BEITRÄGE ZUR CHEMIE DER ELEMENTE NIOB UND TANTAL

XLVII*. NIOBFLUORIDE

H. SCHÄFER, H. G. SCHNERING, K.-J. NIEHUES UND H. G. NIEDER-VAHRENHOLZ Anorganisch-chemisches Institut der Universität Münster/Westf. (Deutschland) (Eingegangen am 13. April, 1965)

INHALTSÜBERSICHT

 NbF_5 wird durch Umsetzung von K_2NbF_7 mit AlF_3 hergestellt. NbF_5 und TaF_5 bilden eine vollständige Mischkristallreihe mit nahezu idealem Verhalten.

NbF₄ entsteht durch Reduktion von NbF₅ mit Nb bei ~350°C. NbF₄ disproportioniert unter geeigneten Bedingungen in NbF_{2.5} und NbF₅. NbF₄ kristallisiert im tetragonalen SnF₄-Typ.

"NbF₃" enthält anscheinend stets mehr oder weniger Sauerstoff. Es existiert ein ausgedehntes Nb(O,F)₃-Mischkristallgebiet.

NbF_{2.5} entsteht aus Nb + NbF₅ bei \geq 700°C. Es ist durch chemischen Transport in Kristallen erhältlich. Die Verbindung kristallisiert kubisch mit einer Struktur, die durch die Formel [Nb₆F₁₂]F_{6/2} zu beschreiben ist. Es tritt also der bereits bekannte Nb₆-Oktaeder als Bauelement auf.

SUMMARY

 NbF_5 is obtained by reaction of K_2NbF_7 with AlF_3 . NbF_5 and TaF_5 form a complete solid solution with almost ideal behaviour.

NbF₄ is formed at ~350°C by reduction of NbF₅ with Nb. NbF₄ disproportionates under suitable conditions in NbF_{2.5} and NbF₅. NbF₄ crystallizes in the tetragonal SnF₄-type.

"NbF₃" apparently always contains more or less oxygen. A wide $Nb(O,F)_3$ -mixed crystal range exists.

 $NbF_{2.5}$ is formed by Nb + NbF₅ at $\geq 700^{\circ}$ C. It can be obtained in crystals by chemical transport. The compound crystallizes cubically with a structure, which can be described by the formula $[Nb_6F_{12}]F_{6/2}$. Thus the already known Nb₆-octahedron acts as structure element.

^{*} Mitteilung XLVI siehe Lit. 1.

EINLEITUNG

Die Chemie der Niobfluoride ist bisher nur wenig bearbeitet worden. Wir geben jetzt einen Überblick auf Grund neuer Untersuchungen. Hierbei verdient das niederste Fluorid NbF_{2.5} (Nb₈F₁₅) wegen seiner interessanten strukturellen Beziehungen zu den niederen Chloriden, Bromiden und Jodiden des Niobs und Tantals² besondere Beachtung.

DIE VERBINDUNG NbF5

Niob(V)-fluorid wurde zuerst von RUFF UND ZEDNER³ aus den Elementen gewonnen. Die Verbindung ist auch auf anderen Wegen zugänglich:

Nb + 5 HF = NbF₅ + 2.5 H₂;
$$300^{\circ}C^{4}$$
 (1)

 $2 \text{ Nb} + 5 \text{ SnF}_2 = 2 \text{ NbF}_5 + 5 \text{ Sn}; 375 - 500^{\circ} \text{C}^5$ (2)

$$NbCl_5 + 5 HF = NbF_5 + 5 HCl;^6$$
(3)

 $NbCl_5 + 2.5 ZnF_2 = NbF_5 + 2.5 ZnCl_2; 300^{\circ}C^7$ (4)

$$_{3} \operatorname{BaF}_{2} \cdot 2 \operatorname{NbF}_{5} = 2 \operatorname{NbF}_{5} + 3 \operatorname{BaF}_{2}; \quad 900^{\circ} \mathrm{C}^{7-8}$$
 (5)

Bei der Darstellung des als Ausgangssubstanz benötigten Pentafluorids gingen wir von dem heute in reiner Form käuflichen K₂NbF₇ aus. Nach Gl. (6) wurde die Lewis-Säure NbF₅ durch die Säure AlF₈ verdrängt. TaF₅ entsteht auf analoge Weise.

$$K_2NbF_7 + 2 AlF_3 = NbF_5 + 2 KAlF_4; \quad 800^{\circ}C$$
(6)

Arbeitsvorschrift

K₂NbF₇ wird bei 150°C und 0.1 Torr getrocknet. AlF₃ wird durch thermische Zersetzung von (NH₄)₃AlF₆ bei 600°C im N₂-Strom gewonnen⁹. 5.8 g K₂NbF₇+4 g AlF₃ werden gut miteinander verrieben, in ein Nickelschiffchen gebracht und im N₂-Strom (70 Blasen/Min) 8 Std. lang auf 800°C erhitzt. Das Nickelschiffchen befindet sich in einem Nickelrohr, das über die Ofenenden hinausragt und seinerseits in einem Quarzrohr liegt. Bei der Reaktion wird NbF₅,g frei, während KAlF₄ (Röntgendiagramm) im Schiffchen und im Rohr als Rückstand verbleibt. NbF₅ passiert ein Staubfilter aus Quarzwatte (230°C) und wird schliesslich in einer abschmelzbaren Ampulle kondensiert. Ausbeute 75–85% der Theorie. Das so gewonnene NbF₅ wird zur weiteren Reinigung in einer evakuierten Quarzampulle bei 200°C Bodenkörpertemperatur destilliert.

Für das Arbeiten mit NbF5 sind folgende Eigenschaften von besonderem Interesse:

NbF₅ bildet farblose, stark lichtbrechende Kristalle, die so hygroskopisch sind, dass sie an freier Luft zerfliessen. Die Handhabung erfolgt unter Schutzgas oder im Vakuum mit besonderen Umfülleinrichtungen.

Smp (NbF₅) =
$$79^{\circ}$$
C; (75.5°C⁶; 75°C¹⁰; 80°C¹¹; 78.9°C¹²)
Smp (TaF₅) = 97° C; (96.8°C⁶; 97°C¹⁰; 95.1°C¹¹)

 $Sdp(NbF_5) = 234^{\circ}C; \log P (NbF_5, fl, atm)^{11,12} = 5.525 - 2802/T$

Nach PRIEST¹⁰ sollen NbF5 und TaF5 ein bei Raumtemperatur flüssiges Eutek-

NIOBFLUORIDE

tikum bilden, was wir jedoch nicht bestätigen können. Vielmehr bilden NbF₅ und TaF₅—ebenso wie NbCl₅ und TaCl₅¹³—eine vollständige Mischkristallreihe mit nahezu idealem Verhalten. Auch stimmen die Debyeogramme von NbF₅, TaF₅ sowie von Mischkristallen weitgehend überein.

Nach EDWARDS^{13a} kristallisieren NbF₅ und TaF₅ monoklin in der Raumgruppe C 2/m.

Jenaer Geräteglas wird schon bei 30-stündiger Einwirkung von flüssigem NbF₅ bei 140–160°C milchig trüb. Der Angriff von Quarzglas ist dagegen bis 300°C selbst nach 10 Tagen noch unerheblich; bei $\geq 400°$ C findet Reaktion unter Bildung von NbO₂F-Kristallen statt:

$$\operatorname{SiO}_2 + \operatorname{NbF}_{5,g} = \operatorname{NbO}_2 F + \operatorname{SiF}_4.$$
⁽⁷⁾

Umsetzungen von NbF5 mit Nb oberhalb 300°C wurden in Nickelgefässen ausgeführt.

DIE VERBINDUNG NbF4

Niob(IV)-fluorid ist erst kürzlich durch Veröffentlichungen von uns^{2,14,15} sowie von Gortsema und Didchenko⁵ bekannt geworden. Es kann durch Umsetzung von NbF₅ mit Nb im Temperaturgefälle gewonnen werden.

Quarzampulle

In der evakuiert abgeschmolzenen Ampulle mit 15 mm Durchmesser und 200 mm Länge befanden sich 0.24 g Nb-Folie (10 μ dick) und 3 g NbF₅. Nach 4-tägiger Erhitzung im Temperaturgefälle 330/200°C befand sich noch unverbrauchtes Nb in der 330°-Zone und NbF₅ in der 200°-Zone. In der Mitte des Rohres hatten sich ~ 0.5 g NbF₄ in *schwarzen* Kristallen abgeschieden.

Längere Erhitzungszeiten oder höhere Temperaturen erfordern ein anderes Gefässmaterial, weil dann der Quarzangriff störend wird.

Nickelbombe

Nickelbombe mit 52 cm³ Inhalt (Länge 165 mm, Innendurchmesser 20 mm; Nickelstopfen, Kupferdichtung). Nach Einführung von 0.6 g Nb-Folie (10 μ dick) und 6.5 g NbF₅ wurde die Bombe unter Argon (1 Atm) verschlossen. Dann wurde sie in zwei aneinandergestellten Aluminiumblocköfen im Temperaturgefälle 360/225°C erhitzt. Dabei lag die Nb-Ausgangssubstanz in der heisseren Zone. Nach 18 Tagen war das Nb fast vollständig umgesetzt; etwa 4.8 g NbF₄ befanden sich auf der 225°C-Seite des Reaktionsraumes. Das Präparat wurde durch zweistündiges Erhitzen (200°C) im Vakuum vom überschüssigen NbF₅ befreit.

Die Röntgendiagramme der auf beiden Wegen gewonnenen NbF4-Präparate sind identisch.

Analysenverfahren

Zur Nb-Bestimmung wurde mit Schwefelsäure + Oleum abgeraucht und Nb₂O₅ ausgewogen. Fluorid wurde mit einem CaCl₂-Überschuss gefällt und CaF₂ nach Methanolzugabe abfiltriert. Im Filtrat wurde der CaCl₂-Überschuss mit Komplexon III gegen HHSNN-Indikator titriert¹⁶. Bei unlöslichen Fluoriden (wie z.B. NbF_{2.5}) geht ein NaOH-Aufschluss im Silbertiegel voraus. Die Vorschrift wurde im Einzelnen mit Modellanalysen erprobt.

Analysenergebnisse von 2 verschiedenen Präparaten:

54.98; 55.09 / 55.00; 54.91 % Nb

44.8 ; 45.0 / 45.0 ; 44.8 %F

für NbF₄ berechnet: 55.01% Nb; 44.99% F.

Nach GORTSEMA UND DIDCHENKO⁴ bietet auch die Reduktion von NbF $_5$ mit Si bei 300°C einen vorteilhaften Weg zur Darstellung von NbF $_4$.

Chemisches Verhalten

NbF₄ ist feuchtigkeitsempfindlich. Es zerfliesst an freier Luft zu bräunlichen Tropfen. Wasser löst NbF₄ nicht vollständig. Die braune Lösung wird nach kurzer Zeit trübe; schliesslich entsteht ein schmutzig brauner Niederschlag. 2 N HCl und 2 N H₂SO₄ liefern klare gelbbraune Lösungen. 6 N HCl gibt eine grünblaue, 10 N HF eine farblose Lösung. Verdünnte HNO₃ führt zu einem weissen Niederschlag. Von einer NaOH-Schmelze wird NbF₄ unter H₂-Entwicklung gelöst.

Thermisches Verhalten

2g NbF₄ wurden in einem Nickeltiegel mit Verschlusskappe und seitlicher Öffnung im Vakuum (10⁻⁴ Torr) *an der laufenden Pumpe* erhitzt (Quarzrohr). Bei einer Aufheizgeschwindigkeit von etwa 1°/Min war bei etwa 400°C das erste NbF₅-Kondensat am Ofenende erkennbar. Die Zersetzung war schon nach kurzer Zeit beendet, jedoch wurde die Probe noch 3 Stunden bei ungefähr 450°C belassen. Die flüchtige Substanz bestand nur aus NbF₅. Der Rückstand war *röntgenamorph* und lieferte bei der Analyse 67.4% Nb und 32.6% F, was der Zusammensetzung NbF_{2.37} entspricht. Derartige Abbaurückstände entzünden sich manchmal an der Luft. Als Verbrennungsprodukt hinterbleibt dann NbO₂F (Debyeogramm; Farbe schmutzig weiss).

Weitere Angaben über die thermische Stabilität von NbF_4 lieferten die folgenden Experimente:

NbF₄ wurde aus Nb und einem NbF₅-Überschuss in der Nickelbombe im Temperaturgefälle hergestellt (Mengen und Masse wie oben beschrieben). Im Anschluss hieran wurde die Bombe nicht geöffnet, sondern in ihrer ganzen Länge 3 Tage auf eine höhere Temperatur erhitzt. Betrug diese 400°C, so blieb das vorher entstandene NbF₄ unzersetzt. Der aus dem Ansatz für den Endzustand berechnete NbF₅-Druck betrug hierbei 8 Atm. Wurde die Nacherhitzung jedoch bei 500°C vorgenommen, so bestand der Bodenkörper aus reinem, wohlkristallisiertem NbF_{2.5} (vgl. später), das ein sehr scharfes Röntgendiagramm lieferte.

Das Tetrafluorid hatte sich also nach

$$5 \text{ NbF}_{4}, f = 2 \text{ NbF}_{2.5}, f + 3 \text{ NbF}_{5}, g$$
(8)

zersetzt. Der neben dem NbF $_{2.5}$ -Bodenkörper vorhandene NbF $_{5}$ -Druck betrug 34 Atm.

Durch diese (und einige weitere) Beobachtungen ist das Zerfallsgleichgewicht (8) grob eingegabelt. Mit einer geschätzten Reaktionsentropie von 122 cl kann man hierfür die Beziehung

$$\log P(\text{NbF}_{5}, \text{atm}) = -\frac{5 \cdot 5 \cdot 10^3}{T} + 8.9 \text{ (\"uber NbF}_4 + \text{NbF}_{2.5)}$$

ableiten. Ihre Genauigkeit ist gering, jedoch ist die damit gegebene Abgrenzung der

NIOBFLUORIDE

Existenzgebiete von $NbF_{2.5}$ und NbF_4 mit allen vorliegenden präparativen Beobachtungen im Einklang.

Kristallstruktur von NbF4

Die unabhängig voneinander von unserer Arbeitsgruppe^{2,14} und von GORTSE-MA UND DIDCHENKO⁵ durchgeführten Strukturbestimmungen führten zum gleichen Ergebnis:

NbF₄ kristallisiert tetragonal innenzentriert mit $a = 4.08_8$ Å und $b = 8.16_1$ Å; $d(\text{Rö}) = 4.13 \text{ g/cm}^3$; 2 Formeleinheiten in der Zelle. SnF₄-Typ¹⁷ (vgl.Abb. 1), Raumgruppe I4/mmm-D¹⁷_{4h}; 2 Nb in 2(a), 4 F₁ in 4(c), 4 F₁₁ in 4 (e) mit $z_{\text{F}_{11}} = 0.25$.

Abb. 1. Debye
ogramme (CuKa-Strahlung) von NbF4 (unten) und SnF4. Das letztere verdanken wir Herrn Prof. R. Hoppe, Münster.

Die mit dieser Atomverteilung berechneten Intensitäten stimmen mit den beobachteten gut überein.

Nb ist oktaedrisch von F-Teilchen umgeben; es liegt ein zweidimensionales Schichtgerüst vor, das durch die Formel $^2_{\infty}$ [NbF_{4/2}F₂] zu beschreiben ist. Im Gegensatz zu den Tetrahalogeniden NbCl₄, NbBr₄ und NbJ₄ existiert im NbF₄ keine Nb-Nb-Bindung². Dennoch wird der Magnetismus des freien Nb⁴⁺-Ions nicht erreicht. Es ist anzunehmen, dass, wie in der strukturverwandten Verbindung K₂NiF₄ starke antiferromagnetische Wechselwirkungen¹⁸ die Erniedrigung der magnetischen Suszeptibilität hervorrufen.

Zwei in Quarzampullen hergestellte NbF₄-Präparate erwiesen sich als paramagnetisch mit einer zwischen 90 und 295°K praktisch konstanten Molsuszeptibilität* von 175 × 10⁻⁶, bzw. 200 × 10⁻⁶. Diese Werte sind etwa doppelt so hoch wie die von GORTSEMA UND DIDCHENKO⁵ gemessenen.

DIE VERBINDUNG NbF3

Niobtrifluorid ist von EHRLICH, PLÖGER UND PIETZKA¹⁹ beschrieben worden, die NbH_x mit HF + H₂ bei 560–580°C umsetzten. Danach kristallisiert NbF₃ im ReO₃-Typ mit a = 3.903 Å. MUETTERTIES UND CASTLE²⁰ erhielten aus Nb und HF (flüssig) bei 225°C neben viel NbF₅ ein kubisches Produkt mit a = 3.89 Å, das sie als NbF₃ ansahen.

Im Gegensatz hierzu verlief unsere umfangreiche Versuchsreihe zur Reproduktion der Ehrlich'schen NbF₃-Darstellung ohne Erfolg. Die Umsetzung führte nur zu NbF₅ (und einem Nb- bzw. NbH_x-Rückstand). Dies entspricht auch Befunden von RÜDORFF und Mitarbeitern²¹, sowie älteren Experimenten von EMELÉUS UND GUTMANN²². Fluorierungsprodukte mit ReO₃-Struktur beobachteten wir nur dann, wenn Oxid, Sauerstoff oder Wasser zumindest in Spuren zugegen waren.

^{*} Von der Feldstärke nur wenig abhängig, jedoch auf H_{∞} extrapoliert; nicht für diamagnetische Anteile korrigiert.

100 H. SCHÄFER, H. G. SCHNERING, K.-J. NIEHUES, H. G. NIEDER-VAHRENHOLZ

Die Produkte entsprechen dann der Zusammensetzung Nb(O,F)₃. Die Mischkristallbildung zwischen "NbF₃" und NbO₂F (ReO₃-Typ, a = 3.902 Å²³) ist naheliegend. Unsere noch unvollständige Untersuchung spricht dafür, dass eine *stabile Mischkristallreihe* mit stetiger Änderung der Gitterkonstanten nur zwischen NbO₂F und NbO_{1.25}F_{1.75} existiert. Diese Stoffe besitzen die blaue Farbe, wie sie bei Versuchen zur Darstellung von NbF₃^{6,22} bzw. für "NbF₃"¹⁹ auch beobachtet worden ist. Die Nioboxidfluoridphase Nb(O,F)₃ ist im Temperaturgefälle (430°→300°C) chemisch transportierbar, z.B. an der Phasengrenze nach

 $NbO_2F + NbF_{5,g} = 2NbOF_{3,g};$ endotherm (9)

und so in Kristallen erhältlich. Auch NbCl₅ und NbBr₅ sind als Transportmittel ($400^{\circ} \rightarrow 300^{\circ}$ C) geeignet. Unter reduzierenden Bedingungen führt der chemische Transport zu Präparaten der oben genannten Mischkristallreihe.

Derartige Mischkristalle sind auch von GORTSEMA UND DIDCHENKO⁵ beobachtet worden. Durch Disproportionierung von NbF₄ erhielten diese Autoren ferner sauerstoffhaltiges "NbF₃", jedoch "gewöhnlich mit < 1.5% O". Solche Präparate kommen also der Zusammensetzung NbF₃ nahe!

Folgende Aussage fasst die bisherigen Ergebnisse zusammen: "NbF₃" wird durch Einbau von O statt F stabilisiert. Reines NbF₃ kann-wenn überhaupt-nur metastabil und unter speziellen, noch nicht klar erkannten Bedingungen erhalten werden. Bei TaF₃²¹ und MoF₃ liegen offenbar ähnliche Verhältnisse vor. Die Umsetzung von MoOCl₂ mit HF liefert jedenfalls die Verbindung MoOF₂, die im ReO₃-Typ mit $a = 3.896 \pm 0.003$ Å kristallisiert.

DIE VERBINDUNG Nb₆F₁₅ (NbF_{2.5})

Wie bereits dargelegt wurde, entsteht die Verbindung mit der analytischen Zusammensetzung NbF_{2.5}, wenn NbF₄ in Gegenwart eines ausreichenden NbF₅-Drucks thermisch zersetzt wird. Vorteilhafter ist die Darstellung aus Nb und NbF₅ im Temperaturgefälle.

Ein Reaktionsrohr aus Nickel (Länge 165 mm, Innendurchmesser 13 mm, Wandstärke 3 mm, Nickelstopfen, Dichtungsring aus Kupfer) wird unter Argon mit 1.4 g Nb-Folie und 3.7 g NbF₅ beschickt und 4 Tage so in ein Temperaturgefälle gelegt, dass Nb auf 900°C und das andere Ende (mit dem NbF₅,fl-Bodenkörper) auf 400°C erhitzt wird. Danach befinden sich in der weniger heissen Zone 1.5 g kristallisiertes NbF_{2.5}. Das nicht verbrauchte NbF₅ wird an der Vakuumpumpe bei 200°C entfernt.

Bereits bei 600°C findet die Umsetzung von Nb mit NbF5 zu NbF2.5 im erheblichen Umfange statt. Der Abtransport des NbF2.5, der offenbar nach

 $2 \text{ NbF}_{2.5} + 3 \text{ NbF}_{5,g} = 5 \text{ NbF}_{4,g}; \text{ endotherm}$ (10)

vor sich geht, erfordert jedoch Temperaturen von mindestens 700°C.

Pulvriges NbF_{2.5} ist braun. Durch chemischen Transport gewonnene Kristalle sind fast schwarz; sie liefern ein braunes Pulver.

Analysenergebnisse von zwei verschiedenen Präparaten:

66.25; 66.19 / 66.12; 66.10 % Nb

33.6; 33.8 / 33.8; 33.7 % F

für NbF2.5 berechnet: 66.17 % Nb; 33.83 % F

J. Less-Common Metals, 9 (1965) 95-104

NIOBFLUORIDE

Chemisches und thermisches Verhalten

An freier Luft wird NbF_{2.5} nicht verändert. Verdünnte und starke HCl, H₂SO₄, HNO₃ sowie NaOH greifen NbF_{2.5} selbst in der Hitze nicht merklich an.

NaOH liefert mit NbF_{2.5} unter H₂-Entwicklung eine klare Schmelze. Beim Erhitzen von NbF_{2.5} an der Luft (Reagenzglas) beobachtet man flüchtiges NbF₅ und einen bläulichen Rückstand, der das Debyeogramm des Nb(O,F)₃ liefert.

Wird NbF_{2.5} an der Vakuumpumpe ($< 10^{-5}$ Torr) erhitzt, so findet oberhalb 700°C—im wesentlichen nach Gl.(11)—Zersetzung statt.

 $2 \operatorname{NbF}_{2.5} = \operatorname{Nb} + \operatorname{NbF}_{5,g}$ (11)

Kristallstruktur des $Nb_6F_{15}(NbF_{2.5})$

NbF_{2.5} liefert ein einfaches kubisch indizierbares Röntgendiagramm (Abb. 2). Einkristallaufnahmen bestätigen die kubische Symmetrie. Die Häufung von Beu-

Abb. 2. Guinierdiagramm von Nb₆F₁₅. Vergleichssubstanz ist x-Quarz. CuKa-Strahlung.

gungsintensitäten an bestimmten Stellen der Pulveraufnahme legte nahe, dass die Atomanordnung "molekulare" Baugruppen enthält. Die Kristallstruktur wurde mit Hilfe moderner Methoden bestimmt.

Methodik

Gitterkonstante aus Pulveraufnahmen nach der Straumanis-Methode; Raumgruppe aus Weissenberg- und Präzessions-Aufnahmen; Intensitäten aus verschieden stark belichteten integrierten Einkristallaufnahmen; Strukturmodell nach Pattersonprojektion (hko); Verfeinerung mit Differentialsynthesen, Fourier- und Differenzsynthesen. Alle Rechnungen wurden auf der elektronischen Rechenmaschine Z 23 der Universität Münster mit eigenen Programmen²⁴ durchgeführt.

Ergebnis

NbF_{2.5} kristallisiert kubisch mit $a = 8.190^{\circ}$ in der Raumgruppe $Im_{3}m_{-}O_{h}^{\circ}$. Die Elementarzelle enthält 12 Formeleinheiten NbF_{2.5} bzw. 2 Formeleinheiten Nb₀F₁₅. Berechnete und gemessene Dichte stimmen hinreichend überein $d(R\ddot{o}) = 5.09$; $d(Pykn., 25^{\circ}C) = 4.91$ g/cm³. In der genannten Raumgruppe besetzen die Atome folgende Positionen:

12 Nb in 12 (e) xoo usw. mit x = 0.242

24 F₁ in 24 (h) oxx usw. mit x = 0.250

6 F_{II} in 6 (b) $0\frac{11}{22}$ usw.

Mit diesen Parametern ergibt sich R = 0.100, $R' = 0.119^*$ für 101 Reflexe (*hko*). Die B-Werte der isotropen Temperaturfaktoren betragen -0.38, -0.37, -0.38 Å². Auf Grund der Standardabweichung sollten die Fehler bei den interato-

^{*} $\overline{R = \Sigma} |\langle |F_0| - |F_e| \rangle | / \Sigma |F_0|$. R mit beobachteten Reflexen, R' mit allen Reflexen ($F_0 = o$, wenn Reflexe nicht beobachtet).

102

TABELLE I

 ${\rm Nb}_6F_{15};$ vergleich der berechneten und beobachteten strukturfaktoren für die reflexe ($\hbar k o)$

h	k	l	F _c	$ F_0 $	h	k	l	F _c	$ F_0 $	h	k	l	F _c	$ F_0 $	
I	I	0	146	127	10	6	0	48	47	15	II	0	7	0	
					10	8	0	47	54	15	13	0	20	20	
2	0	0	128	98	10	10	0	-34	47						
2	2	0	—I47	131						16	0	0	125	125	
					ΙI	τ	0	27	34	16	2	0	22	35	
3	I	ο	104	89	II	3	0	15	0	16	4	0	118	118	
3	3	0	70	66	II	5	0	34	35	16	6	0	21	18	
					11	7	0	3	0	16	8	0	101	100	
4	0	0	526	520	II	9	0	35	41	16	10	0	19	16	
4	2	0	101	99	II	II	0	4	0	16	I 2	0	80	79	
4	4	0	417	449											
					12	0	0	192	197	17	I	0	54	74	
5	I	о	128	115	12	2	0	39	59	17	3	0	47	60	
5	3	0	100	105	12	4	0	179	155	17	5	0	56	67	
5	5	0	122	133	12	6	0	36	57	17	7	0	36	41	
					12	8	o	I47	142	17	9	0	52	57	
6	0	0	93	76	12	10	0	32	39	17	II	0	26	25	
6	2	0	95	85	12	12	0	112	107	17	13	0	45	47	
6	4	0	81	80											
6	6	0	-72	87	13	I	0	75	73	18	0	0	37	42	
					13	3	0	63	68	18	2	0	19	15	
7	I	0	54	56	13	5	ο	77	76	18	4	0	35	30	
7	3	0	35	43	13	7	0	47	54	18	6	0	16	0	
7	5	0	62	69	13	9	0	70	66	18	8	0	29	18	
7	7	0	16	32	13	11	0	32	25						
					13	13	0	58	54	19	I	0	4	0	
8	0	ο	306	297						19	3	0	—– I	0	
8	2	ο	65	77	14	0	0	50	48	19	5	0	9	о	
8	4	0	273	205	14	2	σ		34	19	7	о	5	0	
8	6	ο	57	71	14	4	о	46	47						
8	8	0	207	193	14	6	0	29	38	20	0	о	8o	76	
					14	8	0	37	29	20	2	0	II	0	
9	1	о	100	95	14	10	0		21	20	4	ο	76	70	
9	3	о	82	92	14	12	0	27	24	20	6	ο	11	0	
9	5	о	100	104	•			•	•	20	8	0	67	57	
9	7	о	57	73	15	I	0	12	0					•	
9	9	0	87	105	15	3	0	4	0	21	I	0	38	42	
-	-		,	-	15	5	0	ıģ	17	21	3	0	33	37	
10	0	0	67	60	15	7	0	3	ó	21	5	0	39	44	
10	2	о		56	15	9	0	20	18	21	7	0	26	24	
10	4	0	бı	56	5										
						· · · · ·				 					

maren Vektoren ± 0.02 Å nicht überschreiten. Tabelle I gibt einen Vergleich von beobachteten und berechneten Strukturfaktoren $|F_0|$ bzw. F_c . Auf die Wiedergabe der fehlerfreien Fourier- und Differenzfourier-Synthese soll hier verzichtet werden.

Beschreibung der Kristallstruktur

Im NbF_{2.5} sind polynukleare Gruppen [Nb₆F₁₂]³⁺ über zusätzliche gemeinsame F-Teilchen 3-dimensional unendlich miteinander verbunden. Bezeichnet man die zur polynuklearen Gruppe gehörenden "inneren" Fluorteilchen mit F^{*i*} und die verknüpfenden "äusseren" mit F^{*a*-*a*}, so lässt sich der Aufbau des NbF_{2.5} mit der Formel ³_∞ [Nb₆F^{*i*}₁₂]F^{*a*-*a*}_{6/2} beschreiben (Abb. 3). Die Baugruppe [Nb₆F^{*i*}₁₂]³⁺ enthält als Kern ein *reguläres* Nb₆-Oktaeder, in welchem jedes Nb-Teilchen vier Nb-Partner im Abstand von 2.80 Å besitzt. Diese Anordnung weist ebenso wie im Nb₆Cl₁₄²⁶, Ta₆J₁₄²⁶ und in Ionen wie $[Ta_6Br_{12}]^{2+27}$ auf starke Me-Me-Wechselwirkungen hin².

NbF2.5 ist das bisher einzige Fluorid mit diskreten Men-Gruppen.

Durch die spezielle stereochemische Anordnung ist jedes Nb-Teilchen auch mit vier F^{*i*}-Teilchen (2.05 Å) in fast planarer Anordnung und einem zusätzlichen F^{*a*-*a*}-Teilchen (2.11 Å) verbunden (vgl. Abb. 3). Hier ist also die denkbar einfachste

Abb. 3. Nb6-Oktaeder mit F-Umgebung in der Nb6F15-Struktur (schematisch).

Abb. 4. Strukturbeziehungen zwischen dem NaCl-Typ und dem NbF2.5-Typ.

strukturelle Möglichkeit realisiert, Baugruppen $[Me_{\theta}X_{12}^{i}]$ durch zusätzliche X-Teilchen miteinander zu verknüpfen². Dieser völlig symmetrischen Umgebung der Nb₆F₁₂-Gruppe entspricht der reguläre Aufbau des Nb6-Oktaeders. Das Gleiche gilt für die nahe verwandten Strukturen der Verbindungen Ta6Cl15 und Ta6Br15²⁸. In den unregelmässig koordinierten [Me6X12]2+-Gruppen der Verbindungen Nb6Cl14 und Ta₆]₁₄ sind die Me₆-Oktaeder dagegen nicht mehr regulär gebaut ^{25,26}.

Die Elementarzelle des Nb₆F₁₅ enthält zwei der oben beschriebenen Baugruppen $_{\infty}^{3}$ [Nb₆F₁₂]F^{*a*-*a*}_{6/2}, die gegeneinander um $\frac{1}{2}$ $\frac{1}{2}$ verschoben sind und welche keine direkte Verbindung miteinander haben. Ersetzt man in Gedanken die [Nb6Fi]-Gruppe durch ein Pseudoteilchen M', so besitzt die Struktur des Nb_6F_{15} = $[Nb_{6}F_{12}^{i}]F_{6/2}^{a-a} = M'F_{6/2}^{a-a}$ den Aufbau zweier ineinander gestellter Strukturen vom ReO₃-Typ.

Der Aufbau des Nb₆F₁₅ kann auch mit dem NaCl-Typ in Beziehung gebracht werden. Lässt man nämlich im Gitter des NaCl gesetzmässig bestimmte Plätze unbesetzt (Abb. 4), so ergibt sich in einfacher Weise die Nb₆F₁₅-Struktur. Überlegungen zur Theorie solcher Me_n-Gruppen lassen für Nb₆ F_{15} einen Paramagnetismus von etwa 1.7-1.8 B.M. erwarten. Bisher konnten magnetische Messungen noch nicht ausgeführt werden, da die Substanz in Nickelbömbchen dargestellt wurde (vgl. oben). Es ist jedoch zu vermuten, dass sich Nb₆F₁₅ magnetisch ebenso verhält wie Ta₆Cl₁₅ und Ta6Br15², die den erwarteten Paramagnetismus besitzen².

LITERATUR

- I Mitteil. XLVI, vgl. H. SCHÄFER UND L. ZYLKA, Z. Anorg. Allg. Chem., im Druck.
- 2 H. SCHÄFER UND H. G. SCHNERING, Angew. Chem., 76 (1964) 833.
- 3 O. RUFF UND J. ZEDNER, Ber. Deut. Chem. Ges., 42 (1909) 492.
- 4 H. J. Emeléus und V. GUTMANN, J. Chem. Soc., (1950) 2115. 5 F. P. Gortsema und R. Didchenko, Inorg. Chem., 4 (1965) 182.
- 6 O. RUFF UND E. SCHILLER, Z. Anorg. Chem., 72 (1911) 329.
- 7 Eigene Beobachtungen, K.-J. NIEHUES, Diplomarbeit, Münster, 1960.
- 8 O. HAHN UND K. E. PUTTER, Z. Anorg. Allg. Chem., 127 (1923) 153, 162, (Analoge TaF5-Darstellung).
- 9 W. BILTZ UND E. RAHLFS, Z. Anorg. Allg. Chem., 166 (1927) 351, 370.
- 10 H. F. PRIEST, Inorg. Syn., 3 (1950) 181.
- 11 F. FAIRBROTHER UND W. C. FRITH, J. Chem. Soc., (1951) 3051.
- 12 J. H. JUNKINS, R. L. FARRAR, E. J. BARBER UND H. A. BERNHARDT, J. Am. Chem. Soc., 74 (1952) 3464.
- 13 H. SCHÄFER UND CH. PIETRUCK, Z. Anorg. Allg. Chem., 267 (1951) 174.
- 13a A. J. EDWARDS, J. Chem. Soc., (1964) 3714.
- 14 H. SCHÄFER UND K.-J. NIEHUES, Dissertation Niehues, Münster, 1963.
- 15 H. Schäfer, D. BAUER, W. BECKMANN, R. GERKEN, H. G. NIEDER-VAHRENHOLZ, K.-J. NIE-HUES UND H. SCHOLZ, Naturwissenschaften, 51 (1964) 241.
- 16 R. BELCHER UND S. J. CLARK, Anal. Chim. Acta, 8 (1953) 222.
- 17 R. HOPPE UND W. DÄHNE, Naturwissenschaften, 49 (1962) 254.
- 18 A. D. WESTLAND, R. HOPPE UND S. S. I. KASENO, Z. Anorg. Allg. Chem., im Druck.
- 19 P. EHRLICH, F. PLÖGER UND G. PIETZKA, Z. Anorg. Allg. Chem., 282 (1955) 19.
- 20 E. L. MUETTERTIES UND J. E. CASTLE, J. Inorg. Nucl. Chem., 18 (1961) 148; Privatmitteilung, 1959.
- 21 W. RÜDORFF, Privatmitteilung, 1963.
- 22 H. J. EMELÉUS UND V. GUTMANN, J. Chem. Soc., (1950) 2115.
- 23 L. K. FREVEL UND H. W. RINN, Acta Cryst., 9 (1956) 626.
- 24 H. G. SCHNERING, Habilitations-Schrift, Münster, 1963. 25 A. SIMON, H. G. SCHNERING, H. WÖHRLE UND H. SCHÄFER, Z. Anorg. Allg. Chem., im Druck.
- 26 D. BAUER, H. G. SCHNERING UND H. SCHÄFER, J. Less-Common Metals, 8 (1965) 388-401.
- 27 P. H. VAUGHAN, J. H. STURDIVANT UND L. PAULING, J. Am. Chem. Soc., 72 (1950) 5477.
- 28 H. G. SCHNERING UND D. BAUER; erscheint in Kürze.

J. Less-Common Metals, 9 (1965) 95-104