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ABSTRACT:  15 

The reliance on one drug, praziquantel, to treat the parasitic disease schistosomiasis in 16 

millions of people a year shows the need to further develop a pipeline of new drugs to 17 

treat this disease. Recently, an antimalarial quinoxaline derivative (MMV007204) from 18 

the Medicines for Malaria Venture (MMV) Malaria Box demonstrated promise against 19 

Schistosoma mansoni. In this study, 47 synthesized compounds containing quinoxaline 20 

moieties were first assayed against the larval stage of this parasite, newly transformed 21 

schistosomula (NTS); of these, 16 killed over 70% NTS at 10 µM. Further testing 22 

against NTS and adult S. mansoni yielded three compounds with 50% inhibitory 23 
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concentrations (IC50s) of ≤ 0.31 µM against adult S. mansoni and selectivity indices of ≥ 24 

8.9. Administration of these compounds as a single oral dose of 400 mg/kg of body 25 

weight to S. mansoni-infected mice yielded only moderate worm burden reduction 26 

(WBR) (9.3% – 46.3%). The discrepancy between these compounds’ good in vitro 27 

activities and their poor in vivo activities indicates that optimization of their 28 

pharmacokinetic properties may yield compounds with greater bioavailabilities and 29 

better antischistosomiasis activities in vivo. 30 

 31 

INTRODUCTION 32 

Schistosomiasis is a parasitic disease affecting over 200 million people, mostly in the 33 

developing world, caused by parasites of the Schistosoma genus, primarily S. mansoni, 34 

S. haematobium, and S. japonicum. Though this disease is responsible for a 35 

considerable health burden (1), its treatment thus far has relied on only one drug, the 36 

tetrahydroisoquinoline praziquantel. While this drug has proven safe, inexpensive at 37 

scale and efficacious, the sheer scale of its use as an antiparasitic suggests that drug 38 

resistance may eventually become a concern (2-4). 39 

 40 

For this reason, the development of new drugs effective against the parasite is a clear 41 

and pressing need. One of us has looked to antimalarial drugs for possible new leads 42 

(5), and screened the Medicines for Malaria Venture (MMV) Malaria Box (6) of 400 43 

commercially available compounds for antischistosomal activity against both newly 44 

transformed schistosomula (NTS) and adult worms (7). In that work, two of the most 45 

active compounds, both in vitro and in vivo in a mouse model, were the N,N’-diarylurea 46 
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1 (MMV665852) and the 2,3-dianilinoquinoxaline 2 (MMV007204) (Figure 1). Further 47 

exploration of the former led to the development of several analogs, including N-48 

phenylbenzamides and N-arylphenylcarbamates, with excellent in vitro activity against 49 

S. mansoni but only moderate effect in a mouse model (8). 50 

 51 

In this work, we have developed analogs of the latter of those lead compounds, 52 

dianilinoquinoxaline 2. Quinoxaline compounds have shown promising anticancer (9-53 

11), antiprotozoal (12) and antimycobacterial activities (13, 14). Among this set are 54 

several 6-nitroquinoxaline analogs; nitroaromatic antiparasitic compounds have shown 55 

activity against malaria (15), giardiasis (16, 17), trypanosomiasis (18, 19), amoebiasis 56 

(20), and trichomoniasis (21). Nitroquinoxaline compounds in particular have 57 

demonstrated potent activity against Gram-positive bacteria (22). 58 

 59 

We have also prepared and tested a small set of other compounds that include a 60 

quinoxaline moiety within a more complex polyheterocyclic system, including a series of 61 

[1,2,4]triazolo[4,3-a]quinoxalines. Similar triazolopyrazines have shown antimalarial 62 

potential in work done in the Open Source Malaria program. 63 

(https://openwetware.org/wiki/OpenSourceMalaria:Triazolopyrazine_(TP)_Series) 64 

Moreover, in previous studies, triazolopyrazines have exhibited a range of biological 65 

activities (11, 23, 24), including broad antimicrobial activity (25).  66 

 67 

MATERIALS AND METHODS 68 
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Synthesis. Disubstituted quinoxaline and nitroquinoxaline compounds were 69 

synthesized from the nucleophilic aromatic substitution (SNAr) reactions of 2,3-70 

dichloroquinoxaline (3-23) and 6-nitro-2,3-dichloroquinoxaline (24-32), respectively 71 

(Figure 2). While substitution reactions with aliphatic amines generally proceeded 72 

smoothly at moderate temperatures, those involving anilines required more robust 73 

heating. When 2-(dimethylamino)ethylamine was used as the amine nucleophile, the 74 

major product isolated was 1-methyl-1,2,3,4-tetrahydropyrazino[2,3-b]quinoxaline (18), 75 

the unexpected result of an intramolecular SNAr reaction by the tertiary amine followed 76 

by demethylation. Two nitroquinoxaline products, 29 and 30, were subjected to nitro 77 

reduction and acetylation to give the analogous acetamides 33 and 34.  78 

 79 

Tetracyclic compounds 35 and 36 were synthesized by the condensation of o-80 

phenylenediamine with isatin and ninhydrin, respectively; (26) the latter was then 81 

subjected to palladium catalyzed transfer hydrogenolysis (27) to yield 11H-indeno[1,2-82 

b]quinoxaline (37) (Figure 3). [1,2,4]triazolo[4,3-a]quinoxalines (38-49) were 83 

synthesized from 2-hydrazino-3-chloroquinoxaline by acid-mediated condensation with 84 

an aldehyde or orthoester, followed by nucleophilic aromatic substitution at the 4-85 

position with a secondary amine heterocycle (24). 86 

 87 

Experimental details and 1H NMR spectral characterization data for all synthesized 88 

compounds can be found in the Supporting Information. 89 

 90 
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Drugs and culture media. Compounds were prepared as 10 mM stock solutions in 91 

dimethyl sulfoxide (DMSO) (Sigma-Aldrich). The culture media were prepared from 92 

medium 199 (NTS testing) or RPMI 1640 (adult testing) (Life Technologies) with L-93 

glutamine (Sigma-Aldrich), 5% heat-inactivated fetal calf serum (FCS), 1% penicillin, 94 

and streptomycin mix, which were purchased from LuBioScience. 95 

 96 

Mice and parasites. Animal studies were carried out following Swiss national and 97 

cantonal regulations on animal welfare at the Swiss Tropical and Public Health Institute 98 

(Basel, Switzerland (Swiss TPH) (permission no. 2070). The S. mansoni life cycle 99 

(Liberian strain) is maintained at Swiss TPH. For the in vitro and in vivo studies female 100 

mice (NMRI strain; age 3 weeks; weight ca. 20-22 g) were purchased from Charles 101 

River, Germany. Mice were kept under environmentally controlled conditions 102 

(temperature ∼25 °C; humidity ∼70 %; 12 h light and 12 h dark cycle) with free access 103 

to water and rodent diet, and acclimatized for 1 week before infection. 104 

 105 

Newly transformed schistosomula (NTS) drug assay. S. mansoni cercariae were 106 

gathered from infected snails and mechanically transformed to newly transformed 107 

schistosomula (NTS). 30-40 NTS/well were incubated with 0.01-10 µM of the drugs for 108 

72 h at 37°C, 5 % CO2 in a final well volume of 200-250 µl. Compounds were tested in 109 

triplicate and the highest concentration of DMSO (<1%) served as control. Evaluation 110 

was done by microscopic readout (Carl Zeiss, Germany, magnification 80x) using a 111 

viability scale as described recently (3 = motile, no changes to morphology or 112 

transparency; 2 = reduced motility and/or some damage to tegument noted, as well as 113 
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 6 

reduced transparency and granularity; 1 = severe reduction of motility and/or damage to 114 

tegument observed, with high opacity and high granularity; 0 = dead) (28). 115 

 116 

Adult S. mansoni drug assay. Adult schistosomes were collected by mechanical 117 

picking from the hepatic portal system and mesenteric veins 49 day post-infection with 118 

100 S. mansoni cercariae. Worms were incubated with 0.1 and 1 µM of the compounds 119 

for 72 h. Wells with 1% DMSO served as negative controls. Phenotypes were monitored 120 

under an inverted microscope and viability scores calculated (28). Each compound was 121 

tested twice in duplicate. To calculate IC50 values, viability scores were converted into 122 

effect scores using CompuSyn2® (ComboSyn Inc., 2007). 123 

 124 

Rat skeletal myoblast L6 cytotoxicity. Rat skeletal myoblast L6 cells were seeded in 125 

96 well plates (2 x 103 cells/ well) using supplemented RPMI 1640 medium as 126 

described above. Following adhesion of the cells for 24 h at 37 °C and 5% CO2, the IC50 127 

of the compounds was determined using concentrations of 0.12, 0.37, 1.11, 3.33, 10, 128 

30, and 90 µM. Podophyllotoxin served as positive control. After 70 h post-incubation, 129 

10 µL resazurin dye (Sigma) was added and the plates incubated for another 2 h. 130 

Analysis was done at 72 h using a SpectraMax M2 (Molecular Devices) plate reader 131 

with an excitation wavelength of 530 nm and emission wavelength of 590 nm. 132 

 133 

Calculation of physicochemical properties. The in silico prediction tool ALOGPS 2.1 134 

was used to calculate log P (clogP) and log S values for all compounds 135 

((29); http://www.vcclab.org).  136 
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 137 

In vivo studies. Mice were infected with 100 S. mansoni cercariae subcutaneously. 138 

Single oral doses of 400 mg/kg of the three lead compounds were administered to 139 

groups of four mice 49 days (adult infection) post-infection, respectively. A 400 mg/kg 140 

dose is often used as starting dose in S. mansoni in vivo experiments (30), as it is the 141 

efficacious dose of praziquantel in S. mansoni infected mice. Untreated mice (31) 142 

served as controls. Mice were euthanized using CO2 three weeks post treatment, and 143 

worms were picked, sexed and counted and the worm burden reduction was calculated. 144 

A Kruskal Wallis test was employed to determine statistical significance. 145 

 146 

RESULTS 147 

In vitro activity against NTS. 47 compounds were tested at 10 μM for activity against 148 

NTS. Tetracycles 35-37 and triazoloquinoxalines 38-49 showed marginal activity 149 

(<35%) at this concentration after 72 h (data in Supporting Information). Among the 150 

other quinoxaline test compounds, the best activity was found with 151 

dianilinoquinoxalines, with 16 of these showing an activity of more than 70% after 72 h 152 

(Table 1). At a lower, 1 µM concentration, nine of those sixteen compounds revealed an 153 

activity above 70% against NTS after 72 h. The most active compounds, 154 

nitroquinoxalines 29 and 30, affected NTS with an activity of over 70% at 0.1 µM, and 155 

showed low activity (21.9% for each) even at 0.01 µM, the lowest concentration tested. 156 

For comparison, praziquantel shows an IC50 of 2.2 µM against NTS (30). 157 

 158 
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 8 

In vitro activity against adult S. mansoni. The 16 quinoxaline compounds that 159 

showed good in vitro activity against NTS at 10 μM were also generally active against 160 

adult S. mansoni at the same concentration, with 15 of the 16 showing an activity of at 161 

least 70% against the worms after 72 h (Table 1). Of these, 8 compounds were active 162 

(>70%) at 1 µM. The three most active compounds, 27, 29, and 30, showed also 163 

moderate activity against adult worms at 0.1 µM (16-41% after 72 h). The IC50 values 164 

against adult worms for these compounds were all under 0.3 µM, and were comparable 165 

to that of praziquantel (0.1 µM) (30). 166 

Calculated physicochemical properties and solubility. Log P and log S values were 167 

calculated for all 47 compounds in this study. In this set, the 19 compounds that showed 168 

the greatest antiparasitic activity against NTS all had clog P values over 4.98, 169 

essentially the “Lipinski limit” (32), and low calculated aqueous solubilities, ranging from 170 

1.8 to 25.7 µM (clog S -5.74 to -4.59) (Table 1). Although these clog P values 171 

contravene Lipinski’s “rule of five” (32), the use of those heuristics in antiparasitic drug 172 

development has been cautioned against (33).  173 

Antischistosomal selectivity. Nitroquinoxaline compounds 24-32 were tested for 174 

cytotoxicity against an L6 rat skeletal muscle cell line. Compounds that showed good 175 

activity against adult worms (>70% at 10 µM) were moderately cytotoxic to L6 cells 176 

(IC50’s of 1.7-27.5 µM) (Table 2). Among our three most active compounds, 29 showed 177 

the highest antischistosomal selectivity (44.6), significantly higher than those of 27 and 178 

30 (18.3 and 8.9, respectively), due largely to the compounds’ differential in cytotoxicity. 179 

 180 
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 9 

In vivo studies. The three most active compounds progressed to in vivo studies, where 181 

they were tested in mice harboring adult S. mansoni. Compound 29 was the most active 182 

compound, with a worm burden reduction (WBR) of 46.4% (P < 0.05) at 400 mg/kg 183 

(Table 2). This is roughly half of the antiparasitic activity of praziquantel at the same 184 

dosage (94%) (34). WBR values for compounds 27 and 30 were considerably lower 185 

(9.3% and 12.5%, respectively).  186 

 187 

DISCUSSION 188 

The overwhelming dependence on praziquantel to treat schistosomiasis worldwide 189 

demonstrates the potential danger that praziquantel resistance poses. There is 190 

therefore a clear need for the development of antischistosomal drugs with novel 191 

pharmacophores and modes of action. The dianilinoquinoxaline 2 was identified in 192 

previous work as a promising lead for further antischistomiasis drug development (8). 193 

 194 

In this follow-up study we have synthesized 47 analogs of this lead compound by 195 

varying both the amine/aniline substituents on the quinoxaline scaffold and the scaffold 196 

itself. Eleven of these analogs (3-13) were dianilinoquinoxalines like 2, while ten others 197 

(14-23) were synthesized from 2,3-dichloroquinoxaline and non-aniline amines; 198 

comparing these two groups, the aniline-containing quinoxalines showed better 199 

antischistosomal activity than the second group did. Nitroquinoxaline analogs (24-32) 200 

similar to the first, more active group were also synthesized, as were a series of 201 

triazoloquinoxalines (38-49) and a small set of tetracyclic compounds (35-37) 202 

incorporating the quinoxaline moiety.   203 
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 10 

 204 

All compounds were first tested in vitro on newly transformed schistosomula (NTS). 205 

Test compounds with aniline substituents (3-13, 24-34) generally showed strong 206 

antiparasitic activity against both NTS and adult worms at a concentration of 1 µM; the 207 

remainder of our set showed only weak activity against NTS at 10 µM. The most active 208 

were nitroquinoxalines 27, 29 and 30, which demonstrated sub-micromolar IC50 values 209 

against adult worms, comparable to the published values for our lead compound 2 and 210 

for praziquantel itself (7). Notably, compound 30 is similar to the diarylurea lead 211 

compound 1 in that they both carry two 3,4-dichloroaniline moieties. 212 

 213 

The addition of a nitro group to the quinoxaline scaffold increased the activity against 214 

NTS in a few cases (4 vs. 29, 5 vs. 30), but this effect was not consistent across our set 215 

of analogs. Like other nitroaromatic antiparasitic compounds, such as nitazoxanide and 216 

metronidazole, this added activity upon nitration may be due to the targeting of parasitic 217 

redox systems (16, 35). 218 

 219 

Unfortunately, the highest WBR achieved here, with nitroquinoxaline 29, was only half 220 

of that measured for praziquantel; two similar compounds with very good in vitro activity, 221 

27 and 30, showed very little WBR at the same concentration. The in vitro/in 222 

vivo discrepancy found here may be due to rapid metabolic reduction of these nitro 223 

compound to anilines (36). However, acetamidoquinoxalines 33 and 34, which would 224 

also ostensibly be metabolized to anilines within the parasite, showed markedly less 225 

activity against both NTS and adult worms than their corresponding non-acetamido 226 
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 11 

analogues in our compound set (4, 5, 29 and 30). More generally, the poor in vivo 227 

activity of these compounds may simply be due to poor pharmacokinetic properties – 228 

that is, high lipophilicities (clogP > 5) and low aqueous solubilities. Further structural 229 

optimization may be able to improve the bioavailabilities of these compounds and 230 

improve their activities in vivo. 231 

 232 

In conclusion, several analogs of the antimalarial quinoxaline MMV007204 were 233 

synthesized and shown to have high activities against NTS and adult S. mansoni worms 234 

in in vitro experiments. While the in vivo activities of these compounds proved to be 235 

moderate at best, further development of more hydrophilic derivatives may provide 236 

more active compounds. 237 
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 356 

 

 
 

% dead after 72 h   
 

NTS Adult worms   
 

  X R 1 µM 0.1 µM 0.01 µM 1 µM 0.1 µM clog P clog S 

3 H 3-Cl-Ph 100 (0) 0 (0) - 82.8 (9.8) 41.0 (5.6) 6.01 -5.41 

4 H 4-Cl-Ph 100 (0) 12.5 (5.9) - 79.3 (4.9) 27.3 (2.8) 6.01 -5.44 

5 H 3,4-diCl-Ph 100 (0) 12.5 (0) - 88.5 (10.9) 37.1 (5.6) 7.09 -5.6 

6 H 3,5-diCl-Ph 100 (0) 18.8 (2.9) - 84.6 (5.4) 37.1 (0) 7.1 -5.64 

7 H 3-4-Ph 100 (0) 25.0 (0) - 71.1 (2.7) 19.4 (2.8) 5.1 -4.94 

8 H 3-CH3O-Ph 86.0 (2.8) 8.33 (0) - 34.4 (0) - 5.06 -4.76 

9 H 4-CH3O-Ph 80.0 (5.7) 6.25 (8.8) - 39.6 (2.4) - 5.1 -4.78 

26 NO2 3-CF3-Ph 44.2 (8.2) - - 60.7 (0) - 5.79 -5.21 

27 NO2 3-CH3O-Ph 24.9 (2.7) - - 82.1 (0) 24.4 (2.9) 4.98 -4.77 

28 NO2 4-Br-Ph 59.6 (2.7) - - 67.8 (5.1) - 5.76 -5.54 

29 NO2 4-Cl-Ph 75 (2.7) 73.1 (5.4) 21.9 (2.8) 92.9 (0) 16.3 (2.9) 5.88 -5.51 

30 NO2 3,4-diCl-Ph 80.8 (5.4) 78.8 (2.7) 21.9 (8.5) 78.5 (10.1) 40.8 (8.7) 6.65 -5.74 

31 NO2 3,4-di(CH3O)-Ph 32.6 (2.7) - - † - 5.06 -4.61 

32 NO2 3,5-di(CH3O)-Ph 34.6 (5.4) - - 66 (2.5) - 5.05 -4.59 

33 NHAc 4-Cl-Ph 28.4 (6.8) - - 20.3 (2.9) - 5.23 -5.19 

34 NHAc 3,4-diCl-Ph 33.9 (11.8) - - 63.2 (11.6) - 6.39 -5.48 

Only compounds with ≥70% activity against NTS at 10 µM shown. Numbers in parentheses are the standard 
deviations of the data. For full results, see Supporting Information. †49.1% dead at 10 µM. 

 357 

Table 1. In vitro activities of synthesized analogs. 358 

 359 

 

IC50, adult 

S. mansoni 

(µM) 

IC50, L6 

cells 

(µM) SI 

WBR 

(%) 

27 0.31 5.7 18.3 9.3 

29 0.28 12.5 44.6 46.4 

30 0.19 1.7 8.9 12.5 
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praziquantel 0.1a >96a >960a 94.1b 

SI = selectivity index (IC50,L6/IC50,S. mansoni). WBR = worm burden reduction. a) Ref. 30. b) 360 

Ref. 34. 361 

Table 2. IC50 and worm burden reduction values of synthesized analogs. 362 

 363 
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