] anionic groups between the molecular units.

LaTiO(IO₃)₅. This d⁰ transition metal iodate exhibits a pseudo-one-dimensional structure consisting of a TiO₆ octahedron linked to five IO₃ polyhedra that are separated by La³⁺ cations (see Figure 3). In connectivity terms, the structure may be written as $\{[TiO_{5/2}O_{1/1}]^{3-} 5[IO_{1/2}O_{2/1}]^0\}^{3-}$, with charge balance maintained by the La³⁺ cation. Each Ti4+ is bonded to six oxygen atoms in an octahedral environment with one "short" (1.695(5) Å), four "normal" (1.970(5)-2.042(5) Å), and one "long" bond (2.117(5) Å). Five of the six oxygen atoms are further bonded to an I⁵⁺ cation, whereas the sixth, the "short" Ti-O bond, remains "terminal". The Ti4+ cation displaces toward the terminal oxygen atom, thereby undergoing an out-of-center distortion toward a corner of its oxide octahedron, that is, a C₄ distortion (see Figure 4). We will be discussing all of the various cationic distortions later in the paper. The I^{5+} cations are linked to three oxygen atoms in a distorted trigonal pyramidal environment with I-O bond distances ranging from 1.794(5) to 1.878(5) Å (see Figure 4). There is one long I-O contact of 2.197(5) Å that has been drawn as a

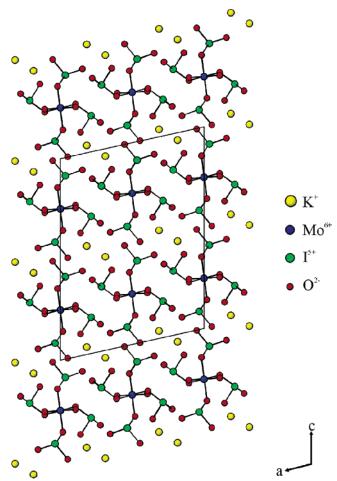
dashed line in Figure 3. This long contact effectively links the TiO_6 octahedra, through this " IO_4 " group, and gives $LaTiO(IO_3)_5$ a pseudo-one-dimensional topology. Bond valence calculations^{32,33} resulted in values of 3.14 for La^{3+} , 5.01–5.48 for I^{5+} , and 4.20 for Ti^{4+} .

Ba₂VO₂(IO₃)₄·(IO₃). Similar to BaTi(IO₃)₆, Ba₂VO₂(IO₃)₄· (IO₃) also exhibits a zero-dimensional structure that consists of a VO₆ octahedron linked to four IO₃ groups (see Figure 5). In connectivity terms, the structure maybe written as $\{[VO_{2/1}O_{4/2}]^{3-} 4[IO_{2/1}O_{1/2}]^{0} \cdot [IO_{3/1}]^{-}\}^{4-}$, with charge balance retained by two Ba2+ cations. Unlike the other zerodimensional compounds reported in this paper, Ba₂VO₂-(IO₃)₄•(IO₃) has a completely unbound IO₃⁻ anion, that is, $[IO_{3/1}]^-$, that interacts with the Ba^{2+} cations. Each V^{5+} is bonded to six oxygen atoms in an octahedral environment, with two "short" V-O bonds of 1.639(7) and 1.646(7) Å, two "normal" bonds of 1.975(6) Å \times 2, and two "long" bonds of 2.164(7) and 2.245(7) Å (see Figure 6). Four of the six oxygen atoms are further bonded to an I⁵⁺ cation, whereas the remaining two, the "short" V-O bonds, are terminal. The V⁵⁺ undergoes an out-of-center distortion, in the direction of the terminal oxygen atoms, toward an edge of its octahedron, that is, a C₂ distortion (see Figure 6). The I⁵⁺ cations are linked to three oxygen atoms in a distorted trigonal pyramidal environment with I-O bond distances ranging from 1.784(7) to 1.866(6) Å. Bond valence calcula-

⁽²⁸⁾ Coquet, E.; Crettez, J. M.; Pannetier, J.; Bouillot, J.; Damien, J. C. Acta Crystallogr. 1983, B39, 408.


⁽²⁹⁾ Lucas, B. W. Acta Crystallogr. 1984, C40, 1989.

⁽³⁰⁾ Svensson, C.; Stahl, K. J. Solid State Chem. 1988, 77, 112.


⁽³¹⁾ Stahl, K.; Szafranski, M. Acta Chem. Scand. 1992, 46, 1146.

⁽³²⁾ Brown, I. D.; Altermatt, D. Acta Crystallogr. 1985, B41, 244.

⁽³³⁾ Brese, N. E.; O'Keeffe, M. Acta Crystallogr. 1991, B47, 192.

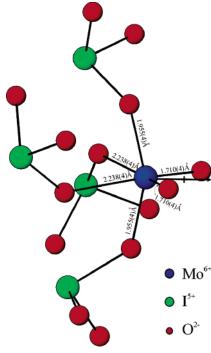

Figure 6. Ball-and-stick representation of the $[VO_2(IO_3)_4]^{3-}$ anionic unit in $Ba_2VO_2(IO_3)_4$ (IO_3). Note that the V^{5+} undergoes an out-of-center displacement toward two equatorial oxide ligands, along the local C_2 direction. The arrow indicates the direction of the local dipole moment in the VO_6 octahedron.

Figure 7. Ball-and-stick representation of $K_2MoO_2(IO_3)_4$ in the *ac*-plane. The K^+ cations separate the $[MoO_2(IO_3)_4]^{2-}$ anionic units.

tions^{32,33} resulted in values of 2.07 and 2.08 for Ba^{2+} , 4.89–5.19 for I^{5+} , and 5.02 for V^{5+} .

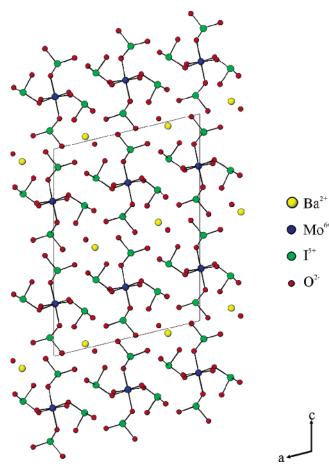

 $K_2MoO_2(IO_3)_4$. A zero-dimensional structure is also exhibited by $K_2MoO_2(IO_3)_4$, where a MoO_6 octahedron is linked to four IO_3 polyhedra (see Figure 7), that are separated

Figure 8. Ball-and-stick representation of the $[MoO_2(IO_3)_4]^{2-}$ anionic unit in $K_2MoO_2(IO_3)_4$. Note that the Mo^{6+} undergoes an out-of-center displacement toward two equatorial oxide ligands, along the local C_2 direction. The arrow indicates the direction of the local dipole moment in the MoO_6 octahedron.

by K⁺ cations. In connectivity terms, the structure may be written as $\{[MoO_{2/1}O_{4/2}]^{2-} 4[IO_{2/1}O_{1/2}]^0\}^{2-}$, with charge balance retained by two K⁺ cations. Each Mo⁶⁺ cation is bonded to six oxygen atoms in an octahedral environment with two "short" Mo-O bonds of 1.710(4) Å \times 2, two "normal" bonds of 1.955(4) $Å \times 2$, and two "long" bonds of 2.238(4) Å \times 2. Similar to the V⁵⁺ cations in Ba₂VO₂-(IO₃)₄•(IO₃), four of the six oxygen atoms are further bonded to an I^{5+} cation, whereas the remaining two oxygen atoms are terminal. The Mo⁶⁺ undergoes an out-of-center distortion, in the direction of the terminal oxygen atoms, toward the edge of its octahedron, that is, a C2 distortion (see Figure 8). The I⁵⁺ cations are linked to three oxygen atoms in a distorted trigonal pyramidal environment with I-O bond distances ranging from 1.784(4) to 1.912(4) Å. Bond valence calculations^{32,33} resulted in values of 1.18 for K⁺, 5.05 and 5.10 for I⁵⁺, and 5.98 for Mo⁶⁺.

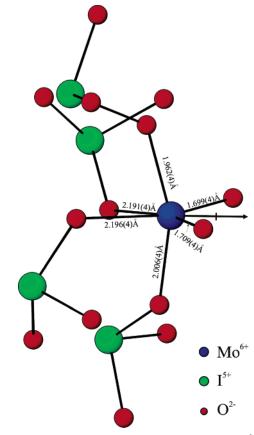

BaMoO₂(IO₃)₄·H₂O. This mixed-metal iodate is topologically very similar to K₂MoO₂(IO₃)₄. BaMoO₂(IO₃)₄·H₂O exhibits a zero-dimensional structure consisting of a MoO₆ octahedron linked to four IO₃ groups that are separated by H₂O molecules and Ba²⁺ cations (see Figure 9). In connectivity terms, the structure may be written as {[MoO_{4/2}O_{2/1}]²⁻ 4[IO_{2/1}O_{1/2}]⁰}²⁻, with charge balance retained by the Ba²⁺ cation. Each Mo⁶⁺ cation is bonded to six oxygen atoms in an octahedral environment with two "short" Mo—O bonds of 1.699(4) and 1.709(4) Å, two "normal" bonds of 1.962-(4) and 2.006(4) Å, and two "long" bonds of 2.191(4) and 2.196(4) Å. The short Mo—O bonds are terminal, whereas the remaining four link to the IO₃ polyhedra. Again, the Mo⁶⁺ cation displaces in the direction of the terminal oxygen atoms,

Figure 9. Ball-and-stick representation of BaMoO₂(IO₃)₄·H₂O in the *ac*-plane. The Ba²⁺ cations and H₂O molecules separate the [MoO₂(IO₃)₄]²⁻ anionic units

toward the edge of its octahedron, that is, a C_2 distortion (see Figure 10). The I^{5+} cations are linked to three oxygen atoms in a distorted trigonal pyramidal environment with I-O bond distances ranging from 1.779(4) to 1.897(4) Å. Bond valence calculations^{32,33} resulted in values of 1.78 for Ba^{2+} , 4.85–5.07 for I^{5+} , and 6.01 for Mo^{6+} .

Infrared and Raman Spectroscopy. The infrared and Raman spectra of BaTi(IO₃)₆, LaTiO(IO₃)₅, Ba₂VO₂(IO₃)₄• (IO₃), K₂MoO₂(IO₃)₄, and BaMoO₂(IO₃)₄•H₂O reveal Ti-O, V-O, and Mo-O vibrations in the regions ca. 700, 700–900, and 700–940 cm⁻¹, respectively. The stretches 620–830 and 360–560 cm⁻¹ can be attributed to I-O vibrations. The infrared and Raman vibrations and assignments are listed in Table 3. The assignments are consistent with those previously reported.^{34–40}

Figure 10. Ball-and-stick representation of the $[MoO_2(IO_3)_4]^{2-}$ anionic unit in BaMoO₂(IO₃)₄·H₂O. Note that the Mo⁶⁺ undergoes an out-of-center displacement toward two equatorial oxide ligands, along the local C₂ direction. The arrow indicates the direction of the local dipole moment in the MoO₆ octahedron.

UV–**Vis Diffuse Reflectance Spectroscopy.** The UV–vis diffuse reflectance spectra for all of the reported iodates have been deposited in the Supporting Information. All of the compounds are white with the exception of $Ba_2VO_2(IO_3)_4$ -(IO_3), which is light yellow. These spectra show that the iodate compounds are transparent to approximately 3.2-3.8 eV. Absorption (K/S) data were calculated from the following Kubelka–Munk function:

$$F(R) = \frac{(1 - R)^2}{2R} = \frac{K}{S}$$

with *R* representing the reflectance, *K* the absorption, and *S* the scattering. In a *K/S* versus *E* (eV) plot, extrapolating the linear part of the rising curve to zero provides the onset of absorption at 3.3, 3.4, 3.2, 3.6, and 3.8 eV for BaTi(IO₃)₆, LaTiO(IO₃)₅, Ba₂VO₂(IO₃)₄•(IO₃), BaMoO₂(IO₃)₄•H₂O, and K₂MoO₂(IO₃)₄, respectively. The overall band gap for each material may be attributable to the degree of Ti (3d), V (3d), and Mo (4d) orbitals as well as the distortions of crystal structures arising from IO₃ polyhedra. LaTiO(IO₃)₅, however, reveals a small shoulder near the main absorption band, suggesting an indirect transition.

Thermogravimetric Analysis. All of the iodate compounds reported in this paper are not stable at higher temperatures. With each material, decompositions through thermal disproportionation occurred between 400 and 460

⁽³⁴⁾ Sykora, R. E.; Ok, K. M.; Halasyamani, P. S.; Wells, D. M.; Albrecht-Schmitt, T. E. *Chem. Mater.* **2002**, *14*, 2741.

⁽³⁵⁾ Sykora, R. E.; Ok, K. M.; Halasyamani, P. S.; Albrecht-Schmitt, T. E. J. Am. Chem. Soc. 2002, 124, 1951.

⁽³⁶⁾ Shehee, T. C.; Sykora, R. E.; Ok, K. M.; Halasyamani, P. S.; Albrecht-Schmitt, T. E. *Inorg. Chem.* 2003, 42, 457.

⁽³⁷⁾ Maggard, P. A.; Kopf, A. L.; Stern, C. L.; Poeppelmeier, K. R.; Ok, K. M.; Halasyamani, P. S. *Inorg. Chem.* 2002, 41, 4852.

⁽³⁸⁾ Guarany, C. A.; Pelaio, L. H. Z.; Araujo, E. B.; Yukimitu, K.; Moraes, J. C. S.; Eiras, J. A. *J. Phys.: Condens. Matter* **2003**, *15*, 4851.

⁽³⁹⁾ Rasmussen, S. B.; Rasmussen, R. M.; Fehrmann, R.; Nielsen, K. Inorg. Chem. 2003, 42, 7123.

⁽⁴⁰⁾ Rasmussen, S. B.; Boghosian, S.; Nielsen, K.; Eriksen, K. M.; Fehrmann, R. Inorg. Chem. 2004, 43, 3697.

 $\textbf{Table 3.} \quad \text{Infrared and Raman Vibrations } (cm^{-1}) \text{ for } BaTi(IO_3)_6, \\ LaTiO(IO_3)_5, \\ Ba_2VO_2(IO_3)_4 \\ \text{r}(IO_3), \\ K_2MoO_2(IO_3)_4, \\ \text{and } BaMoO_2(IO_3)_4 \\ \text{r}(IO_3)_6, \\ LaTiO(IO_3)_6, \\ LaTiO(IO_3)_6$

BaTi($IO_3)_6$	LaTiO	$(IO_3)_5$	Ba ₂ VO ₂ (Io	$O_3)_4$ •(IO_3)	K_2MoO_2	$_{2}(IO_{3})_{4}$	BaN	10O ₂ (IO ₃) ₄ •H	I_2O
Ti-O	I-O	Ti-O	I-O	V-O	I-O	Мо-О	I-O	Мо-О	I-O	О-Н
					IR (cm ⁻¹)					
698	821	700	836	1166	827	925	819	937	827	3563
588	813	568	819	901	815	885	769	914	815	3502
503	779	493	808	881	771	715	744	892	777	1604
	769		794	869	761	638	431	561	763	
	649		771	794	742	511	412	499	740	
	457		748	709	455	495			713	
	439		642	682	433				644	
	424		451	489	418				474	
	416		424						420	
					Raman (cm ⁻¹)					
717	821	713	813	898	821	921	825	933	821	
671	806	690	806	879	775	875	806	910	802	
513	779		759	790	744	705	763	883	779	
	752		740	713	447		748	725	763	
	640		624	675	428		663	698	740	
	408		482	486	416		505		655	
	366		462				420		505	
			412				401		482	
			389				389		424	
									412	

°C. For BaTi(IO₃)₆, 2 equiv of I₂ and 5 equiv of O₂ are lost at approximately 420 °C: calc.(exp.) 54.07%(54.26%). The remainder of the I_2 and O_2 are lost at approximately 530 °C: calc.(exp.) 58.87%(58.53%). For BaTi(IO₃)₆, BaTiO₃ remains above 800 °C. With LaTiO(IO₃)₅, 2 equiv of O₂ is lost at approximately 400 °C, calc.(exp.) 5.94%(5.75%). Next, 1 equiv of I₂ and another 1.5 equiv of O₂ are lost at around 570 °C, calc.(exp.) 29.78% (29.68%). Finally, the remainder of I2 and O2 are lost, leaving a mixture of La2O3 and TiO₂ at around 800 °C: calc.(exp.) 65.88%(66.02%). Ba₂VO₂(IO₃)₄•(IO₃) loses 1 mol of I₂ and 2.75 mol of O₂ at around 460 °C: calc.(exp.) 27.74%(28.13%). Next, 0.5 mol of I2 and 1.75 mol of O2 are subsequently lost at approximately 540 °C: calc.(exp.) 20.54%(20.24%). The remainder of I₂ and O₂ are lost at around 800 °C, leaving a mixture of BaO and V₂O₅: calc.(exp.) 43.79%(43.84%). With K₂MoO₂(IO₃)₄, single step decomposition occurs at around 400 °C, indicating the loss of 2 mol of I₂ and 5 mol of O_2 : calc.(exp.) 73.71%(73.64%). BaMo $O_2(IO_3)_4 \cdot H_2O$ shows a weight loss at 330 °C that is attributed to the loss of the occluded water molecules from the materials: calc.-(exp.) 1.83%(1.93%). Next, 2 equiv of I₂ and 5 equiv of O₂ are lost at approximately 410 °C, leaving a mixture of BaO and MoO₃ at 800 °C: calc.(exp.) 69.19%(69.89%). The TGA curves for all five materials have been deposited in the Supporting Information.

Discussion

In all of the reported materials, the d⁰ transition metal is in an octahedral coordination environment bonded to six oxygen atoms. The oxide ligands are either terminal or bonded to an I⁵⁺ cation. As previously discussed, primary and secondary distortion concepts can be used to better understand these materials. For the reported materials, the primary distortion is the electronic (SOJT) distortion that occurs for both the d⁰ transition metal and the I⁵⁺ cation, whereas the secondary distortion is the interaction between

Table 4. Direction and Magnitude of the d⁰ Transition Metal Intra-Octahedral Distortion in BaTi(IO₃)₆, LaTiO(IO₃)₅, Ba₂VO₂(IO₃)₄*(IO₃), K₂MoO₂(IO₃)₄, and BaMoO₂(IO₃)₄*H₂O

compound	direction - cation	magnitude
BaTi(IO ₃) ₆	no distortion - Ti4+	0.00
LaTiO(IO ₃) ₅	$C_4 - Ti^{4+}$	0.55
$Ba_2VO_2(IO_3)_4 \cdot (IO_3)$	$C_2 - V^{5+}$	1.16
$K_2MoO_2(IO_3)_4$	$C_2 - Mo^{6+}$	1.09
BaMoO ₂ (IO ₃) ₄ •H ₂ O	$C_2 - Mo^{6+}$	1.06

the oxide octahedra and the IO₃ polyhedra. In oxide materials that contain d⁰ transition metals and lone pair cations, the direction and magnitude of the out-of-center displacement of the d⁰ transition metal depend on the coordination of the oxide ligands as well as the particular d⁰ transition metal.¹⁹ In materials where all six oxide ligands are further bonded to a lone pair cation, we noted that the d⁰ transition metal is undistorted, effectively "trapped" in the center of its coordination polyhedra. In other words, the secondary distortion overrides the primary distortion of the d⁰ transition metal. This is precisely the situation that occurs in BaTi(IO₃)₆ (see Figure 2). In BaTi(IO₃)₆, all six oxide ligands surrounding Ti⁴⁺ are further bonded to an I⁵⁺ cation. If the Ti⁴⁺ cation were to distort toward one or more of the oxide ligands, a compensating distortion within an IO3 group would be required. Because the IO₃ polyhedra are already "predistorted", attributable to the lone pair, any additional distortion would be unfavorable. Thus, the Ti⁴⁺ in BaTi(IO₃)₅ remains in the center of its oxide octahedron with six equal Ti-O bonds of 1.939(5) Å (see Figure 2).

With the other materials, LaTiO(IO₃)₅, BaVO₂(IO₃)₄·(IO₃), $K_2MoO_2(IO_3)_4$, and BaMoO₂(IO₃)· H_2O , the d⁰ transition metal, Ti⁴⁺, V⁵⁺, or Mo⁶⁺, respectively, is displaced from the center of its oxide octahedron. The direction and magnitude of these distortions are consistent with those observed earlier for this class of compounds (see Table 4). With Ti⁴⁺, in LaTiO(IO₃)₅, the cation is displaced toward an apical, terminal, oxygen atom, along the local C₄ direction (see Figure 4). This C₄-Ti⁴⁺ type displacement is the most

New d⁰ Transition Metal Iodates

common for Ti^{4+} . The magnitude of this C_4-Ti^{4+} distortion is 0.55 (using the methodology outlined earlier), ¹⁹ which is larger than the average distortion observed for Ti^{4+} . Very similar types of distortions are observed in $BaVO_2(IO_3)_4$ (IO_3), $K_2MoO_2(IO_3)_4$, and $BaMoO_2(IO_3) \cdot H_2O$ for V^{5+} and Mo^{6+} , respectively. In all three materials, the distortions are toward the two terminal oxide ligands, along the local C_2 direction (see Figures 6, 8, and 10). These C_2-V^{5+} and C_2-Mo^{6+} distortions are commonly observed for both cations. The magnitudes of the distortions are very large, >1.0, consistent with our previous observations. ¹⁹

Acknowledgment. We thank the Robert A. Welch Foundation for support. This work was also supported by the NSF-Career Program through DMR-0092054. P.S.H. is a Beckman Young Investigator. We also acknowledge Jason Locklin and Prof. Rigoberto Advincula for assistance in obtaining the Raman spectra.

Note Added after ASAP: After this paper had been published on the Web (March 8, 2005), it was brought to our attention that the synthesis and structure of K₂MoO₂(IO₃)₄ was previously published by Sykora et al. (*J. Solid State Chem.* **2002**, *166*, 442). In addition, BaTi(IO₃)₆ is structurally similar to compounds reported by Schellhaas et al. (*Acta Crystallogr.* **1972**, *B28*, 2834) and Shehee et al. (*J. Alloys Compd.* **2005**, *388*, 225). We regret the omissions. The Web version published on March 23, 2005, and the print version of the article are correct.

Supporting Information Available: X-ray crystallographic files for BaTi(IO₃)₆, LaTiO(IO₃)₅, Ba₂VO₂(IO₃)₄•(IO₃), K₂MoO₂(IO₃)₄, and BaMoO₂(IO₃)₄•H₂O in CIF format, ORTEP diagrams, calculated and observed X-ray diffraction patterns, thermogravimetric analysis diagrams, UV—vis spectra, a bond valence table, and IR spectra for all of the compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

IC048428C