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An effective microwave-assisted urea formation from cyclopentyl- or isopropyl-substituted ureas is
described. This novel transamidation methodology provided ureas IIa–IIq in good yields via microwave
irradiation of the cyclopentyl- or isopropyl-substituted ureas with excess (5–10 equiv) of amines at
150 �C in THF/DMSO.

� 2016 Elsevier Ltd. All rights reserved.
The urea functional group is a common and useful building
block in the preparation of pharmaceutically active candidates
and natural products.1 Ureas are also commonly employed link-
ages in or between scaffolds as bioisosteres of carbamates or
amides in drug discovery. Numerous classical synthetic pathways
have been developed to generate ureas through isocyanates,2a,b

activated carbamate intermediates3 and carboxylic acid
derivaties.4 The application of microwave-assisted organic synthe-
sis in urea formation via the aforementioned synthetic methods is
also well studied. 5a,b Symmetrical ureas were also generated by
reacting aromatic amines with ethyl acetoacetate promoted by
zeolite HSZ-3602c or by reacting amine using binary CO2/water as
reaction media2d or by aromatic amines or hydrazines with urea
devoid of solvents either under conventional heating in the
presence of catalytic zinc chloride2e,2f or under microwave
irradiation.2g

Initially, we planned to form compound 2 via the displacement
of 2-Cl-pyridine analog 16a upon heating pyrrolidine (neat) at
150 �C under microwave irradiation. After 1500 s, the reaction gave
an unexpected product 3 (88% yield) with no trace of 2 found
(Fig. 1). Compound 3 is a product of both transamidation of cyclo-
pentyl urea with pyrrolidine and displacement of the chlorine
atomwith pyrrolidine. Herein we report the first synthesis of ureas
via transamidation of isopropyl or cyclopentyl urea I with excess
amines (5–10 equiv) in THF or a 1:1 mixture of THF/DMSO under
microwave irradiation at 150 �C (Table 1). Cyclopentyl or isopropyl
ureas are final compounds and/or advanced intermediates of two
in-house drug discovery programs.6a–e The cyclopentyl urea
analogs gave good in vitro potency but poor metabolic
stability.6a–c This methodology allowed us to promptly screen
different cyclopentyl urea replacements with structurally diverse
amines in a timely fashion.

Table 1 shows the results of primary amines (e.g., entries
4–12) and secondary amines (e.g., entries 13–14) with different
bulky groups on one side of the urea group and a cyclopentyl
or an isopropyl group on the other side. However, the less bulky
group Ie in entry 6 also gave the desired product cleanly in good
yields. Transamidation also showed good yields with weak ami-
nes (calcd. pKa = 7 for entries 4–6 and pKa = 6 for entry 8). Under
microwave irradiation, the chirality of the structure remains
unchanged based on the chiral purity analysis of IIa in entry 4.
All reactions were performed in 1500 s. For reactions with
isolated yields under 70% (e.g., entry 4), the only other side pro-
duct observed from LCMS of the reaction mixture was the unre-
acted starting cyclopentyl urea Ib. Increasing the temperature or
prolonging the reaction irradiation time could lead to completion
of reaction.

Upon obtaining good yields for the transamidation of ureas with
primary and secondary amines, we conducted a few studies on the
scope of the transamidation reaction. For example, using
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Table 1
Transamidation of ureas Ia–g with primary and secondary amines under microwave
irradiation
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Figure 1. Discovery of transamidation of urea 1 to urea 3.
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5–10 equiv of morpholine, urea 1 selectively underwent transami-
dation reaction without displacing the chlorine atom (entry 15,
Table 2). Functional groups such as carboxylic acid (entry 16),
alcohol (entries 17 and 19), and dihydrofuran-2(3H)-one (entry 18)
were also tolerated.

Therefore, in contrast to the classical stepwise synthetic
pathway to urea formation, we utilized isopropyl or cyclopentyl
ureas as stable intermediates for the transamidation, thereby
providing a rapid method for high-throughput synthesis and
optimization. Although the mechanism of the transamidation
of ureas was not studied, we propose that microwave irradia-
tion facilitated the bond-breaking process of the presumably
weaker C–N bond, which was on the less hindered urea side,
and thus formed an isocyanate intermediate that contained
the relatively bulky group. In fact, LCMS showed a small
amount of the corresponding isocyanate formed when heating
Ia in the absence of an amine under the same reaction condi-
tions (described in Table 1). Interestingly, no un-reacted start-
ing ureas were identified by LCMS after 1500 s. in any of the
reactions except entry 4 shown in Tables 1 and 2. Microwave
irradiation is the key for these high-yielding transamidation
reactions. For example, under conventional heating at 150 �C
for 4 h, urea Ia reacted with 5–10 equiv of 2,2,2,-trifluo-
roethanamine to give only 11% of the transamidated product.
After heating for 12 more hours, 41% of the transamidated pro-
duct was formed along with 45% of the cleaved bulky left-hand
amine (R-NH2) and 14% of unreacted urea Ia. Increasing the
temperature to 200 �C under conventional heating led to
decomposition.

In summary, we described a novel one-step synthesis of ureas
via the transamidation of the cyclopentyl or isopropyl ureas with
excess amines (5–10 equiv) under microwave irradiation at
150 �C. Moreover, amines can be elaborated with functional groups
such as carboxylic acid and alcohol with no putative effect. Gener-
alization of this methodology and study of the reaction mechanism
and scopes such as using aryl/heteroaryl amines will be
investigated.
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* Yields refer to isolated and chromatographically pure products. All products
exhibited spectral data and HRMS consistent with their structures.
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Table 2
Transamidation of ureas with functionalized amines under microwave irradiation
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a General reaction method—urea precursor (1 equiv), amine (5–10 equiv),

THF/DMSO (1:1, 0.12 M), mw 150 �C, 1500 s.
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Supplementary data

Supplementary data (spectroscopic data for compounds IIa–IIq)
associated with this article can be found, in the online version, at
http://dx.doi.org/10.1016/j.tetlet.2016.02.103.
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