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Abstract : A convergent synthesis of the ribosyl-diazepanone core of liposidomycins, new nucleoside 
antibiotics, has been carded out via enantiomerically pure epoxide and a-ribosyl aminoacid, chiral key 
intermediates obtained from L-ascorbic acid and D-ribose, respectively. 
© 1997 Published by Elsevier Science Ltd. All rights reserved. 

After our prel iminary results 1 concerning the synthesis of  the diazepanone core of l iposidomycins,  new 

nuc leos ide  ant ib io t ics  i nvo lved  in inhib i t ion  of  bacter ia l  pep t idog lycan  synthes is ,  2 which  demonst ra ted  the 

relevance of our synthetic approach, we next turned our attention to the access to enantiopure ribosyl-diazepanone : 
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The two proposed key steps are the regiospecific nucleophilic opening of a chiral  epoxide by the amino 

group of an ~- t ibosyl  aminoacid tbr  the NI ' -C7 '  bond creation and cyclization by a peptidic coupling reaction at 

the migin of the lactam (C3"-N4' bond). 
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If a few approaches to the 1,4-diazepan-3-one ring have been described,I, 3 only one stereoselective 

synthesis of a 2-ribosyl-3,4,5,6-tetrahydro-2H-1,4-diazepin-3-one was carried out. 4 The absolute and relative 

configurations at C5, C2', C5" and C6' are still unkown. However according to Ubukata and coll., 4 NMR data 

suggested a 5S ,2 'S  configuration. Furthermore, concerning C5' and C6', comparison of coupling constants 

obtained by Knapp and coll. 3a for cis and trans 5,6-disubstituted-1,4-diazepan-3-ones (J = 2.2 and 5.2 Hz, 

respectively) with that mentioned for the uridinyl-diazepanone (J = 4.8 Hz), 2c obtained by methanolysis of 

fiposidomycins B and C, seems to be in favor of a trans relative configuration for the natural product. In the light 

of these stereochemical considerations and taking the hypothesis that the biosynthetic route to liposidomycins 

involves naturally occulting aminoacids, we postulated that the absolute configuration of chiral centers of the 

target molecule and that of the key synthons was as indicated below : 
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Enandomerica]ly pure (2R,3R)-3-azido-4-tert-butyldiphenylsilyloxy-1,2-epoxybutane 2 was prepared from 

L-ascorbic acid (Scheme 1). Selective protection of the primary alcohol function of the diol 45 as its TBDPS 

derivative cleanly occurred and was followed by introduction of the azido group with total inversion of 

configuration in two steps: first, activation of the secondary alcohol as its triflate derivative and then nucleophilic 

substitution by tetramethylguanidinium azide (TMGA) 6 which afforded the azide 5 (81% yield). Acidic 

hydrolysis of the acetonide was followed by Mitsunobu reaction (triphenylphosphine-diisopropyl 

azodicarboxylate) on the resulting diol to yield the azido epoxide 2 (51%). 

Scheme 1 
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a) TBDPSC1, ImH, DMF, 97%. b) Tf20, 2,6-1utidine, CH2C12, -78°C then TMGA excess -78°C to 
20°C, 81%. c) TFA, H20,THF, 0°C, 65%. d) PPh 3, DIAD, 130°C, 0.01 mmHg, 79%. 

The key step of the (x-ribosyl aminoacid synthesis (Scheme 2) was the diastereoselective condensation of 

ethyl isocyanoacetate on enantiomerically pure aldehyde 6 obtained from D-ribose. The obtention of the oxazoline 

intermediates which can be isomerized into the thermodynamically more stable trans isomers should ensure the 

major formation of the threo isomers. 7 Thus, the hygroscopic aldehyde 6 was prepared in 48% overall yield 

through the protection of both anomeric hydroxyl and secondary alcohol functions according to Leonard and 

coll. 8 followed by oxidation of the primary alcohol function under Moffat conditions. 9 As expected, condensation 

of ethyl isocyanoacetate on aldehyde 6 in THF in the presence of triethylamine led to a 7:3 mixture of trans 

oxazolines 7a and 7b (3J4,5 = 5.2 and 7.2 Hz, respectively).10 The corresponding N-methyl formamides $a and 
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8h (ratio 7:3, respect.) were then obtained in 76% overall yield by successive treatment with a solution of 

trimethyloxonium tetrafluoroborate in dichloromethane and hydrolysis with an aqueous solution of sodium 

hydrogenocarbonate.l 1 Basic hydrolysis with 2N aqueous KOH afforded c~-ribosyl aminoacids 3a and 3h 12 in 

50% yield after purification and separation by silica gel flash chromatography. Absolute configuration at the 

newly created chiral center C6 of both diastereomefic aminoacids was determined by the Cotton effect, 13 and that 

of C5 was then deduced from the trans relation observed in oxazolines 7a and 7h. Thus the major isomer 3a was 

revealed to be 5R,6R and the minor one, 3b, 5S,6S which con'esponds to that of the supposed natural product. 
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a) Me.zC(OMe) 2, MezCO, MeOH, HClg, 75%. b) i. DMSO, DCC, pyridine, H3PO4, ii. (COaH) z, 60%. 
c) CNCH2CO2Et, Et3N, THF. d) i. Me3OBF4,CH2C12, ii. NaHCO3aq., 76% from 6. e) 2N aqueous 
KOH, 80°C, 50%. 

Access to the ribosyl diazepanone 1 (Scheme 3) required first condensation of the ribosyl aminoacid 3b on 

to the epoxide 2 which cleanly occurred in the presence of sodium tert-butanolate at 100°C for 48 h and was 

followed by reduction of the azide in the presence of palladium on charcoal in methanol to afford the amine 9 

(65% overall yield). Intramolecular peptidic coupling with an excess of DCC 3c in CH2C12 at 0°C led to the 

expected lactam 10 (35% isolated yield) which was then desilylated to give the target fibosyl diazepanone 1.14 

Scheme 3 
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a) tBuOH, Nail,  48h, 100°C. b) H 2, Pd/C 10%, MeOH, 65%. c) DCC excess, CH2C1 z, 0°C, 15h, 35%. 
d) TBAF, THF. 
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In conclusion, this convergent synthesis offers a rapid access to the 2-ribosyl-l,4-diazepan-3-one 

encountered in liposidomycins through regiospecific opening of an homochiral epoxide obtained from L-ascorbic 

acid by an enantiopure ribosyl aminoacid prepared from D-ribose. Work is in progress to improve the reaction 

conditions of the ribosyl aminoacid preparation, as well as to disclose other strategies for its synthesis. 

An interesting feature of the way proposed is that starting from either L-ascorbic or D-isoascorbic acids, 

various configurations are easily available for the epoxide synthon, in case the retained configuration for the 

diazepanone moiety did not happen to be the natural one, other absolute configurations at C5',C6' could be readily 

accessible. 
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