Diastereodivergent Chiral Synthesis of the Furofuran Lignans (+)-Sesamin and (-)-Asarinin

Kiyohiro Samizu and Kunio Ogasawara* Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-77

(Received March 30, 1995)

Two diastereomeric lignans (+)-sesamin and (-)-asarinin have been prepared diastereodivergently *via* the common intermediate generated by the chirotopical Heck reaction.

Quite recently, we have developed an efficient route to both enantiomeric 1,2-butynediol (1) from meso-3,4-epoxy-2,5-dihydrofuran.¹ To exploit 1 as a chiral building block, we used (R)-1 for the diastereodivergent construction of two typical diastereomeric furofuran lignans, (+)-sesamin^{2,3} (2) and (-)-asarinin^{2,3} (3) based on the racemic approach we have established⁴ (Scheme 1).

Scheme 1.

(R)-1
$$\stackrel{i}{\longrightarrow} X \stackrel{H}{\longrightarrow} \stackrel{iii}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{A:X=H}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{V}{\longrightarrow} \stackrel{V}{\longrightarrow$$

Scheme 2. Reagent and conditions: i) cyclohexanone, p-TsOH (cat.) (98%). ii) n-BuLi, I₂, THF, -78 °C (99%). iii) (NCO₂K)₂, AcOH, MeOH, rt (76%). iv) 1) n-Bu₃SnH, xylene (37%), 2) I₂, CH₂Cl₂, -78 °C (73%).

We first transformed⁵ (R)-1 (>99% ee) into the Z-iodoolefin Z-6, [α]_D²⁶ +17.1° (c 0.73, CHCl₃), by sequential ketalization, iodination and the diimide reduction⁵ via 4, [α]_D³¹ -43.5° (c 1.13, CHCl₃), and 5, [α]_D³⁰ -37.5° (c 1.08, CHCl₃).

On the other hand, (*R*)-1 was transformed into the *E*-iodoolefin *E*-6, $[\alpha]_D^{27}$ –38.3° (*c* 0.99, CHCl₃) on sequential treatment of 4 with tri-*n*-butyltin hydride and iodine⁶ (Scheme 2).

The Heck reaction⁴ between Z-6 and the dioxepin 7 was next carried out to give 8 as an inseparable mixture consisted of a pair of the E-olefinic and a pair of the Z-olefinic diastereomers in ~4:1 ratio both having 2,5-trans configuration.⁷ ¹H NMR revealed the former to be ~4:1 and the latter to be ~1:1 mixtures of the diastereomers.⁷ The mixture was then treated with $Ti(OPr^{i)}{}_2Cl_2{}^4$ followed by sodium borohydride (NBH) to give the diastereomeric E-olefinic 11E (~1:1)⁷ mixtures of the 2,3-trans:3,4-cistetrahydrofurans⁸ in yields of 51 and 12%, via 10, both preserving the original E/Z- and diastereomeric ratios.

When the same product was exposed to TBSOTf⁴ followed by NBH, the *E*-olefinic 14E (~4:1)⁷ and the *Z*-olefinic 14Z (~1:1)⁷ mixture were obtained in yields of 35 and 9%, via 13, both preserving the original E/Z- and diastereometric ratios.

On the other hand, the Heck reaction between E-6 and 7 afforded a complex mixture consisted mostly of the E-olefinic 2,5-trans/cis-mixture (1:1) accompanied by the separable Z-olefinic products (E/Z=12:1). The E-mixture furnished either the 2,3-trans:3,4-cis-11E by Ti(OPri)₂Cl₂-NBH or the 2,3-cis:3,4-trans-14E by TBSOTf-NBH as above in comparable yields, but both as 1:1 diastereomeric mixtures.

The diastereoselective formation of the trisubstituted tetrahydrofurans 10 and 13 from the common oxepin 8 depending on the acid catalysts may be rationalized in terms of an intervention of the metal chelating complex 9 in the former and the non-chelating complex 12 in the latter⁴ (Scheme 3).

We next transformed 11 and 14 into the natural lignans sesamin (2) and asarinin (3), respectively. Very surprisingly, only the *E*-isomers generated from *Z*-6 furnished the optically active products. Thus, 11*E* furnished (+)-samin^{9,10} [(+)-16], $[\alpha]_D^{27}$ +57.1° (c 0.37, CHCl₃) (lit.⁹: $[\alpha]_D^{24}$ -88.18° (c 1.1, CHCl₃) for *ent*-16), ¹¹ in 62% ee in 75% yield, *via* 15 on sequential dihydroxylation and periodate cleavage, while 11*Z* gave the optically inactive 16. Since optically pure (–)-samin

Scheme 3. Reagents and conditions: i) Pd2(dba)3·CHCl3 (cat.), o-tol3P (cat.), K2CO3 (2 equiv.), DMF, 40 °C, 1 h then 65 °C, 10 h.

11
$$\stackrel{i}{\longrightarrow}$$
 $\stackrel{OHC}{\longrightarrow}$ $\stackrel{OH}{\longrightarrow}$ $\stackrel{HO}{\longrightarrow}$ $\stackrel{HO}{\longrightarrow}$ $\stackrel{HO}{\longrightarrow}$ $\stackrel{HO}{\longrightarrow}$ $\stackrel{HO}{\longrightarrow}$ $\stackrel{HO}{\longrightarrow}$ $\stackrel{(+)}{\longrightarrow}$ $\stackrel{(+)}{\longrightarrow}$

Scheme 4. Reagents and conditions: i) OsO₄ (cat.), NMO, aq. THF, 45 °C, then NaIO₄, aq. THF, rt (16, 75%). ii) MeONa, MeOH, rt (19, 64%, 2 steps). iii) 1) TBS-Cl, imidazole, DMF, rt, 16h, 2) TMS-Br, CH₂Cl₂, –78 °C, then ArMgBr (66%, 2 steps).

$$Z-6 + 7 \xrightarrow{Pd(0)} Pd \xrightarrow{R-O} Pd \xrightarrow{H} O-R$$

$$Ar \xrightarrow{O-R} Ar \xrightarrow{O-R} Ar$$

[(-)-16] has been transformed into (-)-sesamin (*ent*-2) without loss of the original chiral integrity,⁹ the present synthesis constitutes a formal acquisition of (+)-sesamin (2) in 62% ee.

Similarly, only **14***E* from **Z-6** furnished optically active (-)-**19**, 10 [α]_D 26 -74.9° (c 0.19, CHCl₃), in 61% ee in 64% yield *via* **17** and **18** on sequential dihydroxylation, periodate cleavage, and base-induced isomerization. ^{4b} By following the racemic synthesis, (-)-**19** was transformed to (-)-asarinin (**3**), [α]_D 26 -71.9° (c 0.19, CHCl₃) (lit. 12 : [α]_D +124° (CHCl₃ for *ent*-**3** 11)) (61% ee), in 66% yield (Scheme 4). The optical purities obtained corresponded to the diastereomeric ratio (~4:1) of the starting **11***E* generated from *Z*-**6**. It should be also noted that **11***E* generated from *E*-**6** also furnished **16** and **19**, on the same treatments, which, however, did not have optical activities.

The chirality transfer exerted only by Z-6 may be due to the intervention of the chelation complex 20 having the palladadihydrofuran moiety. \(^{13}\) This collapsed to Z-21 which in turn isomerized to E-23 through 22a and its less congested conformer 22b to leave the optically active 8E by β -elimination. \(^{13}\) A similar reaction involving the palladadihydropyran may also occur competitively leading to a diastereomeric product (enantiomeric at the oxepin ring of 8) which offset total optical transfer rate. The low chirality transfer in the Z-olefin product may be due to the competitive direct β -elimination in 21 and in the palladadihydropyran to give a 1:1 diastereomeric mixture incidentally. Since E-6 was unable to

form a palladacyclic complex, no chiral induction occurred under the same conditions (Scheme 5).

References and Notes

- O. Yamada and K. Ogasawara, Synlett, 1995, 427.
- For reviews of lignan chemistry: D. A. Whiting, *Nat. Prod. Rep.*, **12**, 183 (1995) and the earlier reviews.
- For a monograph of lignans: D. C. Ayres and J. D. Loike, 'Lignans Chemical Biological and Clinical Properties,' Cambridge University Press, Cambridge (1990).
- a) S. Takano, K. Samizu, and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1993, 1032. b) S. Takano, K. Samizu, and K. Ogasawara, Synlett, 1993, 785.
- 5 D. J. Pasto and R. T. Taylor, Org. React., 40, 92 (1991).
- G. A. Tolstikov, M. S. Miftakhov, N. A. Danilova, and Y. L. Vel'der, *Synthesis*, 1986, 496.
- 7 Determined by ¹H NMR (500 MHz) analysis (NOE).
- 8 Each compound contained ca. 4% of a diastereomer.
- S. Takano, T. Ohkawa, S. Tamori, S. Satoh, and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1988, 189.
- 10 Existed in a single isomer as shown in Scheme 4.7
- 11 Both enantiomers are naturally occurring.
- 12 K. Freudenberg and G. Sidhu, *Chem. Ber.*, **94**, 851 (1961).
- 13 Torii, H. Okumoto, H. Ozaki, S. Nakayasu, T. Tadokoro, and T. Kotani, *Tetrahedron Lett.*, **33**, 3499 (1992).