Dyes and Pigments 119 (2015) 108-115

Contents lists available at ScienceDirect

Dves and Pigments

journal homepage: www.elsevier.com/locate/dyepig

Sulfonamide and urea-based anions chemosensors

Fang Hu, Meijiao Cao, Juanyun Huang, Zhao Chen, Di Wu, Zhiqiang Xu, Sheng Hua Liu^{*}, Jun Yin

Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China

ARTICLE INFO

Article history: Received 23 February 2015 Received in revised form 18 March 2015 Accepted 19 March 2015 Available online 7 April 2015

Keywords: Sulfonamide Urea Hydrogen-bonding donor Cyanide Gel Chemosensors

ABSTRACT

The detection of anions has attracted considerable interest because of their importance in various physiological processes. In this study, two sulfonamide and urea-based compounds (1a and 1b) were successfully developed and their spectroscopic and anion recognition properties were fully investigated. These results showed that: (1) compounds showed high selectivity towards cyanide and fluoride ions in CH₃CN; (2) compounds only exhibited a large change in fluorescence in the presence of cyanide ions in CH_3CN-H_2O (95:5, v/v); and (3) compound **1b** could act as a gel in dimethyl sulfoxide that transforms into a homogeneous solution upon exposure to cyanide ions. This research suggests that sulfonamide and urea can act as hydrogen-bond donors and provides an alternative approach to the design of novel anion chemosensors.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Biologically and environmentally important anions have played a fundamental role in a wide range of organic and inorganic systems, and their application in sensing and anion transport has gained considerable interest [1–21]. In addition to the development of anion chemosensors, the binding between the chemosensor and the anion involves three main types of interaction, which include: 1) electrostatic interactions, 2) reaction-based sensors, 3) hydrogen bonding and 4) metal-ligand interactions [22–24]. Recently, hydrogen bonding has become one of the most frequently used interactions due to their relatively high energy, the significant availability of H-bond donors and their strong and selective binding with anions [25–27]. Among the various anion chemosensors, amides, hydrazides, pyrroles, ureas and thioureas are often used as hydrogen bond donors with both high affinity and selectivity [28–30]. Sulfonamides, which are similar to amides, have always served as a cation and thiol amino acid chemosensor [31–34]. Currently, a research towards anion chemosensors combining sulfonamides has been reported. Therefore, a sulfonamide can also act as a hydrogen-bond donor and form intramolecular or intermolecular hydrogen bonds. It is therefore

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques, unless otherwise stated. Tetrahydrofuran was dried with Na then distilled under vacuum. All

important to design anion chemosensors with novel topological structures.

In this work, two anion chemosensors (1a and 1b), based on both sulfonamide and urea were successfully developed and their spectroscopic and anion recognition properties fully investigated. Both of them show highly selective chemical signaling behavior towards cyanide and fluoride ions in CH₃CN. In particular, both compounds only exhibited a large change in fluorescence in the presence of cyanide ions in CH₃CN-H₂O (95:5, v/v). The signaling process was confirmed using fluorescence spectroscopy and the limit of detection for compounds 1a and 1b was 12 nM and 4 nM, respectively. Significantly, compound 1b could act as a gel in dimethyl sulfoxide that transforms into a homogeneous solution upon exposure to cyanide ions. Density functional theory (DFT) calculations and NMR titration studies suggest that both compounds act as cyanide ion fluorescence chemosensors via hydrogen bonding. Herein, we provide an alternative approach to the design of novel anion chemosensors with high sensitivity and selectivity.

2. Materials and methods

2.1. Experimental

PIĞMËNTS

^{*} Corresponding authors. Tel./fax: +86 027 6786 7725.

E-mail addresses: chshliu@mail.ccnu.edu.cn (S.H. Liu), yinj@mail.ccnu.edu.cn (I. Yin).

reagents and starting materials were obtained from commercial suppliers and were used without further purification. All anions for binding experiments used tetrabutylammonium salts as sources. Anions in CH₃CN were obtained by dissolution of the anions in CH₃CN. Time course for the signaling of cyanide and fluoride ions by compounds 1a and 1b was followed by monitoring the changes in fluorescence intensity of the solutions at 531 nm. The concentrations of the probe 1a or 1b and cvanide or fluoride ion were 10 µM and 10 mM, respectively, in DMSO or a mixture of DMSO and water solution (95:5, v/v). Column chromatography was used on silica gel (200-300 mesh). NMR spectra were analysed using an American Varian Mercury Plus 400 spectrometer (400 MHz) and their chemical shifts are relative to TMS. Elemental analyses (C, H, N) were performed by the Microanalytical Services, College of Chemistry, CCNU. Electrospray (EI) mass spectra were carried on Firmigan Trace. UV–Vis spectra were analysed using a U-3310 UV Spectrophotometer. Fluorescence spectra were analysed using a Fluoromax-P luminescence spectrometer (HORIBA JOBIN YVON INC.).

2.2. Synthesis

2.2.1. Synthesis of all new compounds

2.2.1.1. Synthesis of **3**, **4a**, **4b**, **5a** and **5b**. Compounds **3**, **4a**, **4b**, **5a** and **5b** were prepared by literature methods [35].

2.2.1.2. Synthesis of **6***a*, **6***b*, **7***a* and **7***b*. Compounds **6***a*, **6***b*, **7***a* and **7***b* were prepared by literature methods [36].

2.2.1.3. Synthesis of 8a. A solution of benzene-1, 2-diamine (1.4 mmol) in acetone (50 mL) was cooled in an ice bath under an argon atmosphere and 7a (0.53 mmol) in acetone (20 mL) was added dropwisely to the above solution. This solution was stirred for 2 h at room temperature. The formed precipitate was collected and the crude product was washed with ice acetone, the dried solid was recrystallized from methylene chloride to give a white solid 8a. Yield: 42 mg, 25%. ¹H NMR (400 MHz, DMSO- d_6): δ ppm = 3.60 (s, 3H, CH₃), 3.74 (s, 6H, CH₃), 4.77 (s, 2H, NH₂), 6.57 (d, J = 8 Hz, 1H, Ar-H), 6.74 (d, J = 8 Hz, 1H, Ar-H), 6.80 (s, 2H, Ar-H), 6.83 (d, J = 4 Hz, 1H, Ar–H), 7.32 (d, J = 4 Hz, 1H, Ar–H), 7.69 (s, 1H, urea N-H), 8.73 (s, 1H, urea N-H). ¹³C NMR (100 MHz, DMSO): δ ppm = 55.69, 60.21, 95.75, 115.96, 116.89, 124.01, 124.58, 124.69, 132.23, 136.34, 141.03, 152.91, 153.28. Anal. calcd for C₁₆H₁₉N₃O₄: C, 60.56; H, 6.03; N, 13.24. Found: C, 60.41; H, 5.99; N, 13.20. EI MS m/ *z* = 317.26 [M]; calculated exact mass = 317.14.

2.2.1.4. Synthesis of 8b. A solution of benzene-1, 2-diamine (1.4 mmol) in acetone (50 mL) was cooled in an ice bath under an argon atmosphere and 7b (0.53 mmol) in acetone (20 mL) was added dropwisely to the above solution. This solution was stirred for 2 h at room temperature. The formed precipitate was collected and the crude product was washed with ice acetone, the dried solid was recrystallized from methylene chloride to give a white solid 8b. Yield: 65 mg, 20%. ¹H NMR (400 MHz, DMSO- d_6): δ ppm = 0.84 (d, J = 8 Hz, 9H, CH₃), 1.25 (s, 24H, CH₂), 1.41 (d, J = 4 Hz, 6H, CH₂), 1.60 $(t, J = 4 Hz, 2H, CH_2), 1.69 (t, J = 4 Hz, 4H, CH_2), 3.76 (t, J = 8 Hz, 2H, 2H)$ CH_2), 3.87 (t, J = 8 Hz, 4H, CH_2), 4.73 (s, 2H, NH_2), 6.56 (t, J = 8 Hz, 1H, Ar-H), 6.72 (d, J = 4 Hz, 3H, Ar-H), 6.83 (d, J = 8 Hz, 1H, Ar-H), 7.30 (d, J = 8 Hz, 1H, Ar–H), 7.62 (s, 1H, urea N–H), 8.60 (s 1H, urea N–H). ¹³C NMR (100 MHz, DMSO): δ ppm = 13.87, 22.16, 25.68, 28.83, 29.85, 31.30, 31.38, 55.69, 68.10, 72.40, 96.80, 115.89, 116.79, 123.78, 124.36, 124.73, 131.98, 135.87, 140.85, 152.43, 153.14. Anal. calcd for C₃₇H₆₁N₃O₄: C, 72.63; H, 10.05; N, 6.87. Found: C, 72.42; H, 9.99; N, 6.85. EI MS m/z = 611.71 [M]; calculated exact mass = 611.47.

2.2.1.5. Synthesis of 1a. A solution of 8a (1 mmol) and Et₃N (1.5 mmol) in THF (50 mL) was cooled in an ice bath under an argon atmosphere and 5-(dimethylamino) naphthalene-1-sulfonyl chloride was added dropwisely to the above solution. After the mixture was stirred at room temperature, the mixture was diluted with water and extracted with EtOAc. The organic laver was washed with 2 N HCl. water, saturated NaHCO₃ solution and brine. Then dried over sodium sulfate, upon removed of solvent under reduced pressure and purified on a silica gel column using dichloromethane/methanol (60:1) as the eluent to obtain the target compound as a yellow solid in a yield of 60%, 307 mg. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: $\delta \text{ ppm} = 2.85 (s, 6H, CH_3), 3.76 (s, 6H, CH_3), 3.79$ (s, 3H, CH₃), 6.57–6.63 (m, 4H, Ar–H), 6.75 (t, *J* = 4 Hz, 1H, Ar–H), 7.03-7.14 (m, 3H, Ar-H), 7.37-7.41 (m, 2H, Ar-H), 7.48-7.56 (m, 2H, Ar–H), 8.04 (d, J = 8 Hz, 1H, urea N–H), 8.39 (d, J = 8 Hz, 1H, urea N–H), 8.51 (d, *J* = 8 Hz, 1H, amide N–H). ¹³C NMR (100 MHz, CDCl₃): δ ppm = 45.17, 55.78, 60.82, 97.24, 115.03, 118.26, 122.72, 122.88, 124.09, 126.76, 127.24, 127.72, 128.59, 129.43, 129.96, 130.86, 133.31, 133.90, 134.43, 134.63, 151.77, 152.92, 153.56. Anal. calcd for C₂₈H₃₀N₄O₆S: C, 61.08; H, 5.49; N, 10.18. Found: C, 61.00; H, 5.19; N, 10.28. EI MS m/z = 550.43 [M]; calculated exact mass = 550.19.

2.2.1.6. Synthesis of 1b. A solution of 8b (1 mmol) and Et₃N (1.5 mmol) in THF (50 mL) was cooled in an ice bath under an argon atmosphere and 5-(dimethylamino) naphthalene-1-sulfonyl chloride was added dropwisely to the above solution. After the mixture was stirred at room temperature, the mixture was diluted with water and extracted with EtOAc. The organic laver was washed with 2 N HCl, water, saturated NaHCO₃ solution and brine. Then dried over sodium sulfate, upon removed of solvent under reduced pressure and purified on a silica gel column using dichloromethane/methanol (90:1) as the eluent to obtain the target compound as a pale yellow solid in a yield of 65%, 511 mg. ¹H NMR (400 MHz, CDCl₃): δ ppm = 0.88 (t, J = 4 Hz, 12H, CH₂CH₃), 1.44 (s, 21H, CH₂CH₃), 1.71–1.77 (m, 12H, CH₂CH₃), 2.84 (s, 6H, CH₃), 3.89 (t, J = 4 Hz, 4H, CH₂), 3.96 (t, J = 4 Hz, 2H, CH₂), 6.55 (t, J = 8 Hz, 2H, Ar-H), 6.68 (d, J = 8 Hz, 1H, Ar-H), 6.68 (t, J = 8 Hz, 1H, Ar-H), 7.03-7.09 (m, 2H, Ar-H), 7.11-7.13 (m, 1H, Ar-H), 7.21 (s, 1H, Ar-H), 7.36-7.42 (m, 2H, Ar-H), 7.48-7.55 (m, 2H, Ar-H), 8.02 (d, *J* = 4 Hz, 1H, urea N–H), 8.38 (d, *J* = 8 Hz, 1H, urea N–H), 8.48 (d, J = 8 Hz, 1H, amide N–H). ¹³C NMR (100 MHz, CDCl₃): δ ppm = 14.07, 22.64, 26.09, 29.36, 30.25, 31.81, 45.27, 68.91, 73.50, 98.80, 114.90, 118.47, 122.64, 122.81, 122.99, 124.04, 126.82, 127.24, 127.72, 128.65, 129.55, 130.14, 130.79, 133.89, 134.06, 134.51, 151.81, 153.12, 153.50. Anal. calcd for C49H72N4O6S: C, 69.63; H, 8.59; N, 6.63. Found: C, 69.35; H, 8.39; N, 6.60. EI MS m/z = 844.97 [M]; calculated exact mass = 844.52.

3. Results and discussion

3.1. Synthesis

Sulfonamides, which are similar to amides, serve as a hydrogenbond donor and can easily form intramolecular or intermolecular hydrogen bonds. A dansyl unit was chosen as the fluorophore because of its desirable spectroscopic properties as well as being the smallest available fluorophore. Therefore, the signaling process of the sulfonamide fluorescent dye could be confirmed by fluorescence spectroscopy. Hence, compounds **1a** and **1b** bearing sulfonamide and urea functionality were synthesized as shown in Scheme 1. The syntheses of compounds **1a** and **1b** are outlined in Scheme 2. 5-Isocyanato-1, 2, 3-trimethoxybenzene **7a** was prepared using a Curtius rearrangement reaction [35]. The intermediate 3, 4, 5-trimethoxybenzoyl azide was unstable and easily decomposed into its corresponding nitrene followed by rapid

Scheme 1. The structures of probe 1a and 1b.

migration of the aryl group in the nitrene to produce the desired isocyanate product 7a. Compound 8a was synthesized using a procedure based on a previously described method [27]. Isocyanatobenzene **7a** in acetone was added dropwise to an acetone solution containing excess o-phenylenediamine and the resulting solution was stirred at room temperature for 2 h. The precipitate formed was collected, dried and recrystallized from methanol to give compound **8a** as a white solid in 60% yield. Probe **1a** bearing sulfonamide and urea functionality was synthesized using a previously described method [37]. Dansyl chloride in THF was added dropwise to a solution of **8a** in the THF and NEt₃ and the resulting solution stirred at room temperature for 24 h. The precipitate formed was collected and purified using column chromatography on a silica gel column to obtain the target compound as a vellow solid in 70% vield. The synthesis procedure of **1b** was similar to that used to prepare **1a** in an overall yield of 68%. All new compounds were characterized by ¹H NMR and ¹³C NMR spectroscopy, EI mass spectroscopy and elemental analysis.

3.2. Optical responses according to different solvent systems

With probes 1a and 1b in hand, we first investigated their spectroscopic behavior in CH₃CN upon addition different anions including CH₃CO₂, F⁻, Cl⁻, CN⁻, NO₃⁻, Br⁻, I⁻, H₂PO₄⁻, ClO₄⁻ and HSO₄⁻. No obvious colorimetric change was observed by the naked eye when the anions were added, as shown in Fig. S1. Subsequently, we attempted to study their fluorescence properties. A selective change in fluorescence was observed for compounds 1a and 1b in the presence of F⁻ and CN⁻ ions upon irradiation at an excitation

Fig. 1. (a), (b) Fluorescence changes and (c), (d) Photograph of the Fluorescence color changes of 1a, 1b (10 µm) upon the addition of different anions (10 eq) in CH₃CN (λ = 380 nm, Slit: 5 nm/5 nm).

Fig. 2. (a), (b) Fluorescence changes and (c), (d) Photograph of the Fluorescence color changes of **1a**, **1b** (10 μ m) upon the addition of different anions (10 eq) in CH₃CN-H₂O (95:5, v/ v) (λ = 380 nm, Slit: 5 nm/5 nm).

wavelength of 380 nm. As shown in Fig. 1 and Fig. S2, when an excess of F^- and CN^- ions (10 eq) was added to **1a** and **1b**, obvious fluorescence quenching was observed. Photographs showing the changes in fluorescence color for **1a** and **1b** were in good agreement with the spectroscopic changes. These results suggest that compounds **1a** and **1b** show highly selective chemical signaling behavior towards cyanide and fluoride ions in CH₃CN.

When the solvent system was changed slightly upon the addition of 5% water, the changes in fluorescence were dramatically different for the selectivity of **1a** and **1b** towards F^- and CN^- ions. As presented in Fig. 2 and Fig. S3, the significant enhancement in fluorescence for F^- ions was observed, which could be attributed to the favourable solvation effect of F^- ions with water. In other words, obvious fluorescence quenching was observed with only CN^- ions.

Fig. 3. (a), (b) Fluorescence titrations of **1a** and **1b** with different amounts of CN^- in CH_3CN-H_2O (95:5, v/v); (c), (d) Job's plot of **1a** and **1b** with CN^- ([probe] + [CN^-] = 10 μ m) in CH_3CN-H_2O (95:5, v/v) (λ = 380 nm, Slit: 5 nm/5 nm).

Fig. 4. (a) Single crystal structure of 1a; (b) The H-bond of intermolecular and intramolecular in complex 1a.

Fig. 5. ¹H NMR spectra of 1a and 1b in CD₃CN-D₂O (95:5, v/v) upon addition of CN⁻.

Fig. 6. The possible binding mechanism of 1a and 1b with CN⁻.

Compounds **1a** and **1b** only exhibit a large change in fluorescence with cyanide ions in CH_3CN-H_2O (95:5, v/v), which suggests that the selectivity of **1a** and **1b** towards cyanide ions could be controlled by changing the solvent.

Subsequently, the response of compounds 1a and 1b to CN^- ions in CH_3CN-H_2O (95:5, v/v) was investigated in detail. As presented

in Fig. 3, upon the addition of CN⁻ ions, the fluorescence intensity decreased gradually, the association constant for CN⁻ was calculated to be 1.25×10^5 L mol⁻¹ and the limit of detection of **1a** with CN⁻ ions calculated as 1.255×10^{-8} M. Significantly, the fluorescence quenching at 538 nm was linear with respect to the concentration of CN⁻ ions at low concentrations ($R^2 = 0.986$) (in

Fig. 7. The optimized structures, LUMO, HOMO and their corresponding energy gaps of 1a and 1b with CN⁻ at B3LYP/6–31G^{*} level, by using Gaussian 03 program.

Fig. S4). In order to understand the binding modes with CN⁻, Job plot analyses were obtained. The results indicate that **1a** formed a 1:1 stoichiometric complex with CN⁻. Similar fluorescence changes were also obtained with a solution of **1b** (in Fig. 3). Upon the addition of CN⁻ ions, the fluorescence intensity decreased gradually, the association constant for CN⁻ was calculated to be 2.88×10^{6} L mol⁻¹ and the limit of detection of **1b** with CN⁻ ions was calculated as 0.4×10^{-8} M. Job plot analyses were obtained and the results indicate that **1b** formed a 1:1 stoichiometric complex with CN⁻. In comparison to **1a**, the association constant of **1b** for CN⁻ ions was greater with a lower limit of detection.

3.3. The sensing mechanism

Considering that stoichiometry of the host–guest complex between 1a or 1b and CN^- was 1:1, we tried to understand their binding mechanism with CN⁻. Luckily, a single crystal of compound 1a, for X-ray diffraction analysis, was grown by slow diffusion of hexane into a solution of **1a** in dichloromethane. The solid-state structure shown in Fig. 4 clearly suggests the presence of both intermolecular and intramolecular H-bonds in 1a. The intramolecular hydrogen bond between the hydrogen atom of the sulfonamide group and the oxygen atom of the urea group possessed an N ... H distance of 2.324 Å. The intermolecular hydrogen bond between the hydrogen atoms of the urea group and the oxygen atoms of the methoxy groups has an N ... H distance of 2.131 Å and 2.868 Å, respectively. The naphthalene ring and the trimethoxybenzene ring were nearly in a parallel position with a dihedral angle between them of 6.91°. In addition, the dihedral angle between the naphthalene ring and benzene ring is 53.50° and the dihedral angle between the trimethoxybenzene ring and benzene ring is 53.36°. Subsequently, the partial ¹H NMR spectra of **1a** and

Fig. 8. The response of 1b (6 mg/mL) in DMSO under the cyanide anion.

1b upon addition of CN^- ions in CH_3CN-H_2O (95:5, v/v) were acquired, as shown in Fig. 5. Upon addition of CN^- ions, the resonance of the protons in the urea group of **1a** displayed a downfield shift when compared to those for **1a** in the absence of CN^- ions as a result of the formation of hydrogen bonding between NH groups and CN^- . Similarly, the resonance of the proton in the sulfonamide group of **1a** displayed a slight upfield shift. The resonance of the protons in the naphthalene ring displayed both downfield and upfield shifts, which were similar to those observed for protons on the benzene rings. Similar proton resonance changes were also obtained in the ¹H NMR spectra of **1b** in CH_3CN-H_2O (95:5, v/v) (in Fig. 5). These results suggest that **1a** and **1b** act as cyanide fluorescence sensors via hydrogen bonding. The possible binding mechanism of both compounds with CN^- ions is presented in Fig. 6.

In order to further investigate the binding mode of **1a** or **1b** with $\rm CN^-$ ions, DFT calculations at the B3LYP/6–31G $\!\!\!^*$ level using the Gaussian 03 program were used. As presented in Fig. 7, when compared with the optimized structure for 1a, upon the addition of CN⁻ the cavity becomes smaller after binding with CN⁻. The hydrogen atoms in the urea and sulfonamide group interact with the CN⁻ ion, which was consistent with our experimental observations. The LUMO of **1a**-CN⁻ was distributed over the sulfonamide group and the HOMO of **1a**-CN⁻ was distributed over the urea group. The energy level gap was 3.57 eV. Similarly, when compared with the optimized structure for **1b**, upon the addition of CN⁻, the cavity becomes smaller after binding with CN⁻. The hydrogen atoms in the urea and sulfonamide groups interact with the CN⁻ ion due to the formation of hydrogen bonding between the cyanide ion and NH groups on the urea and sulfonamide units. The LUMO orbital of **1b**-CN⁻ was distributed over the sulfonamide group and the HOMO orbital of **1b**-CN⁻ was distributed over the urea group. The energy level gap was 3.64 eV. So, we propose that the binding mode of the proton on the urea and sulfonamide groups of 1a and 1b with CN⁻ was accomplished, which was consistent with the observations from our ¹H NMR spectroscopy studies.

3.4. The gel properties of 1b

Compound **1b** can act as a gel in DMSO. By placing a small quantity (6.0 mg) of **1b** in a vial, adding DMSO (1.0 mL), heating the suspension until complete dissolution and then allowing the solution to cool to room temperature, an obvious fluorescence quenching of **1b** was observed in DMSO upon the addition 10 eq CN⁻ (Fig. S5). More importantly, the response of gel **1b** towards the cyanide anions in DMSO led to easy-to-discern changes in the fluorescence color. As shown in Fig. 8, the fluorescence color of gel **1b** transformed into a homogeneous solution with obvious fluorescence quenching. These results suggest that **1b** could serve as a cyanide sensor not only in solution but also as a gel.

4. Conclusion

In summary, two sulfonamide bearing compounds were successfully developed and their spectroscopic and anion recognition properties fully investigated. The results showed that both compounds show high selectivity towards cyanide and fluoride ions in CH₃CN. In particular, they only exhibited a large change in fluorescence with cyanide in CH₃CN–H₂O (95:5, v/v). More importantly, compound **1b** can act as a gel in DMSO that can transform into a homogeneous solution upon exposure to cyanide ions. This research suggests that sulfonamide and urea can act as a hydrogenbond donor and provides an alternative approach to the design of novel anion chemosensors. Further work will focus on anion chemosensors with novel topological structures.

Acknowledgments

We acknowledge financial support from the National Natural Science Foundation of China (21272088, 21472059, 21402057), the Program for Academic Leader in Wuhan Municipality (201271130441), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Natural Science Foundation of Hubei Province (2013CFB207) and the Central China Normal University (CCNU14A05009, CCNU14F01003).

Appendix A. Supplementary material

Supplementary data related to this article can be found at doi: 10.1016/j.dyepig.2015.03.036.

References

- [1] For selected reviews, see: Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, et al. Signaling recognition events with fluorescent sensors and switches Chem Rev 1997;97:1515–66.
- [2] For selected reviews, see: Martínez-Máñez R, Sancanón F. Fluorogenic and chromogenic chemosensors and reagents for anions Chem Rev 2003;103: 4419–76.
- [3] For selected reviews, see: Amendola V, Fabbrizzi L, Mangano C, Pallavicini P. Molecular machines based on metal ion translocation Acc Chem Res 2001;34: 488–93.
- [4] For selected reviews, see: Duke RM, Veale EB, Pfeffer FM, Kruger PE, Gunnlaugsson T. Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors Chem Soc Rev 2010;39:3936–53.
- [5] For selected reviews, see: Wenzel M, Hiscock JR, Gale PA. Anion receptor chemistry: highlights from 2010 Chem Soc Rev 2012;41:480–520.
- [6] Busschaert N, Kirby IL, Young S, Coles SJ, Horton PN, Light ME, et al. Squaramides as potent transmembrane anion transporters. Angew Chem Int Ed 2012;51:4426–30.
- [7] For selected reviews, see: Wang F, Wang L, Chen X, Yoon J. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions Chem Soc Rev 2014;43:4312–24.
- [8] For selected reviews, see: MartÍnez-Máñez R, Sancenón F. Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions Coord Chem Rev 2006;250:3081–93.
- [9] For selected reviews, see: Kang NY, Ha HH, Yun SW, Yu YH, Chang YT. Diversity-driven chemical probe development for biomolecules: beyond hypothesis-driven approach Chem Soc Rev 2011;40:3613–26.
- [10] For selected reviews, see: Kaur K, Saini R, Kumar A, Luxami V, Kaur N, Singh P, et al. An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols Coord Chem Rev 2012;256:1992–2028.
- [11] For selected reviews, see: Ding Y, Tang Y, Zhu WH, Xie YS. Fluorescent and colorimetric ion probes based on conjugated oligopyrroles Chem Soc Rev 2015;44:1101–12.
- [12] Chen B, Ding Y, Li X, Zhu WH, Hill JP, Ariga K, et al. Steric hindrance-enforced distortion as a general strategy for the design of fluorescence "turn-on" cyanide probes. Chem Commun 2013;49:10136–8.
- [13] Xie YS, Ding Y, Li X, Wang C, Hill JP, Ariga K, et al. Selective, sensitive and reversible "turn-on" fluorescent cyanide probes based on 2,2'-dipyridylaminoanthracene-Cu²⁺ ensembles. Chem Commun 2012;48:11513–5.
- [14] Ding Y, Li T, Zhu WH, Xie YS. Highly selective colorimetric sensing of cyanide based on formation of dipyrrin adducts. Org Biomol Chem 2012;10:4201-7.
- [15] Wang Q, Xie YS, Ding Y, Li X, Zhu WH. Colorimetric fluoride sensors based on deprotonation of pyrrole-hemiquinone compounds. Chem Commun 2010;46: 3669–71.
- [16] Lee M, Moon JH, Swamy KMK, Jeong Y, Kim G, Choi J, et al. A new bis-pyrene derivative as a selective colorimetric and fluorescent chemosensor for cyanide and fluoride and anion-activated CO₂. Sens Sens Actuat B Chem 2014;199: 369–76.
- [17] Jun EJ, Swamy KMK, Bang H, Kim SJ, Yoon J. Anthracene derivatives bearing thiourea group as fluoride selective fluorescent and colorimetric chemosensors. Tetrahedron Lett 2006;47:3103–6.
- [18] Zhang X, Lee S, Liu Y, Lee M, Yin J, Sessler JL, et al. Anion-activated, thermoreversible gelation system for the capture, release, and visual monitoring of CO₂. Sci Rep 2014;4:4593–601.
- [19] Kim D, Kim G, Nam SG, Yin J, Yoon J. Visualization of endogenous and exogenous hydrogen peroxide using a lysosome-targetable fluorescent probe. Sci Rep 2015;5:8488–94.
- [20] Yu W, Qiang J, Yin J, Kambam S, Wang F, Wang Y, et al. Ammonium-bearing dinuclear copper (II) complex: a highly selective and sensitive colorimetric probe for pyrophosphate. Org Lett 2014;16:2220–3.
- [21] For selected reviews, see: Zhang X, Yin J, Yoon J. Recent advances in development of chiral fluorescent and colorimetric sensors Chem Rev 2014;114: 4918–59.

- [22] For selected reviews, see: Ballester P. Anion binding in covalent and selfassembled molecular capsules Chem Soc Rev 2010;39:3810–30.
- [23] For selected reviews, see: Mercer DJ, Loeb SJ. Metal-based anion receptors: an application of second-sphere coordination Chem Soc Rev 2010;39:3612–20.
- [24] For selected reviews, see: Gale POA. Structural and molecular recognition studies with acyclic anion receptors Acc Chem Res 2006;39:465–75.
- [25] For selected reviews, see: Kang SO, Begum RA, Bowman-James K. Amidebased ligands for anion coordination Angew Chem Int Ed 2006;45:7882–94.
- [26] For selected reviews, see: Dydio P, Lichosyt D, Jurczak J. Amide- and ureafunctionalized pyrroles and benzopyrroles as synthetic, neutral anion receptors Chem Soc Rev 2011;40:2971–85.
- [27] Li Z, Zhang C, Ren YL, Liu SH, Yin J. Amide- and urea-functionalized dithienylethene: synthesis, photochromism, and binding with halide anions. Org Lett 2011;22:6022-5.
- [28] For selected reviews, see: Amendola V, Fabbrizzi L, Mosca L. Anion recognition by hydrogen bonding: urea-based receptors Chem Soc Rev 2010;39: 3889–915.
- [29] For selected reviews, see: Li AF, Wang JH, Wang F, Jiang YB. Anion complexation and sensing using modified urea and thiourea-based receptors Chem Soc Rev 2010;39:3729–45.
- [30] Liu W, Hu F, Chen Z, Li Z, Yin J, Yu GA, et al. Dithienylethenes containing aromatic carbons: synthesis, photochromism and anion recognition. Dyes Pigm 2015;115:190–6.

- [31] For selected reviews, see: Guo Z, Park S, Yoon J, Shin I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications Chem Soc Rev 2014;43:16–29.
- [32] Yin J, Kwon Y, Kim D, Lee D, Kim G, Hu Y, et al. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J Am Chem Soc 2014;136:5351–8.
- [33] For selected reviews, see: Yin J, Hu Y, Yoon J. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH Chem Soc Rev 2014. http://dx.doi.org/10.1039/C4CS00275J.
- [34] Cao M, Jiang L, Hu F, Zhang Y, Yang WC, Liu SH, et al. A dansyl-based fluorescent probe for selectively detecting Cu²⁺ and imaging in living cells. RSC Adv 2015;5:23666–70.
- [35] Achalkumar AS, Hiremath US, Shankar Rao DS, Krishna Prasad S, Yelamaggad CY. Self-assembly of hekates-tris(N-salicylideneaniline)s into columnar structures: synthesis and characterization. J Org Chem 2013;78: 527–44.
- [36] Takahashi R, Nunokawa T, Shibuya T, Tomita T, Tatewaki R, Okada S, et al. Synthesis and solid-state polymerization of butadiyne derivatives with trialkoxyphenylurethane groups. Bull Chem Soc Jpn 2012;85:236–44.
- [37] Muwal PK, Pandey S, Pandey PS. A novel dansyl-appended bile acid receptor for preferential recognition of Hg²⁺. RSC Adv 2014;4:21531–4.