

Surface Science 507-510 (2002) 672-677

www.elsevier.com/locate/susc

Electronic structure of TiO₂ monolayers grown on Al₂O₃ and MgO studied by resonant photoemission spectroscopy

M. Sánchez-Agudo^a, L. Soriano^{a,*}, C. Quirós^a, L. Roca^{b,c}, V. Pérez-Dieste^{b,c}, J.M. Sanz^a

 ^a Departamento de Física Aplicada, Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
^b Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
^c LURE, Université Paris-Sud, Bâtiment 209d, F-91405 Orsav, France

Abstract

The electronic structure of the $TiO_2-Al_2O_3$ and TiO_2-MgO interfaces have been studied using resonant photoemission spectroscopy. To this end, respective TiO_2 monolayers have been grown on both substrates. Valence band photoemission spectra through the Ti $2p \rightarrow 3d$ absorption edge, i.e. 455-470 eV, have been measured. The results have been analysed in terms of the constant initial state curves. On-resonance minus off-resonance difference spectra have been used to separate the contribution to the valence band of the Ti 3d states for both monolayers. From the comparison of the results obtained for each interface it is inferred that the covalent-ionic character of the substrate affects the Ti–O bonding at the interface and the Ti 3d states' contribution to the valence band. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Near edge extended X-ray absorption fine structure (NEXAFS); Photoemission (total yield); Interface states; Aluminum oxide; Titanium oxide; Coatings; Insulating films

1. Introduction

During the last few years a big effort has been made in order to investigate the oxide–oxide interfaces. Previously, we have published the study of the TiO_2 –SiO₂ interface [1] by means of X-ray absorption spectroscopy (XAS). It was shown that strong overlayer–support interaction exists at the interface. Similar effects were observed in the study of the TiO_2 –Al₂O₃ interface [2], although in this

E-mail address: l.soriano@uam.es (L. Soriano).

case the effect was slightly weaker, suggesting that the covalence of the substrate was a key parameter to understand the mechanism of such interaction. In fact, in the case of the Al_2O_3 substrate, we have shown that the strong covalent character of the Al–O bonding leads to a decrease of the covalence of the Ti–O bonding at the interface [3]. Therefore, the study of the growth of TiO₂ on a more ionic oxide like MgO seems well justified. In this work we present a comparative study of respective TiO₂ monolayers grown on two substrates such as Al_2O_3 and MgO, which clearly differ in ionicity.

Similar effects to those observed in the unoccupied electronic states, as shown by the XAS spectra, should also be reflected in the occupied

^{*}Corresponding author. Tel.: +34-913974192; fax: +34-913973969.

states in the valence band. To investigate this, we have used resonant photoemission spectroscopy (RPES), which has already proved its potential in the analysis of interfaces [3]. RPES has been widely used in the analysis of the electronic structure of bulk compounds. In particular, RPES has been used to isolate the cationic contribution to the valence band in transition metal compounds. More details can be found in the review by Davis [4]. TiO₂ has been previously characterised by resonant photoemission at the $3p \rightarrow 3d$ edge [5–7] and at the $2p \rightarrow 3d$ edge [8].

In this work we present and discuss the Ti 2p XAS spectra for respective TiO_2 monolayers on Al_2O_3 and MgO. They are compared to the spectra of a bulk TiO_2 thin film. Then, we present the experimental valence band RPES through the Ti $2p \rightarrow 3d$ absorption edge of the respective TiO_2 monolayers on Al_2O_3 and MgO. The RPES spectra are analysed in terms of constant initial state curves and on-resonance minus off-resonance difference spectra.

2. Experimental

The Al₂O₃ substrate was prepared by thermal oxidation of a high purity (99.999%) aluminium foil at 350 °C for 30 min in an oxygen atmosphere (1×10^{-5} Torr). The MgO substrate was prepared by reactive evaporation of Mg in an oxygen atmosphere (1×10^{-5} Torr) at room temperature. TiO₂ was grown by reactive evaporation of Ti in an oxygen atmosphere (5×10^{-6} Torr) at room temperature. The deposition rate was low enough to allow a good control of the coverage. For long evaporation time, a 200 Å thick TiO₂ film was grown. Then, it was submitted to thermal annealing at 300 °C in an oxygen atmosphere (5×10^{-6} Torr) for 30 min.

The photoemission measurements were performed at the SU8 beam-line of the SuperAco storage ring at LURE. This beam-line is equipped with a plane grating-spherical mirror monochromator (PGM-SM). The electron analyser was an angle resolved analyser from VSW working at constant pass energy. The exit slits were adjusted in order to obtain an acceptable count rate and resolution. The spectra were normalised to the incident I_0 current as measured from a gold grid located at the entrance of the chamber to correct the beam intensity loss. The absolute energy scale was calibrated according to the Fermi level of a Cu sample.

3. Results and discussion

3.1. The Ti 2p XAS spectra

The Ti 2p XAS spectra are usually interpreted in terms of atomic multiplets projected in a crystal field with the corresponding symmetry. These spectra are site and symmetry selective and very sensitive to the local environment of the atoms. According to this, the Ti 2p XAS spectra of a monolayer should reflect the local environment of the Ti atoms located at the interface and consequently the possible electronic interaction between overlayer and substrate. This is clearly illustrated in Fig. 1, where the spectra of the reference TiO_2 thin film grown at room temperature (b) and after heating at 300 °C (a) are shown in comparison with those of the respective TiO₂ monolayers grown on MgO (c) and Al_2O_3 (d). The spectra have been normalised to their maximum intensity for comparison purposes.

The spectrum of the TiO₂ thin film after annealing at 300 °C (Fig. 1a) agrees well with other published spectra for TiO₂ [9,10]. This spectrum has already been interpreted in the literature and has been theoretically simulated in terms of multiplets using a crystal field (10 Dq) of 1.8 eV [10]. The spectrum corresponding to the TiO₂ thin film grown at room temperature (Fig. 1b) shows significant differences with respect to the previous one. These differences can be explained in terms of disorder of the TiO₂ thin film grown at room temperature [2].

On the other hand, the spectra of the respective TiO_2 monolayers grown on MgO and Al_2O_3 clearly differ from each other. Whereas the spectrum of the TiO_2 monolayer on MgO (Fig. 1c) resembles that of the as-grown TiO_2 thin film, the spectrum of the TiO_2 monolayer on Al_2O_3 (Fig. 1d) differs significantly from the others showing

Fig. 1. The Ti 2p XAS spectra of: (a) TiO₂ thin film grown at room temperature and annealed at 300 °C in an oxygen atmosphere (see text); (b) TiO₂ thin film grown at room temperature; (c) TiO₂ monolayer grown on MgO; solid line represents the $2p \rightarrow 3d$ atomic multiplet calculation for Ti⁴⁺ in octahedral symmetry with a crystal field 10 Dq = 1.3 eV; (d) TiO₂ monolayer grown on Al₂O₃.

only two main peaks with weaker structures at the low energy side of the main peaks. This spectrum has already been explained in terms of Ti⁴⁺ species with an important reduction of the crystal field of the Ti atoms located at the Al₂O₃ surface (10 Dq \sim 1.0 eV) with respect to bulk TiO₂ (10 $Dq \sim 1.8 \text{ eV}$ [2]. In the case of the TiO₂ monolayer on MgO the crystal field of the Ti atoms at the interface, as inferred from the comparison of the Ti 2p XAS spectrum with atomic multiplet calculations [10], is 1.3 eV (Fig. 1c). This value is in between those of bulk TiO₂ and the TiO₂ monolayer on Al_2O_3 . It is important to note here that these spectra cannot be interpreted in terms of other oxidation states, i.e. $Ti^{3\hat{+}}$ and $Ti^{2+},$ as they have no resemblance at all with experimental XAS spectra for Ti₂O₃ and TiO [11] and existing multiplet calculation for Ti atoms in d^1 and d^2 symmetries [12]. The presence of metallic Ti can also be discarded as otherwise the spectra should be broader and shifted in energy as it is shown by experimental data for metallic Ti [13]. Therefore, the Ti 2p XAS spectra reveal that the more covalent Al_2O_3 substrate strongly affects the Ti atoms of the TiO₂ monolayer by reducing significantly the crystal field whereas the effect of the more ionic MgO substrate is weaker.

3.2. The valence band resonant photoemission spectra

Fig. 2 shows the valence band resonant photoemission spectra through the Ti $2p \rightarrow 3d$ thresh-

Fig. 2. The valence band resonant photoemission spectra as a function of the photon energy for a TiO_2 monolayer grown on MgO (bottom) and a TiO_2 monolayer grown on Al_2O_3 (top).

old, i.e. 456-467 eV energy range for the respective TiO_2 monolayer on Al_2O_3 (top) and on MgO (bottom). Both valence bands are different because their shapes are nearly those of the substrates, i.e. Al_2O_3 and MgO, respectively. In both cases, the valence band is formed by two main structures labelled as A and B. These bands come from the hybridisation of the O 2p states with Al 2p and Mg 2p states, respectively, forming the σ (A) and π (B) bands in the valence band. Also the O 2p and Ti 3d states of the TiO_2 monolayer are present in these spectra. For the TiO_2 monolayer on Al_2O_3 we can observe important changes in intensity of the structures of the valence band, specially that labelled as B (π band). For the TiO₂ monolayer on MgO the changes in intensity of these structures seem to be weaker than those for $TiO_2-Al_2O_3$. In both cases, these changes in intensity correspond to a resonant photoemission process from the TiO_2 monolayer. This is an example of a Fano type resonance mechanism involving the Ti $2p^63d^0 \rightarrow$ 2p⁵3d^{1*} excited state which occurs when the incident photon energy varies through the Ti $2p \rightarrow$ 3d threshold. We have also performed resonant photoemission measurements of the substrates confirming that no resonance phenomena take place in this energy range for Al₂O₃ or MgO.

Fig. 3 shows the constant initial states (CIS) curves for the respective TiO₂ monolayers and for the TiO₂ thin film annealed at 300 °C for comparison. The CIS curves have been generated by plotting the intensities of the main features A and B of the valence band as a function of the photon energy. The values of the two, A and B, features taken for each sample are: 8.5 and 5.2 eV for the Al₂O₃ substrate, 8.6 and 6.0 for the MgO substrate and 8.0 and 5.7 eV for the TiO₂ thin film, respectively. In the case of the TiO_2 thin film, the two main structures of the valence band present the same resonant behaviour. This is due to the fact that Ti 3d states are distributed throughout the whole valence band in agreement with the density of states (DOS) calculated by Munnix and Schmeits [14] for bulk TiO₂. Our CIS curves coincide with those reported by Prince et al. [8] for a TiO₂ single crystal which is a good indication of the quality of our TiO_2 thin film. The CIS curves for the TiO₂ monolayer on MgO in Fig. 3 also

text.

show that both structures A and B have the same resonant behaviour, i.e. both structures resonate at the same energies. However, for the TiO₂ monolayer on Al₂O₃ only the lower binding energy feature (B) of the valence band, i.e. the π band, resonates. This clearly indicates that the Ti 3d states in the valence band for the TiO₂-Al₂O₃ monolayer are distributed in a narrower energy region. This is consistent with a reduction of the covalence of the Ti-O bonding in the monolayer due to the more covalent character of the Al_2O_3 substrate [3]. In general, and as expected, there is a good agreement between XAS spectra in Fig. 1 and CIS curves in Fig. 3 for the corresponding monolayer.

PHOTON ENERGY (eV) Fig. 3. CIS curves for a TiO₂ thin film annealed at 300 °C (top); TiO₂ monolayer grown on MgO (middle); and TiO₂ monolayer grown on Al₂O₃ (bottom). Open circles (A) indicate the intensity of the high binding energy structure of the valence band and solid circles (B) indicate the intensity of the low binding energy side of the valence band. For explanation see

In order to separate the Ti 3d contribution to the valence band, the spectra have been analysed in terms of on-resonance minus off-resonance difference spectra. This method has been commonly used in the literature for transition metal compounds [4]. Fig. 4 shows the on-resonance minus off-resonance difference spectra of the TiO₂ thin film after annealing at 300 °C as well as those of the monolayers of TiO₂ grown on both substrates. In the case of the TiO₂ thin film we have depicted the Ti 3d DOS (solid line) calculated in [14]. As mentioned above, it is seen that the Ti 3d states are

Fig. 4. On-resonance (solid circles) minus off-resonance (open circles) difference spectra (crossed circles) for a TiO_2 thin film annealed at 300 °C (top); TiO_2 monolayer grown on MgO (middle); and TiO_2 monolayer grown on Al₂O₃ (bottom). Solid line shows the occupied Ti 3d states as calculated in [14] for bulk TiO_2 . Dotted lines are plotted as an eye guide.

distributed through the whole valence band with a higher weight of the high binding energy side (σ band) in agreement with the difference spectrum (crossed circles).

In the case of the TiO_2 monolayer on MgO, the difference spectrum is also distributed throughout the whole valence band. This spectrum roughly reproduces that of the TiO₂ thin film, although the structures are broader and the spectral weight is slightly shifted at lower binding energies with respect to that of the thin film. This is consistent with the small decrease of the crystal field for this monolayer (1.3 eV) with respect to bulk TiO_2 (1.8 eV) observed in the XAS spectra. However, for the TiO₂ monolayer on Al₂O₃ the Ti 3d states are mainly distributed at the lower binding energy feature of the valence band (6.0 eV). This significant change in the distribution of the Ti 3d states is also consistent with the lowering of the crystal field (down to 1.0 eV) observed in the Ti 2p XAS spectrum of this monolayer.

These results confirm that not only the unoccupied electronic states of the TiO_2 monolayer, as observed by XAS, are affected by the presence of the substrate but also the occupied states in the valence band as observed by RPES. It is clear that whereas in the case of more ionic MgO substrate the results obtained are closer to those obtained in bulk TiO_2 , in the case of the more covalent substrate, i.e. Al_2O_3 , the electronic structure of the TiO_2 monolayer is strongly affected by the substrate.

4. Conclusions

We have made a comparative study of the electronic structure of the $TiO_2-Al_2O_3$ and TiO-MgO interfaces by means of the Ti 2p XAS and the valence band resonant photoemission spectra. From the comparison of the results obtained for the respective TiO_2 monolayers on Al_2O_3 and MgO it is inferred that the more covalent Al_2O_3 substrate leads to a reduction of the covalence in the bonding of the TiO_2 overlayer. This covalence reduction of the crystal field on the Ti^{4+} ions and a different distribution of the Ti 3d states in the

valence band. However, when the substrate is a more ionic oxide like MgO, the results are closer to those obtained for a TiO_2 thin film.

Acknowledgements

This work has been financially supported by the MCYT of Spain (contract number BFM2000-0023) and by the European Community under the Access to Research Infrastructure action of the Improving Human Potential Program at LURE. We also thank the staff of LURE and J.A. Rodríguez from UAM for technical support.

References

- L. Soriano, G.G. Fuentes, C. Quirós, J.F. Trigo, J.M. Sanz, P.R. Bressler, A.R. González-Elipe, Langmuir 16 (2000) 7066.
- [2] M. Sánchez-Agudo, L. Soriano, C. Quirós, J. Avila, J.M. Sanz, Surf. Sci. 482–485 (2001) 470.

- [3] M. Sánchez-Agudo, L. Soriano, C. Quirós, M. Abbate, L. Roca, J. Avila, J.M. Sanz, Langmuir 17 (2001) 7339.
- [4] L.C. Davis, J. Appl. Phys. 59 (1986) R25.
- [5] Z. Zhang, S.P. Jeng, V.E. Henrich, Phys. Rev. B 43 (1991) 12004.
- [6] R. Heise, R. Courths, S. Witzel, Solid State Commun. 84 (1992) 599.
- [7] J. Nerlov, Q. Ge, P.J. Møller, Surf. Sci. 348 (1996) 28.
- [8] K.C. Prince, V.R. Dhanak, P. Finetti, J.F. Walsh, R. Davis, C.A. Muryn, H.S. Dhariwal, G. Thornton, G. van der Laan, Phys. Rev. B 55 (1997) 9520.
- [9] R. Brydson, H. Sauer, W. Engel, J.M. Thomas, E. Zeitler, N. Kosugi, H. Kuroda, J. Phys. Condens. Matter 1 (1989) 797.
- [10] F.M.F. de Groot, J.C. Fuggle, B.T. Thole, G.A. Sawatzky, Phys. Rev. B 41 (1990) 928.
- [11] V.S. Lusvardi, M.A. Barteau, J.G. Chen, J. Eng Jr., A.V. Teplyakov, Surf. Sci. 397 (1998) 237.
- [12] F.M.F. de Groot, J.C. Fuggle, B.T. Thole, G.A. Sawatzky, Phys. Rev. B 42 (1990) 5459.
- [13] L. Soriano, M. Abbate, F.M.F. de Groot, D. Alders, J.C. Fuggle, S. Hofmann, H. Petersen, W. Braun, Surf. Interface Anal. 20 (1993) 21.
- [14] S. Munnix, M. Schmeits, Phys. Rev. B 30 (1984) 2202.