nn C

The effect of nanometre-sized Au particle loading on TiO_2 photocatalysed reduction of bis(2-dipyridyl)disulfide to 2-mercaptopyridine by H₂O⁺

Hiroaki Tada,*^a Fumiaki Suzuki,^b Shigeki Yoneda,^b Seishiro Ito^{ba} and Hisayoshi Kobayashi^c

- ^a Molecular Engineering Institute, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan. E-mail: h-tada@apsrv.apch.kindai.ac.jp
- ^b Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- ^c Department of Chemical Technology, Kurashiki University of Science and Arts, 2640 Nishinoura, Tsurajima, Kurashiki 712, Japan

Received 26th September 2000, Accepted 6th February 2001 First published as an Advance Article on the web 7th March 2001

 TiO_2 photocatalysed reduction of bis(2-dipyridyl)disulfide (RSSR) to 2-mercaptopyridine by H_2O is enhanced significantly by incorporation of nanometre-sized Au particles. The rate is strongly dependent on the amount of Au loaded (x wt.%), passing through a maximum at $x \sim 0.3$, while it is almost independent of the Au particle size in the 4.3-11 nm range. Comparison of the effects of Au and Ag loading reveals that the rate constant of the Au(0.25 wt.%)/TiO₂ system is greater than that of the Ag(0.24 wt.%)/TiO₂ system by a factor of 2.6 and the activation energy of the former is about two-thirds that of the latter. The enhancing effect of the Au loading is discussed in terms of kinetic and molecular orbital considerations.

Introduction

In TiO₂ photocatalysis, both oxidation and reduction, derived respectively from the valence band hole (h_{vb}^{+}) and the conduction band electron (e_{cb}^{-}), proceed simultaneously on the TiO₂ surface. A great deal of research, including the application to air and water purification, has focused on the oxidation process owing to the strong oxidizing power of the $h_{vb}^{+,1}$ Much less attention has been paid to the reductive photochemistry of TiO_2 because of the moderate reducing power of the $e_{cb}^{-2.8}$ We have recently reported that bis(2-dipyridyl) disulfide (RSSR) is reduced to 2-mercaptopyridine (RSH) by H₂O using TiO₂ as a photocatalyst and that the rate is enhanced by loading the TiO₂ with Ag nanoclusters.⁹ This efficient endothermic reaction is attractive from the viewpoint of converting light energy to chemical energy as well as yielding thiols that are the starting materials for many useful products.¹⁰ It was also suggested that the rise in the Fermi energy of TiO_2 with photoirradiation is essential for the photocatalytic cycle.9

Various self-assembled monolayers (SAMs) of organosulfur compounds on Au or Ag surfaces have been studied in the field of surface science.¹¹ It has been well established by vibrational spectroscopy that the structures of SAMs of nalkanethiols formed on Au(111) and Ag(111) surfaces are quite similar except for the tilt angle θ (θ (Au) ~ 30°, θ (Ag) ~ $\hat{6^{\circ}}$).¹¹ Although both Au and Ag with an equivalent electronic configuration $(ns^2np^6nd^{10}(n+1)s)$ belong to Group 11 of the periodic table, the work function and the oxidation potential of Au are greater than those of Ag.

This is the first report on a marked Au enhancing effect exceeding that of Ag on the TiO₂ photocatalytic reduction of RSSR to RSH by H₂O. The mode of action of the nanometresized Au particles is discussed on the basis of the reaction mechanism proposed.

Experimental

Materials

Anatase TiO₂ particles were supplied by Ishihara Techno Co. (A-100) and used without further activation. The specific surface area $(S/m^2 g^{-1})$ was determined to be 8.1 m² g⁻¹ from N_2 gas adsorption at -196 °C based on the BET equation. Water was used after being passed through an ion-exchange resin.

A KI-I₂ aqueous solution was added dropwise to a solution of 2-mercaptopyridine (40.4 g, 360 mmol, >95%, Tokyo Kasei) in a 2 M aqueous solution of NaOH (500 mL) until the reaction mixture turned brown. To this solution was added an aqueous solution of $Na_2S_2O_3$ followed by extraction with benzene (200 mL) three times. The benzene layer was washed with water and dried over MgSO₄. After the solvent had been evaporated, the residue was purified by recrystallization from a mixed solvent of n-hexane and benzene to yield bis(2-dipyridyl)disulfide: Yield: 72%, mp: 57-58°C, ¹H NMR (60 MHz, CDCl₃, δ ppm); 7.03–7.50 (m, 3Py, 3'Py, 5Py, 5'Py 4H), 8.57 (d, 4Py, 4'Py, 2H), 8.60 (d, 6Py, 6'Py, 2H).¹² The other reagents were used as received.

Preparation of photocatalysts

Nanometre-sized Au particles were deposited on the surface of TiO_2 by the deposition-precipitation method.¹³ After the pH of a 4.86×10^{-3} M aqueous solution (100 mL) of $HAuCl_4 \cdot 4H_2O$ (Kishida Chemicals, >99.3%) had been adjusted to 6.0 with 0.4 M NaOH, TiO₂ particles (10 g) were suspended with stirring at 70 °C for 1 h. The particles were washed with distilled water three times and kept under vacuum at room temperature. The dried particles were calcined at 400 or 600 °C for 4 h in air in an electric oven. TiO₂

[†] Electronic Supplementary Information available. See http:// www.rsc.org/suppdata/cp/b0/b0078170

particles loaded with nanometre-sized Ag particles (Ag/TiO₂) were prepared by the photodeposition method described in an earlier paper.⁹ The Au and Ag deposits on TiO₂ were dissolved by treating the particles (1 g) with *aqua regia* (50 mL) and HNO₃ (13.5 M, 50 mL), respectively. The resultant aqueous Au³⁺ and Ag⁺ solutions were subjected to inductively coupled plasma spectroscopy (ICPS-1000, Shimadzu); the catalysts loaded with x wt.% Au and Ag were denoted as Au(x wt.%)/TiO₂ and Ag(x wt.%)/TiO₂, respectively. The size and distribution of Au particles deposited on TiO₂ were directly observed by a transmission electron microscope (JEOL, JEM-3010) at an acceleration voltage of 300 kV and a current of 115 μ A.

Photocatalytic reduction of 2,2'-RSSR

The photoreaction solution of RSSR $(5.41 \times 10^{-5} \text{ M})$ was prepared by diluting an acetonitrile solution $(5.41 \times 10^{-4} \text{ M})$ with H₂O (acetonitrile : H₂O = 1 : 99 v/v). After the suspension of TiO₂ or Au/TiO₂ or Ag/TiO₂ had been purged with N₂ for 15 min, irradiation was started in a double jacket type reaction cell (31 mm in diameter and 175 mm in length, transparent to light with $\lambda > 300 \text{ nm}$). The light intensity integrated from 320 to 400 nm ($I_{320-400}$) was measured using a digital radiometer (DRC-100X, Spectroline). N₂ gas bubbling (6.1 mL min⁻¹) and magnetic stirring of the suspension were continued throughout the irradiation. The cell was kept at various steady temperatures (10–50 °C) by circulating thermostatted water through an outer jacket around the cell. The pH of the suspension was adjusted by adding a 0.1 M aqueous solution of NaOH or HCl.

Electronic absorption spectra of the supernatants obtained by centrifugation of the suspensions after irradiation were recorded in the 200–500 nm range on an ultraviolet–visible spectrophotometer (U-4000, Hitachi). The concentrations of RSSR consumed and RSH generated were determined from the absorbance at 281 ($\varepsilon_{max} = 1.05 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$) and 342 nm ($\varepsilon_{max} = 7.18 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$), respectively. The initial rate of the reaction (v) was calculated from the concentration of RSH (C) generated after 20 min irradiation (v = C/20).

Product analysis was performed separately by high performance liquid chromatography (HPLC) [HPLC measurement conditions: column = Fluorofix INW 425 4.6 × 250 mm (NEOS); mobile phase H₂O–MeOH (1/1 v/v); flow rate = 1 mL min⁻¹].

Adsorption isotherms of RSSR at 25 ± 1 °C were obtained by exposing the catalysts to solutions of varying concentrations for 24 h in the dark followed by centrifugation and spectrophotometric analysis of the RSSR remaining in the solution. Analysis of O₂ was attempted in a closed reaction system, where the dissolved O₂ had been purged with Ar before irradiation, by gas chromatography using a Shimadzu GC-8APT equipped with a t.c.d. column SHINCARBON T (6 m × 2 mm), Ar carrier at 50 °C.

Results and discussion

Characterization of photocatalysts

Fig. 1 shows TEM micrographs of Au/TiO_2 particles. In each sample, nanometre-sized Au particles are uniformly dispersed

Fig. 1 TEM micrographs of Au/TiO₂ particles (A, $T_c = 673$ K; B, $T_c = 873$ K).

on the surface of TiO_2 by the deposition-precipitation method. Fig. 2 shows the size distributions of Au particles loaded on the TiO₂. An increase in the calcination temperature $T_{\rm c}$ from 673 to 873 K leads to a significant increase in the average diameter (d) of the Au particles from 4.3 to 11 nm concurrently with a decrease in their number density (Fig. 1). Also, the size distribution in the sample with $T_c = 673$ K is narrower than that in the sample with $T_c = 873$ K. The Au particles are considered as coalescing to grow upon heating at $T_{\rm c} > 673$ K. The Au/TiO₂ and Ag/TiO₂ samples had a surface plasmon absorption due to nanometre-sized metal deposits in the visible region. A small red shift ($\Delta \lambda = 5.4$ nm) of the peak maximum (λ_{max}) of the Au/TiO₂ with increasing T_c can be attributed to an increase in d.¹⁴ Table 1 summarizes some physicochemical properties of Au/TiO₂ and Ag/TiO₂. Only the size of the Au particle can be changed with $T_{\rm e}$, while both x and S remain almost constant.¹⁵

Adsorption

Fig. 3A shows adsorption isotherms of RSSR on TiO₂ (a) and Au(0.35 wt.%)/TiO₂ (b) at 25 \pm 1 °C; C_{eq}/M and Γ /mol g⁻¹)

Table 1 Results of characterization of Ag/TiO₂ and Au/TiO₂

		2 / 1	-			
Photocatalyst	Method	$T_{\rm c}/{ m K}$	x (wt.%)	d/nm^{a}	$\lambda_{ m max}/{ m nm}^a$	$S/m^2 g^{-1}$
Ag/TiO ₂ Au/TiO ₂ Au/TiO ₂	p.d. ^{<i>b</i>} d.p. ^{<i>b</i>} d.p.	 673 873	$\begin{array}{c} 0.24 \\ 0.25 \pm 0.03 \\ 0.25 \pm 0.03 \end{array}$	<5.0 4.3 11	495.0 542.8 548.2	6.8 9.4 9.6

 a^{a} d and λ_{max} are the average diameter of metals deposited and the peak wavelength of the surface plasmon absorption, respectively. b^{b} p.d. and d.p. denote photodeposition and deposition-precipitation, respectively.

Fig. 2 Size distributions of Au particles loaded on TiO₂ (A, $T_c = 673$ K; B, $T_c = 873$ K).

Fig. 3 A, Adsorption isotherms of RSSR on TiO₂ (a) and Au(0.35 wt.%)/TiO₂ (b) at 25 \pm 1 °C. B, Langmuir's plots for the TiO₂ (a) and Au(0.35 wt.%)/TiO₂ (b) systems.

are the equilibrium concentration and the adsorption amount, respectively. A significant increase in the adsorption amount of RSSR is seen in Au(0.35 wt.%)/TiO₂ as compared to TiO₂. As shown in Fig. 3B, the adsorption behavior in each system obeys the Langmuir model. From the slopes of the straight lines ((a) R = 0.997; (b) R = 0.998), the saturated adsorption amounts ($\Gamma_{\rm c}/{\rm mol}~{\rm g}^{-1}$) were calculated to be 1.07×10^{-6} mol g^{-1} for TiO₂ and 2.63 × 10⁻⁶ mol g^{-1} for Au(0.35 wt.%)/TiO₂. Disulfides are known to chemisorb on Au(111) or Ag(111) surfaces via S-S bond cleavage.¹⁶ Gui et al. confirmed that the RS groups adsorb stably on Ag without S-C bond fission,17 which was observed in R'SR' adsorption on Au(111) (\mathbf{R}' = organic groups).¹⁸ The areas occupied by one RS group on the Au(0.35 wt.%)/TiO₂ particle were calculated to be 6.4 nm² group⁻¹ on the TiO₂ part (σ (TiO₂)) and 0.07 nm² group⁻¹ on the Au part (σ (Au)). The values of σ for the RS group adsorbed in the closest packing states were estimated to be ca. 0.16 nm² group⁻¹ for the flat lying orientation and ca. 0.1 nm² group⁻¹ for the vertical orientation using the PM3 optimized molecular structure.¹⁹ Clearly, the RS groups adsorb selectively on the surface of nanometre-sized Au particles in a close packed state. The same was concluded previously for the Ag/TiO $_2$ system. 19

Photocatalytic reduction

TiO₂ and Au/TiO₂ absorb light intensely below 385 nm due to the band gap transition of TiO₂. Au/TiO₂ particles have a surface plasmon absorption peak around 545 nm. In the spectrum of RSSR, there are two absorption bands above 220 nm, at 233 (B₁) and 281 nm (B₂). A Pyrex glass filter removed light of $\lambda < 300$ nm, and both TiO₂ and Au were excited by the irradiation. Fig. 4 shows the change in the electronic absorption spectrum of RSSR with irradiation in the presence of Au $(0.25 \text{ wt.}\%)/\text{TiO}_2$. As time increases, the peak intensities of B_1 and B_2 weaken and two new bands appear at 272 (B_3) and 342 nm (B_4) . These peak positions are in complete agreement with those of an authentic 2-mercaptopyridine (RSH) sample. As shown in the inset, a stoichiometric ratio of [RSH]/-[RSSR] of ca. 2 is obtained, indicating selective reduction of RSSR to RSH. This was further confirmed, by HPLC analysis.† UV irradiation of either Au/TiO2 or TiO2 was

Fig. 4 Change in the electronic absorption spectrum of a 5.41×10^{-5} M RSSR solution (50 mL of a mixed solvent of H₂O: acetonitrile = 99 : 1 v/v) with photoirradiation ($\lambda > 300$ nm) in the presence of Au(0.25 wt.%)/TiO₂ (50 mg) at 30 ± 0.5 °C: a, irradiation time (t/min) = 0; b, 20; c, 40; d, 60; e, 80; f, 100; g, 120. The $I_{320-400}$ was 4.6 mW cm⁻². Irradiation was started after removal of the dissolved O₂ by 15 min N₂ bubbling. N₂ bubbling was continued throughout the reaction. The inset shows the stoichiometric relation in the conversion of RSSR to RSH.

needed to reduce RSSR. This suggests that the reaction is induced not by photoexcitation of Au, *i.e.*, the hot-electron mechanism,²⁰ but by the band gap transition of TiO₂. A gradual decrease in pH with increasing t is evidence for the generation of H⁺ during the oxidation of adsorbed H₂O by the holes. Analysis of O₂ was attempted in a closed reaction system, where the dissolved O₂ had been purged with Ar before irradiation. Although the quantity could not be precisely determined, a small amount of O₂ was detected. Evidently, the oxidation of H₂O to O₂ and H⁺ occurs simultaneously with the reduction of RSSR to RSH. The overall reaction can be written as eqn. (1), where the oxidation number of O increases from -2to 0 and that of S decreases from 0 to -1.

$$RSSR + H_2O \xrightarrow[Au/TiO_2]{hv (\lambda > 300 \text{ nm})} 2RSH + 1/2O_2;$$
$$\Delta H_{298 \text{ K}}^\circ = + 207.8 \text{ kJ mol}^{-1} \qquad (1)$$

The low level of O_2 detected during the reaction is probably due to its consumption through successive reduction by the excited electron and/or reaction with RSSR.²¹ Peroxide formation on the surface of TiO₂ may also make a contribution.²² The possibility of the oxidation of acetonitrile was excluded, because no reduction of RSSR occurred upon using 100% dehydrated acetonitrile as solvent.

Fig. 5 shows the time courses of RSH formation in the presence of TiO₂ (a), Au(0.25 wt.%)/TiO₂ (b), and Ag(0.24 wt.%)/TiO₂ (c) at 30.0 ± 0.5 °C. In each case, the amount of RSH increases monotonically with increasing t. The enhancing effect of the Au loading is much greater than of the Ag loading at comparable amounts of metal loading. The conversion of RSSR to RSH after 80 min illumination attains ca. 67% in system (b), while it is 9.6% after 100 min illumination in system (a). In system (c), the reaction has an induction period, and the rate increases steeply at t > 40 min. This is probably because the excited electrons are initially used for the reduction of a natural oxide layer formed on the surface of Ag. Such a trend is not observed for Au which has great resistance to surface oxidation.

Haruta *et al.* found the presence of a critical size of Au (d_c) in its catalytic oxidation of CO, where the rate per one surface atom (turnover frequency) increases remarkably at d < 5 nm $(d_c \simeq 5 \text{ nm}).^{23}$ In the present system, however, no significant change was observed in the initial rate (v) with decreasing d from 11 nm $(v = 1.4 \times 10^{-6} \text{ M min}^{-1})$ to 4.3 nm $(v = 1.6 \times 10^{-6} \text{ M min}^{-1})$. Fig. 6 shows the dependence of v on x. The value of v increases with increasing x at x < 0.3,

Fig. 5 Time courses of RSH formation in the presence of (a) TiO₂ (50 mg (50 mL)⁻¹), (b) Au(0.25 wt.%)/TiO₂ (50 mg (50 mL)⁻¹) and (c) Ag(0.24 wt.%)/TiO₂ (50 mg (50 mL)⁻¹) at 30.0 ± 0.5 °C. The solvent was a mixture of acetonitrile and H₂O (1 : 99 v/v). The $I_{320-400}$ was 4.6 mW cm⁻².

Fig. 6 The relation between the rate of reaction (v) and the amount of Au deposited (x wt.%). The reaction temperature was 30 ± 1 °C, and a mixture of acetonitrile and H₂O (1 : 99 v/v) was used as the solvent. The concentration of the catalyst was 50 mg (50 mL)⁻¹. The $I_{320-400}$ was 4.62 mW cm⁻².

passing through a maximum at $x \sim 0.35$ wt.%. Since the broad surface plasmon absorption band of Au particles partially overlaps with the absorption band due to the band gap transition of TiO₂, the decrease in v at x > 0.45 may be caused by the light shielding action of Au. Another possible reason is the increase in the probability of the recombination of photogenerated charge carriers.²⁴ The presence of an optimal amount of metal loaded ($x \sim 0.24$ wt.%) was also observed in the Ag/TiO₂ system.¹⁹

Mechanism

In an earlier paper, a plausible reaction mechanism was proposed for the Ag/TiO₂ photocatalytic reduction of RSSR.¹⁹ Essentially, the same mechanism seems to be true also for the Au/TiO₂ system (Scheme 1). The selective RSSR adsorption on the surface of metals (M) accompanied by S–S bond cleavage takes place in the initial stage of the reaction (step 1; K_a is the adsorption equilibrium constant). Electron (e⁻)…hole (h⁺) pairs are generated by the band gap excitation of TiO₂ (step 2; $I\phi$ is the rate of e⁻…h⁺ pair formation). Most of the pairs are lost by recombination (step 3; k_{d1} is the rate constant of recombination). A portion of the e_{cb}^- flows into Au (or Ag), while the h_{vb}^+ is left in the valence band (VB) of TiO₂ (step 4; k_{cs} is the rate constant of the charge separation process). Recombination will occur even after the e_{cb}^- flow into the metal (step 5; k_{d2} is the rate constant). The holes have

RS-SR + M-TiO₂
$$\stackrel{K_a}{\rightleftharpoons}$$
 2RS-M-TiO₂ (S1)

$$\operatorname{TiO}_2 \xrightarrow[I_0]{\mu\nu} \operatorname{TiO}_2(e^-...h^+)$$
 (S2)

$$TiO_2(e^-...h^+) \xrightarrow{\wedge d1} N$$
 (N = neutral center) (S3)

$$M-TiO_2(e^-...h^+) \xrightarrow{G_3} M(e^-)-TiO_2(h^+)$$
(S4)

$$M(e^{-})-TiO_2(h^+) \xrightarrow{kd_2} M$$
 (S5)

2RS-M(e⁻)-TiO₂(h⁺) + H₂O_{ad} $\xrightarrow{k_0}$ 2RS-M(e⁻)-TiO₂ + 2H⁺ + 1/2O₂ (S6)

$$2\text{RS-M}(e^{-})-\text{TiO}_2 + 2\text{H}^+ \xrightarrow{\Gamma_T} 2\text{RSH} + \text{M-TiO}_2$$
 (S7)

Scheme 1 A proposed reaction mechanism in the Au/TiO_2 (or Ag/TiO_2) system.

a potential positive enough to oxidize H_2O to H^+ and O_2 (step 6; k_0 is the rate constant of the oxidation by the hole).²⁵ The coupling of H^+ and RS^- forms RSH (step 7; k, is the rate constant of the coupling of RS^- and H^+).²⁶ Application of the steady state approximation to this reaction scheme leads to egn. (2).

$$d[RSH]/dt = k[RSSR]^{1/2}$$
(2)

where

$$u[KBII]/ui = k[KBBK]$$
(2)

$$k = K_{a}^{1/2} I \phi [k_{cs} / (k_{d1} + k_{cs})] [M/TiO_{2}]^{1/2} \\ \times [k_{0} [H_{2}O_{ad}]^{1/2} / (k_{d2} + k_{0} [H_{2}O_{ad}]^{1/2})] [H^{+}]$$
(3)

Using the relation $[RSSR] = [RSSR]_0 - [RSH]/2$, one can obtain eqn. (4).

$$d[RSH]/dt = k/\sqrt{2(2[RSSR]_0 - [RSH])^{1/2}}$$
(4)

Integration of eqn. (4) from t = 0 to t = t gives eqn. (5)

$$(2[RSSR]_0 - [RSH])^{1/2} = -(k/2\sqrt{2})t + (2[RSSR]_0)^{1/2}$$
 (5)

Fig. 7 shows plots of $(C_0 - C)^{1/2}$ vs. irradiation time (t) at 30.0 ± 0.5 °C, where C_0 is twice the initial concentration of RSSR and C is the concentration of RSH after t min illumination. The good linearity of each plot supports the validity of the reaction mechanism proposed. The slopes of the straight lines yielded the apparent rate constants $(k/M^{1/2} \text{ min}^{-1})$: 1.3×10^{-5} (a), 1.5×10^{-4} (b) and 5.9×10^{-5} (c). Fig. 8A shows the dependence of k on reaction temperature (T) for (b) Au(0.25 wt.%)/TiO₂ and (c) Ag(0.24 wt.%)/TiO₂. In both systems, k increases exponentially with increasing T. A reaction-promoting effect of the Au loading exceeding that of the Ag loading is evident over the whole temperature range tested (283 < T/K < 323). Fig. 8B shows the Arrhenius plots of ln k vs. 1000/T for Au(0.25 wt.%)/TiO₂ (b) and Ag(0.24 wt.%)/TiO₂ (c). The activation energies (E_a) of systems (b) and (c) were calculated to be 19.7 and 29.4 kJ mol⁻¹, respectively. The kinetic parameters obtained are summarized in Table 2. The value of k for Au(0.25 wt.%)/TiO₂ is 2.6 times greater

Fig. 7 Plots of $(C_0 - C)^{1/2}$ vs. irradiation time (t) at 30.0 ± 0.5 °C; C_0 is twice the initial concentration of RSSR and C is the concentration of RSH after t min illumination. (a), TiO₂ (50 mg (50 mL)⁻¹); (b), Au(0.25 wt.%)/TiO₂ (20 mg (50 mL)⁻¹); (c), Ag(0.24 wt.%)/TiO₂ (50 mg (50 mL)⁻¹). The $I_{320-400}$ was 4.6 mW cm⁻².

Fig. 8 A, The reaction temperature (T) dependence of k; (b), Au(0.25) wt.%)/TiO₂ (20 mg (50 mL)⁻¹); (c), Ag(0.24 wt.%)/TiO₂ (50 mg (50 mL)⁻¹). A mixture of acetonitrile and $H_2O(1:99 \text{ v/v})$ was used as the solvent. The $I_{320-400}$ was 4.6 mW cm⁻². B, The Arrhenius plots of ln k vs. 1000/T for Au(0.25 wt.%)/TiO₂ (b) and Ag(0.24 wt.%)/TiO₂ (c).

than for Ag(0.24 wt.%)/TiO₂. Also, E_a decreases with loading of Au by a factor of 1.6, whereas the Ag loading has no effect on it.

The strangest and most intriguing fact of this reaction is that RS adsorbed on Au desorbs from the surface upon irradiation despite its strong adsorption strength.¹¹ Scheme 2 depicts the energy diagrams in the Ag/TiO₂ and Au/TiO₂ system.^{19,27-30} When metals are brought into contact with TiO₂, electron transfer occurs until the Fermi energies of both phases coincide. This Fermi energy after equilibrium (E_f) is approximately equal to the Fermi energy of the metal, because metals have continuous electronic energy levels in an unfilled wide band. A couple of bonding and anti-bonding orbitals are formed as the result of interaction between the HOMO of the RS' radical³¹ and an unoccupied molecular orbital (UMO) above the $E_{\rm f}$ of Au (or Ag).³² The MO calculation gave a value of -6.41 eV for the HOMO energy of the RS' radical.⁹ In the ground state, the bonding orbital is occupied by two electrons, belonging originally to the RS' radical and Au (or Ag), respectively, leading to a strong interfacial RS-Au (or RS-Ag) bond. The contribution of the HOMO of the RS' radical to the bonding orbital is much greater than that of the UMO of Au (or Ag). Then the interfacial bond can formally

 Table 2
 Rate constants and activation energies in the photocatalytic reduction of RSSR

Photocatalyst	Metal loaded (wt.%)	$k/10^{-5} \mathrm{M}^{1/2} \mathrm{min}^{-1}$	$E_{\rm a}/{\rm kJ}~{\rm mol}^{-1}$
Au/TiO_2^a	0.25 ± 0.03	15.3	19.7
$Ag/1iO_2$	0.24	5.9	29.4
1102	_	1.3	30.0
^a Annealing temperature wa	as 673 K		

Scheme 2 Energy diagram of the reaction system. In constructing this, the following values were used: the work functions of Ag = 4.0 eV and Au = 5.1 eV;²⁷ the electron energy for the normal hydrogen electrode (NHE), -4.5 eV vs. NHE;²⁸ the flat band potential of TiO₂ at pH 5.5, -0.45 V from the vacuum level;²⁹ the band gap energy of TiO₂ (anatase), 3.2 eV;²⁰ the oxidation potential of H₂O at pH 0, 1.23 V vs. NHE;²⁹ the highest occupied molecular orbital (HOMO) of RS, -6.4 eV.⁹

be described as RS⁻–Au⁺ (or RS⁻–Ag⁺), which is confirmed by X-ray photoelectron spectroscopic measurements of SAMs.³³ On the other hand, in the photoexcitation state, $E_{\rm f}$ rises by several hundred meV ($E'_{\rm f}$),³⁴ which corresponds to the bonding energy of R'SSR' on Au (~0.5 eV per R'S group).³⁵ If $E'_{\rm f}$ exceeds the energy of the anti-bonding orbital ($\psi_{\rm a}$), it would be occupied by the two electrons from Au (or Ag). The destabilizing energy will enable desorption of RS⁻ upon illumination, continuing the photocatalytic cycle in this reaction.

In the Ag/TiO₂ system, the E_f of Ag (4.0 \pm 0.15 eV) is close to that of TiO_2 (ca. 4.0 eV) before illumination. As shown in Scheme 2, on illumination $E_{\rm f}$ increases evenly to a value of $E'_{\rm f}$. In the Au/TiO₂ system, however, the $E_{\rm f}$ of Au (5.1 ± 0.1 eV) is much greater than of TiO₂. Upon illumination, flattening of the band bending of TiO₂ takes place, followed by electron transfer from TiO₂ to Au. The electrons captured by Au should be transferred predominantly to ψ_a , which is situated well below the flat band potential of TiO_2 . Noticeably, the high work function of Au effectively inhibits back electron transfer from Au to the conduction band (CB) of TiO2, while it competes with electron transfer from the metal to ψ_a in the Ag/TiO₂ system. It follows that k_{d2} (Au/TiO₂) < k_{d2} (Ag/TiO₂). The larger k value for the Au/TiO₂ system is thus ascribable to the increase in the efficiency of the charge separation, i.e., the increase in the term $k_{\rm o}[{\rm H}_2{\rm O}_{\rm ad}]^{1/2}/(k_{\rm d2} + k_{\rm o}[{\rm H}_2{\rm O}_{\rm ad}]^{1/2})$ in eqn. (3). This equation can further be rewritten as eqn. (6) by introducing a parameter r indicating the relative magnitude of k_{d2} to k_{o} .

$$k = (\text{other terms}) \times [\exp(-E_o/RT)/(\exp(-E_o/RT))]$$

$$+ r \exp(-E_{d2}/RT))$$
] (6)

where E_0 and E_{d2} are the activation energies of steps 6 and 5 in Scheme 1, respectively.

Approximation of the denominator of eqn. (6) by a function $\exp[(-r/(r+1))((E_o - E_{d2})/RT)]$ leads to eqn. (7).

ln
$$k \sim (\text{other terms}) - [r/(r+1)][(E_o - E_{d2})/RT]$$
 (7)

Then, the apparent activation energy $E_{\rm a}$ is expressed as a function of r.

$$E_{\rm a} \propto [r/(r+1)][(E_{\rm o} - E_{\rm d2})/R]$$
 (8)

Recombination of the photogenerated charge carriers is generally an ultra-fast process (<100 ns), which means that E_{d2} is very small or $E_o - E_{d2} > 0$. Taking $r(Au/TiO_2) < r(Ag/TiO_2)$ into consideration, the decrease in E_a with Au loading in place of Ag can be explained by eqn. (8).

Conclusions

Nanometre-sized Au (4.3–11 nm) and Ag particles (<5 nm) were loaded onto the surface of TiO₂ by the deposition– precipitation method and the photodeposition method, respectively. TiO₂ photocatalytic reduction of bis(2-dipyridyl) disulfide to 2-mercaptopyridine by H₂O was enhanced significantly with a small amount of Au ($x \sim 0.3$ wt.%). The kinetic studies revealed that the rate constant of the Au/TiO₂ system is 2.6 times greater than of the Ag/TiO₂ system and the activation energy of the former is smaller than that of the latter by a factor of 1.6. This enhancing effect of Au could be attributed to the increase in the charge separation efficiency, which is achieved by restriction of back electron transfer due to the high work function of Au.

Acknowledgements

The authors express sincere gratitude to Dr. Masatake Haruta and Dr. Susumu Tsubota (Osaka National Research Institute) for helpful comments on the deposition–precipitation method, Dr. Mitsunobu Iwasaki (Kinki University) for valuable discussion and Ishihara Techno Co. for the gift of the TiO_2 particles (A-100). Finally, the authors thank the two reviewers for constructive criticisms of an earlier version of this manuscript.

References

- 1 Photocatalytic Purification and Treatment of Water and Air, ed., F. D. Allies and H. Al-Ekabi, Elsevier, Amsterdam, 1993.
- 2 D. Duonghong, J. Ramsden and M. Graetzel, J. Am. Chem. Soc., 1982, 104, 2977.
- 3 J. Muzyka and M. A. Fox, J. Photochem. Photobiol. A, 1991, 57, 27.
- 4 L. Lin and R. R. Kuntz, Langmuir, 1992, 8, 870.
- 5 M. J. Bahneman, J. Moenig and R. Chapman, J. Phys. Chem., 1987, 91, 3782.
- 6 W. Choi and M. R. Hoffmann, Environ. Sci. Technol., 1995, 27, 1646.
- 7 W. H. Glaze, J. F. Kenneke and J. L. Ferry, *Environ. Sci. Technol.*, 1993, **27**, 177.
- F. Mahdavi, T. C. Bruton and Y. Li, J. Org. Chem., 1993, 58, 744.
 H. Tada, K. Teranishi, Y.-I. Inubushi and S. Ito, Chem. Commun.,
- 1998, 2345.
 E. Cadot, M. Lacroix, M. Breysse and E. Arretz, J. Catal., 1996,
- **164**, 490.
- 11 A. Ulman, *Chem. Rev.*, 1996, **96**, 1533 and references therein.
- 12 Y.-I. Inubushi, PhD Thesis, Kinki University, 1995.
- 13 S. Tsubota, M. Haruta, T. Kobayashi, A. Ueda and Y. Nakahara, in *Preparation of Catalysts V*, ed., G. Poncelet, P. A. Jacobs, P. Grange and B. Delmon, Elsevier, Amsterdam, 1991.
- 14 H. Kozuka, Proc. SPIE, 1997, 3136, 304.

- 15 Calculation of the S value for Au/TiO_2 by assuming hemispherical Au deposits gives an increase of *ca.* 2% as compared to the value for TiO₂. Thus, the increase in S could not be attributed simply to the Au deposition. However, no unsupported Au particles were observed by TEM.
- 16 T. Ishida, S.-I. Yamamoto, W. Mizutani, M. Motomats, H. Tokumoto, H. Hokari, H. Azehara and M. Fujihira, *Langmuir*, 1997, 13, 3261.
- 17 J. Y. Gui, F. Lu, D. A. Stern and A. T. Hubbard, J. Electroanal. Chem., 1990, **292**, 245.
- 18 C.-J. Zhong and M. D. Porter, J. Am. Chem. Soc., 1994, 116, 11616.
- 19 H. Tada, K. Teranishi, Y.-I. Inubushi and S. Ito, *Langmuir*, 2000, 16, 3304.
- 20 X.-L. Zhou, X.-Y. Zhu and J. M. White, Surf. Sci. Rep., 1991, 13, 73.
- 21 The irradiation in air yielded some oxidative products. Details of the TiO_2 photoinduced oxidation of RSSR under aerated conditions will be reported elsewhere.
- 22 B. Gu, J. Kiwi and M. Graetzel, Nouv. J. Chim., 1985, 9, 539.
- 23 M. Haruta and S. Tsubota, Catal. Catal., 1991, 33, 440.
- 24 P. T. Landsberg, *Recombination in Semiconductors*, Cambridge University Press, Cambridge, 1991.
- 25 Step 6 can be divided further into the following elementary steps:

$H_{2}O \leftrightarrow H^{+}OH^{-}$

$$OH_{ad}^{-} + h^{+} \rightarrow OH$$

$$2^{\circ}OH \rightarrow H_2O_2 \rightarrow H_2O + 1/2O_2$$

For detailed information, see: J. Kiwi, K. Kalyanasundaram and M. Graetzel, *Struct. Bonding (Berlin)*, 1982, **49**, 39.

26 Another route for the RSH formation is possible.

$$H^+ + e^- \rightarrow H_{ad}$$

 H_{ad} + RS-M \rightarrow RSH + M

However, we confirmed that the back reaction occurs in the dark, *i.e.*, the addition of an authentic RSH sample to a suspension of Au/TiO₂ particles produces H₂ followed by preferential adsorption of RS groups on the Au surfaces. Thus, this possibility seems to be small.

- 27 D. E. Eastman, Phys. Rev. B, 1970, 2, 1.
- 28 F. Z. Lohaman, Naturforsch. A, 1967, 22, 843.
- 29 M. Graetzel, in *Energy Resources through Photochemistry and Catalysis*, ed. M. Graetzel, Academic Press, New York, 1983.
- 30 The HOMO energy of the RS' radical was obtained by PM3 MO calculations (for details see ref. 19). For thiols, two types of dissociative adsorption of the S-H bond on coinage metals (M) were proposed (eqn. (a) and (b)).

$$\mathbf{R'SH} + \mathbf{M}(\mathbf{0}) \rightarrow \mathbf{R'S}^{-} - \mathbf{M}(\mathbf{I}) + 1/2\mathbf{H}_{2}$$
(a)

$$R'SH + M(I) \rightarrow R'S^{-}-M(I) + H^{+}$$
 (b)

see: P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y.-T. Tao, A. N. Parikh and R. G. Nuzzo, *J. Am. Chem. Soc.*, 1991, **113**, 7152. However, the homolytic dissociative adsorption corresponding to eqn. (a) seems to be plausible in the case of disulfides (eqn. (c)).

$$R'SSR' + M(o) \rightarrow 2R'S^{-}-M(I)$$
 (c)

- 31 R. Hoffmann, A Chemist's View of Bonding in Extended Structures, VCH, New York, 1993.
- 32 G. K. Jennings and P. E. Labinis, J. Am. Chem. Soc., 1997, 119, 5208.
- 33 T. Sakata, T. Kawai and K. Hashimoto, Chem. Phys. Lett., 1982, 88, 50.
- 34 J. B. Schlenoff, M. Li and H. Ly, J. Am. Chem. Soc., 1995, 117, 12528.