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Aromatic allylic benzoates can be selectively transformed to the corresponding benzoate eliminated ole-
fin by the action of samarium diiodide. Depending on the substrate and the elimination conditions, high
selectivity for the non-conjugated alkene product can be achieved.

� 2013 Elsevier Ltd. All rights reserved.
R2

ryl
Recently our group has had an interest in non-traditional
reactions of acyloxysulfones of type 1 (Scheme 1).1 Typically once
compounds of this type are formed, both the acyl and sulfonyl
groups are immediately eliminated in order to complete the
powerful Julia–Lythgoe olefination process.2 Historically, this
elimination was performed with sodium–mercury amalgam (Na/
Hg) but has more recently been described using samarium diiodide
(SmI2).3 We have shown that the mechanism by which samarium-
mediated acyloxysulfone elimination occurs is highly dependent
on the substrate structure.4 Specifically, single-electron transfer
(SET) can occur in to either the sulfone or benzoyl (Bz) groups
and is likely reversible. Subsequent carbon radical formation is
rate-determining and it is the relative stability of the resulting
radical that then determines whether the sulfonyl or benzoyl
group is lost first.

This rate-dependence on substrate structure can be exploited
for chemoselective samarium-mediated eliminations of bis-acyl-
oxysulfone substrates. For instance elimination of 2 gave diene 3
containing an intact acyloxysulfone, presumably proceeding
through the resonance stabilized intermediate 4 (Scheme 2).

For a similar investigation bis-benzoyloxysulfone 5 was pre-
pared by the addition of the lithium dianion generated from 6 to
benzaldehyde followed by acylation with benzoyl chloride as out-
lined in Scheme 3.5 It was anticipated that treatment of 5 with
SmI2 would result in chemoselective elimination of the benzylic
benzoyl group and formation of carbon radical 7. This intermediate
would then decompose to generate allylic benzoate 8. Unexpect-
edly, it was not 8 that was obtained but rather the fully eliminated
non-conjugated alkene product 9.6 Herein we describe additional
experiments aimed at understanding the mechanism of this appar-
ation.
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ent elimination/isomerization process with the goal of developing
a useful method for the preparation of synthetically challenging
non-conjugated olefinic systems.

Upon closer inspection it is perhaps not surprising that 8 was
not obtained from the reaction of 5. Following chemoselective
elimination generating 8, further samarium-mediated elimination
of the benzoyl group would now give a resonance stabilized radical
intermediate 10 (Scheme 4). Selectivity for the formation of 9 from
this intermediate as opposed to the corresponding conjugated iso-
mer 11 was however not immediately clear.

To test the intermediacy of 8 in the production of 9 from 5,
analogue 12 was prepared by the addition of n-butyllithium
(n-BuLi) to cinnamaldehyde followed by trapping with benzoyl-
chloride (Scheme 5). Treatment of 12 to elimination conditions
using SmI2 and DMPU gave 137 along with minor amounts of the
conjugated isomer in essentially the same ratio as 9 to 11 obtained
from compound 5 (Scheme 4). This is consistent with a reaction
pathway for 5 proceeding by first chemoselective elimination to
generate 8 and subsequent elimination/isomerization affording 9.

Placement of the benzoyl group at the benzylic position as in 14
or the reaction using SmI2 and H2O8 gave comparable results in
terms of both yield and ratio of non- to conjugated products
(Scheme 6).9 When the reaction was performed with 12 or 14 in
D2O the major product for each was the monodeuterated adduct
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Scheme 5. Samarium allylic benzoate elimination/isomerization.
15, suggestive that both substrates converge to the same organosa-
marium intermediate of type 16.10

Regarding the selectivity for formation of the non-conjugated
olefin product, previous work from Yoshida et al. using a palladium
tetrakis triphenylphosphine (Pd(PPh3)4)/SmI2 system suggested
that this is primarily due to steric reasons.11 This group reported
that the reduction of allylic phosphonate 17 with Pd(Ph3)4/SmI2

and H2O gave primarily the c-isomer via internal delivery of a pro-
ton from a sterically preferred organosamarium–H2O complex 18
(Scheme 7). Switching to tert-butanol (tBuOH) as the proton source
leads to the a-product as the major isomer proceeding through a
presumably open protonation mechanism.

In analogy, the results in Schemes 4–6 can be explained as a ste-
ric preference for intermediate 16 to exist as the D1,2-structure
(Scheme 8). Internal protonation with H2O (upon quench when
using DMPU under anhydrous conditions) would then give com-
pounds 9 or 13.

The use of tBuOH in place of H2O with compound 12 resulted in
an erosion of this selectivity consistent with the observations of
Yoshida et al. (Scheme 9). The ratio of products could also be af-
fected by manipulating the substrate structure. For instance reduc-
tion of the tert-butyl substrate 19 using SmI2 with DMPU, H2O or
tBuOH gave little product selectivity perhaps due to minimal pref-
erence for either the D1,2- or D2,3-organosamarium intermediate.
For each, the product was obtained as a mixture with what have
been tentatively assigned as radical dimerization adducts conceiv-
ably formed as the rate of protonation is slowed for this sterically
encumbered substrate.12

The present method thus appears to be in line with the results
described by Yoshida et al. In order to directly compare the two
reactions, compounds 2013 and 2114 were prepared and subjected
to samarium elimination conditions15 (Scheme 10). The reactions
with SmI2/H2O gave a complex mixture of products. However with
SmI2/tBuOH both 20 and 21 were converted primarily to allylben-
zene with identical yield and selectivity, again consistent that each
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isomer converges to the same organosamarium intermediate.
Interestingly, this is not the major isomer that would be predicted
based on results from Yoshida et al. palladium-catalyzed system
using tBuOH as the proton source (Ref. Scheme 7).

In order to further investigate this apparent reversal in selectiv-
ity, trimethylbenzyl substituted allylic benzoate 2216 was prepared
and treated with SmI2 in the presence of both H2O and tBuOH
(Scheme 11). Irrespective of the proton source, high levels of selec-
tivity for the c-isomer 2317 were obtained. Reactions of 22 also
tended to be much cleaner and higher yielding when compared
to the unsubstituted benzene derivative 20. Efforts to explain these
substrate and proton source effects are ongoing.

While mechanistic aspects of this reaction are still under inves-
tigation, the ease of substrate preparation, mild reaction condi-
tions, along with good yields and selectivity particularly for
polysubstituted aromatic terminal non-conjugated olefins make
this an attractive synthetic method. As an example, addition of
vinylmagnesium bromide to commercial aldehydes 24 and 25 fol-
lowed by in situ acylation with benzoyl chloride gave 26 and 27,
respectively, in excellent yield (Scheme 12). Treatment of 26 with
SmI2 and tBuOH cleanly afforded compound 28 in 66% yield as an
80:20 mixture in favor of the non-conjugated isomer. Switching
to H2O as the proton source gave essentially the same result with
slight enhancement for isomer 28. Similarly 27 could be converted
to 29 in excellent yield albeit with lower selectivity for the
c-isomer when compared to 28. It is noteworthy that in each case
the aryl bromide was untouched by these reducing conditions.
Together compounds 28 and 29 represent both properly substi-
tuted aromatic rings in the medicinally important natural product
honokiol.18

In conclusion, during the course of investigations on chemose-
lective acyloxysulfone eliminations we have discovered a novel
samarium-mediated isomerization/elimination of aromatic allylic
benzoates. The reaction gives predominantly the non-conjugated
alkene product and the selectivity can be controlled by both proton
source and substrate structure. These selectivities can in part be
rationalized by steric considerations of a proposed organosamari-
um intermediate that is consistent with a model put forth for a
related palladium-catalyzed samarium elimination process.
However results for the production of terminal olefin products
are not entirely congruent with this previous work suggesting that
some aspect of the present method is unique which is currently
under investigation. This protocol allowed for the concise synthesis
of the two differentially substituted aromatic subunits of the
natural product honokiol. Current efforts are aimed at better
understanding the mechanism and the controlling factors leading
to conjugated versus non-conjugated products.
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