Rate Constants for F^- Transfer from SF_6^- to Fluorinated Gases and SO_2 . Temperature Dependence and Implications for Electrical Discharges in SF₆

L. Wayne Sieck*[†] and Richard J. Van Brunt[‡]

Chemical Kinetics and Electrosystems Divisions, National Bureau of Standards, Gaithersburg, Maryland 20899 (Received: June 2, 1987; In Final Form: August 28, 1987)

The reactivity of SF_6^- toward SO_2 , SO_2F_2 , SO_2F_2 , SO_4 , SF_4 , and SiF_4 has been investigated by using the technique of pulsed electron beam high-pressure mass spectrometry. These studies were initiated in order to probe the complex anionic chemistry occurring during electrical discharge in SF_6 . Although no reaction of any type was observed with SOF_2 and SO_2F_2 , efficient F^- transfer of the type $SF_6^- + A \rightarrow AF^- + SF_5$ was found in all of the other systems including the $SO_2F^- + SOF_4$ pair, which was studied separately. With the exception of the $SF_6^- + SiF_4$ reaction, all of the pairs exhibited a negative temperature coefficient in that the rate constants for F^- transfer decreased substantially with increasing temperature. The reaction SF_6^- + SiF₄ \rightarrow SiF₅⁻ + SF₅ was found to proceed with a rate constant of (5.6 ± 0.8) × 10⁻¹⁰ cm³/(molecule s) throughout the temperature range studied (298-510 K), which corresponds to a collision efficiency of unity. The other reactions were found to approach unit collision efficiency only at reduced temperatures (<300 K). The reactions studied were used to provide additional information concerning the gas-phase F⁻ affinity scale, and the F⁻ affinity of SiF₄ was defined as 2.2 ± 0.4 kcal/mol higher than SOF₄ via equilibria measurements. The placement of SF₅ within the F⁻ affinity scale indicates that SF₆⁻ is reactive toward several of the major stable byproducts generated during electrical breakdown in SF₆. This behavior was verified by direct observation of the temporal growth and decay profiles of the various anions produced after pulsed ionization of an SF₆ sample which had been subjected to prior partial decomposition in a negative corona discharge. Some comments are also included concerning the stability of the SF6 SF6 dimer ion, and the implications of all of the present data with respect to mobility measurements in SF_6 are also discussed.

Introduction

Electrical breakdown in gaseous sulfur hexafluoride containing trace quantities of water vapor is known to lead to the formation of various stable oxyfluorides including SOF₂, SOF₄, and SO₂F₂, as well as SO₂, HF, and SF₄.¹⁻³ Additional end products such as SiF_4 are also produced during the SF_6/O_2 plasma etching of polysilicons.⁴ The accumulation of decomposition products, even at very low levels, may be expected to affect the identity of the negative charge carriers during breakdown in SF₆ due to F⁻ exchange reactions of the type $SF_6^- + A \rightarrow AF^- + SF_5$. Reactions of this type have, in fact, been proposed as a sensitive technique for detection of some of the byproducts of electrically discharged SF₆ by Sauers,⁵ who also reported estimated rate constants for several F- exchange reactions measured in a uniform electric field with a drift cell-mass spectrometer. A comparison of the temperature and E/N (electric field to gas density) dependence of the rate for $SF_6^- + SOF_4 \rightarrow SOF^- + SF_5$ has also been reported by Van Brunt and co-workers.³ Other rate constant determinations involving SF₆⁻ and likely decomposition products have been restricted to single-temperature measurements with the neutrals SiF₄,⁶ SF₄,⁷ and SO₂.⁸ Streit, who investigated the reactivity of SF_6^- toward a variety of neutrals at room temperature using a flowing afterglow technique,⁸ found that many exothermic reactions proceeded with collision efficiencies which were substantially less than unity. In cases such as these it has usually been found that the rate constants exhibit a negative temperature coefficient, and the interpretation of this general behavior has been the subject of a review by Kebarle.9 More recently, the temperature dependence of the kinetics of electron transfer involving SF_6^- and several fluorocarbons has been considered in detail by Kebarle and co-workers,¹⁰ and the results were interpreted in terms of an internal barrier to reaction in the transition states for SF₆-A collision complexes. The few measurements reported to date for the reactions of SF_6^- with products of discharged SF_6 have typically yielded rate constants below the collision limit, suggesting that the rates may also be temperature sensitive. The present study was initiated to provide a more quantitative kinetic base for modeling of the complex ion chemistry occurring during electrical breakdown in SF₆ containing trace impurities generated during

decomposition. To this end we have investigated the temperature dependence of a number of individual F⁻ transfer reactions using the method of pulsed high-pressure mass spectrometry. The consecutive anionic mechanisms operative in SF₆ samples subjected to prior partial decomposition in a negative corona discharge were also characterized by using this technique via direct observation of the temporal growth and decay profiles of the various product/reactant ions. Some comments are also included concerning the gas-phase fluoride affinity scale.

Experimental Section

All of the kinetic measurements were carried out with the NBS pulsed electron beam high-pressure mass spectrometer system, which has been modified for negative ion operation as described previously.¹¹ Determinations of the rate constant (k) for the reaction $SF_6^- + A \rightarrow AF^- + SF_5$ at a given temperature were performed by exposing a premixed sample of SF_6 and A (usually 100:1), diluted with CH_4 as an inert carrier gas, to a short pulse (100-400 μ s) of 1-keV electrons at total chamber pressures falling in the range 0.4–1.5 Torr. Under these conditions, SF_6^- is produced essentially instantaneously by associative attachment of thermalized secondary electrons to SF_6 . The resultant ion signals from SF_6^- and AF^- were then recorded as a function of time following termination of the ionizing pulse. These signals were usually monitored for 3–10 ms, in channels of $10-20-\mu s$ width,

- (6) Murphy, M. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1977, 99, 4992.
 (7) Babcock, L. M.; Streit, G. E. J. Chem. Phys. 1981, 75, 3864.
- (8) Streit, G. E. J. Chem. Phys. 1982, 77, 826.
- (9) Kebarle, P. In Ionic Processes in the Gas Phase; Almoster Ferreira,
- (1) Rootin, F. I. Forder, F. Holland, 1984; pp 135-158.
 (10) (a) Grimsrud, E. P.; Chowdhury, S.; Kebarle, P. J. Chem. Phys. 1985, 83 1059.
 (b) Chowdhury, S.; Kebarle, P. J. Chem. Phys. 1986, 85, 4989.
 (11) Sieck, L. W.; Mautner, M. J. Phys. Chem. 1984, 88, 5324.

Chemical Kinetics Division. [†]Electrosystems Division.

^{(1) (}a) Van Brunt, R. J.; Herron, J. T.; Fenimore, C. In Proceedings of the 5th International Symposium on Gaseous Dielectrics, Gaseous Dielectrics V, 1987; Christophorou, L. G., Ed.; Plenum: New York, in press. (b) Van V, 1987; Christophorou, L. G., Ed.; Plenum: New Fork, in press. (b) van
Brunt, R. J.; Siddagangappa, M.C. Plasma Chem. Plasma Process., submitted
for publication. (c) Chu, F. Y. IEEE Trans. Electr. Insul. 1986. E1-21, 693.
(2) Van Brunt, R. J. NBS J. Res. 1985, 90, 229.
(3) Van Brunt, R. J.; Sieck, L. W.; Sauers, I.; Siddagangappa, M. C.
Plasma Chem. Plasma Process., submitted for publication.
(4) Anderson, H. M.; Merson, J. A.; Light, R. W. IEEE Trans. Plasma

Sci. 1986, P5-14, 156.

⁽⁵⁾ Sauers, I. IEEE Trans. Electr. Insul. 1986, Ei-21, 105.

Figure 1. Raw data (A) and normalized data (B) obtained as a function of time following pulsed ionization of a CH_4 -SF₆-SOF₄ mixture. Conditions given in Experimental Section.

and accumulated in a multichannel scalar serving as a signal averager. The collected data were fed into a minicomputer, which normalized the intensities at each reaction time. A standard irreversible kinetics program was used to evaluate the appropriate rate parameters. Specific details of these measurements and others, as well as some examples of experimental data, are given below. The chemicals used were of the highest purity commercially available and were used without further treatment.

 SF_6/SOF_4 Mixtures. The SF_6^-/SOF_4 system was investigated from 262 to 433 K. Various concentrations of SOF₄, ranging from 1.9×10^{-5} to 6.7×10^{-5} mole fraction in CH₄, were studied at total chamber pressures from 0.4 to 1.4 Torr. Sample results are given in Figure 1, which shows raw and normalized data obtained from a mixture of 1.9×10^{-5} mole fraction SOF₄ in CH₄ containing 1.9×10^{-3} mole fraction SF₆ at a total pressure of 1.30 Torr at 344 K. Figure 1A displays the accumulated signals, in 15- μ s-wide channels, for SF₆⁻ and SOF₅⁻ in every fifth channel for 6 ms following initiation of a 400- μ s-wide electron pulse. The resultant time-resolved normalized intensities are shown in Figure 1B. For this particular measurement, k was evaluated from the relative ion signals recorded from 0.6 to 3.5 ms, which encompasses the data taken from the beginning of ion decay to the point at which the statistics become poor due to reduced signal levels. The slope of the normalized decay of SF_6^- corresponds to a k of 5.3 $\times 10^{-10} \text{ cm}^3/(\text{molecule} \cdot \text{s})$ for the reaction SF₆⁻ + SOF₄ \rightarrow SOF₅⁻ + SF₅. No other reactions were detectable under our conditions. Note that the SF_6^- decay rate is considerably reduced during the ionization pulse due to ambipolar diffusion during the period of high electron flux, which greatly reduces the residence times of reactant ions. An additional initial delay occurs due to the time required for the first ions exiting from the sampling orifice to pass through the mass filter and reach the conversion dynode of the detector. Under the conditions of this particular measurement, the total transit time after exit for SF_6^- and SOF_5^- , which have nearly equal masses (146 and 143 daltons), was approximately $60 \ \mu s$. The computer-generated analysis incorporates standard corrections for differences in flight times for ions of differing m/zvalues throughout the period of raw data accumulation.

 SF_6/SO_2 Mixtures. The reaction $SF_6^- + SO_2 \rightarrow$ products was

Figure 2. Raw data showing ion intensities as a function of time following pulsed ionization of a CH_4 - SF_6 - SO_2 - SOF_4 mixture. Details given in Experimental Section.

studied over the range 300-530 K. In this particular system three separate primary channels were observed:

$$SF_6^- + SO_2 \rightarrow SO_2F^- + SF_5$$

 $\rightarrow SF_5^- + SO_2F$
 $\rightarrow SO_2F_2^- + SF_4$

At longer reaction times, both SF_5^- and $SO_2F_2^-$ were found to react further with SO_2 via F^- transfer to yield SO_2F^- as the terminal ion. In order to evaluate the overall k for reason of SF_6^- , the individual intensities of SO_2F^- , SF_5^- , and $SO_2F_2^-$ were recorded as a function of time and summed in each channel prior to normalization with the time-resolved SF_6^- signal. Concentrations were varied from 2.1 × 10⁻⁵ to 4.2 × 10⁻⁵ mole fraction SO_2 in CH₄.

 SO_2/SOF_4 Mixtures. The reaction $SO_2F^- + SOF_4 \rightarrow SOF_5^-$ + SO₂ was studied in four-component mixtures. Since SF₆⁻ is reactive toward both SO₂ and SOF₄, an SO₂/SOF₄ ratio of 20:1 was maintained to minimize initial F⁻ transfer to SOF₄ from SF₆⁻. As noted above, the primary reaction of SF₆⁻ with SO₂ yields three products, SO_2F^- , SF_5^- , and $SO_2F_2^-$, all of which are potentially reactive with SOF₄. However, due to the large excess of SO₂, conversion of SF_5^- and $SO_2F_2^-$ to SO_2F^- occurs rapidly, such that at longer reaction times only two ions are present, SO₂F⁻ and SOF_5^- , with SO_2F^- predominating. This sequence is shown in Figure 2, which displays raw data obtained from a mixture of 2.2 \times 10⁻⁵ mole fraction SOF₄, 4.4 \times 10⁻⁴ mole fraction SO₂, and 2.2×10^{-2} mole fraction SF₆ in CH₄ at a total pressure of 1.29 Torr at 379 K. Accumulated data are shown for every fifth channel (10-s width) for 3.5 ms following initiation of a 400- μ s-wide ionizing pulse. (Note that the intensity of SO₂F⁻ has been reduced by a factor of 10 for display purposes.) Although it is evident from the growth and decay profiles that SF_5^- and $SO_2F_2^$ are major ions at short reacton times, both quickly react out and essentially disappear from the composite spectrum after slightly more than a millisecond under these conditions of temperature and concentration. The rate constant for the reaction of interest, $SO_2F^- + SOF_4 \rightarrow SOF_5^- + SO_2$, was then determined from the normalized intensities of SO_2F^- and SOF_5^- between 1.1 and 3 ms. The data shown in Figure 2 correspond to a value of 3.6×10^{-10} cm³/molecules) for F⁻ transfer at 379 K. This reaction was also studied at 296 and 329 K.

 SOF_4/SiF_4 Mixtures. We had originally intended to measure the k for the reaction $SOF_5^- + SiF_4 \rightarrow SiF_5^- + SOF_4$. However, in mixtures thought to be appropriate for such measurements (~20:1 in favor of SOF_4 and 1×10^{-5} mole fraction SiF_4 in CH₄), the equilibrium $SOF_5^- + SiF_4 \leftrightarrow SiF_5^- + SOF_4$ was established at relatively short reaction times, which precluded any evaluation of the k for F⁻ transfer from SOF_5^- . The equilibrium constant was determined at six temperatures over the range 298-387 K, and the resultant van't Hoff plot gave $\Delta H^{\circ} = 2.2 \pm 0.4$ kcal/mol and $\Delta S^{\circ} = -3.2 \pm 1.0$ eu for the exchange reaction as written. The equilibrium constant at 298 K was 8.7.

Miscellaneous Measurements. The following reactions were studied under the stated conditions. (i) $SOF_5^- + SiF_4 \leftrightarrow SiF_5^-$ + SOF_4 : 299-387 K, 2.1 × 10⁻⁴ mole fraction SOF_4 and 1.1 × 10⁻⁵ mole fraction SiF_4 . (ii) $SF_6^- + SOF_2$, $SO_2F_2 \rightarrow$ products: 298 and 450 K, 5.5 × 10⁻⁵ mole fraction of the oxyfluorides. (iii) $SOF_5^- + H_2O \rightleftharpoons SOF_5^-H_2O$: 297 K, 4 × 10⁻⁵ mole fraction SOF_4 , 6.3 × 10⁻³ mole fraction H_2O . (iv) $SF_6^- + SF_4 \rightarrow SF_5^-$ + SF_5 : 293-450 K, 3.2 × 10⁻⁵ to 7.0 × 10⁻⁵ mole fraction SF_4 . (v) $SF_6^- + SiF_4 \rightarrow SiF_5^- + SF_5$: 298-500 K, 1.7 × 10⁻⁵ mole fraction SiF_4 .

Discharge-Decomposed SF₆. A sample of SF₆ was exposed to a continuous, direct current, negative point-plane corona discharge at a total pressure of 2 atm in a 3.7-L cell. The discharge was operated for 30.6 h at a current of 40 μ A, corresponding to 4.4 C of net total charge transported. The specific techniques used, including product analysis, were identical with those described in ref 2. This treatment results in the generation of a mixture containing approximately 450 ppm of SOF₄, 350 ppm of SOF₂, and 180 ppm of SO₂F₂. Small quantities of SO₂, <10 ppm, are also produced directly during discharge, and this product may accumulate due to secondary reactions involving hydrolysis of oxyfluorides and other byproducts.¹² The influence of decomposition products on the identities of the negative ions formed in the gas was assayed by comparisons of time-resolved composite mass spectra obtained from the pure and discharged material.

Results and Discussion

Hydrolysis. Under certain conditions several of the systems were found to be sensitive to hydrolysis in the gas-handling manifold and sample inlet reservoir. No difficulties were encountered with samples containing SO₂, SOF₂, SO₂F₂, SOF₄, and SiF₄, provided that H₂O was not deliberately introduced into the mixture and the reaction chamber temperature was held below ~ 250 °C. (The sample inlet reservoir was maintained at 150 $^{\circ}\mathrm{C}$ for all measurements.) However, at higher chamber temperatures in nominally dry samples containing SOF₄, as well as mixtures containing nominally dry SF4 at any temperature, it was apparent that hydrolysis was occurring. (The term nominally dry is used to describe samples prepared directly from manufacturer-supplied components and not subjected to desiccation.) This situation was immediately evident after inspection of the time-resolved composite mass spectra of these mixtures, which showed SiF5⁻ to be the terminal ion. SiF_5 is produced by F⁻ transfer to SiF_4 , which is generated by heterogeneous reactions of HF with silicon-containing components within our inlet system. Hydrogen fluoride is known to be one of the products of the hydrolysis of SOF_4 ($SOF_4 + H_2O$) \rightarrow SOF₂ + 2HF), and among the sulfur oxyfluorides, SOF₄ is particularly labile toward attack by water vapor.¹² SF_4 is even more sensitive, with a room-temperature rate constant for gasphase hydrolysis (SF₄ + H₂O \rightarrow SOF₂ + 2HF) which is 200 times higher than that for SOF₄.¹³ In SF₄-SF₆-CH₄ samples the apparent k for the reaction $SF_6^- + SF_4 \rightarrow SF_5^- + SF_5$ was found to decrease as a function of time following preparation of the particular mixture under study. The hydrolysis rate depended, to some extent, upon the prior history of the gas-handling and inlet manifold, but even overnight baking at 350 $^{\circ}\mathrm{C}$ under vacuum followed by preconditioning with SF4 did not prevent slow destruction of the sample. Under our driest conditions repetitive determinations of the k for F⁻ transfer at 298 K over a 1-h period exhibited a decrease of $\sim 15^{\circ}/h$ from the initial value. In addition, some SiF₅⁻ was always present in the composite mass spectra of mixtures containing SF4 immediately after sample makeup, in-

TABLE I: Rate Constants

reaction	$k_{298} \; (imes 10^{10})^a$	$k_{373} \ (imes 10^{10})^a$
$SF_6^- + SF_4 \rightarrow SF_5^- + SF_5$	7.4	5.0
$SF_6^- + SO_2 \rightarrow SO_2F^-, SF_5^-, SO_2F_2^-$	10.6	8.1
$SF_6 + SO_2F_2 \rightarrow \text{products}$	nr ^b	nr ^b
$SF_6^- + SOF_2 \rightarrow products$	nr ^b	nr ^b
$SO_2F^- + SOF_4 \rightarrow SOF_5^- + SO_2$	6.8	3.9
$SF_6^- + SOF_4 \rightarrow SOF_5^- + SF_5$	8.5	4.0
$SF_6^- + SiF_4 \rightarrow SiF_5^- + SF_5$	5.6	5.6
$SOF_5^- + SiF_4 \rightarrow SiF_5^- + SOF_4$	see text	see text

^{*a*} Units of cm³/(molecule·s), error limits assumed as $\pm 10\%$. ^{*b*} nr denotes no reaction ($k < 10^{-15}$). Electron exchange was also not detected.

Figure 3. Temperature dependence of rate constants, plotted as $\ln (k \times 10^{10})$, with units of k as 10^{-10} cm³/(molecule-s), versus $\ln T$, in kelvin. Reactions as labeled. Theoretical limiting k(collision) for the SF₆⁻ + SF₄ pair shown as a broken line.

Figure 4. Temperature dependence of rate constants, plotted as $\ln T (k \times 10^{10})$, with units of k as $10^{-10} \text{cm}^3/(\text{molecule-s})$, versus $\ln T$, with T in kelvin. Reactions as labeled. Theoretical limiting k(collision) for the SF₆ + SF₄ pair shown as a broken line.

dicating that some hydrolysis had already occurred in the manufacturer-supplied starting material. Therefore, the values of k quoted in Table I for the reaction $SF_6^- + SF_4$ should be considered lower limits.

Rate Constants. Rate constants derived for the various reactions at 298 and 373 K (100 °C) are summarized in Table I. The variation of k with temperature (T) for five reaction pairs is shown in Figures 3 and 4. The error bars indicate the repoducibility of replicate measurements at a given T. With the exception of the $SF_6^- + SiF_4$ pair, all of the systems exhibit a negative T coefficient in that k decreases with increasing temperature. This type of behavior has been observed previously in several classes of reactions involving cations, and in every case a plot of ln k versus

⁽¹²⁾ Van Brunt, R. J.; Sauers, I. J. Chem. Phys. 1986, 85, 4377.

 ⁽¹²⁾ Vali Bluit, R. S., Sadels, I. J. Chem. Phys. 1966, 63, 2577.
 (13) (a) Ruegsegger, W.; Meir, R.; Kneubuhl, F. K.; Schotzau, H. J. Appl.
 Phys. 1985, B37, 115. (b) Sauers, I.; Adcock, J. L.; Christophorou, L. G.;
 Ellis, H. W. J. Chem. Phys. 1985, 83, 2618. (c) Sauers, I.; Ellis, H. W.;
 Christophorou, L. G. IEEE Trans. Electr. Insul. 1986, EI-21, 111.

 $\ln T$ yields a straight line with a negative slope when the reaction efficiency becomes much less than unity. A detailed description of the various factors which are thought to influence the kinetics in those systems has been presented by Kebarle.⁹ Both the SF_6 + SOF₄ and SF₆⁻ + SO₂ pairs exhibit an asymptotic approach to limiting values at lower temperatures. Although this approach is gradual in the $SF_6^- + SO_2$ system, an abrupt change in slope appears to occur for the $SF_6^- + SOF_4$ reaction at approximately 270 K (ln T = 5.6). Sharp transitions of this type have been reported previously for hydride transfer¹⁴ and alkylation reactions¹⁵ as the collision efficiency approaches unity. Unfortunately, the polarizibility and dipole moment of SOF₄ are unknown; consequently, it is not possible to verify that the lower T value of 1.2 $\times 10^{-9}$ cm³/(molecule·s) indicated in Figure 3 corresponds to k(collision) for SF₆ and SOF₄. On the other hand, both the polarizibility $(3.8 \times 10^{-24} \text{ cm}^3)$ and dipole moment (1.61 D) of SO_2 are known, and application of the parametrization formalism for ion-polar molecule collisions of Su and Chesnavich¹⁶ to the $SF_6^- + SO_2$ pair yields a calculated k(collision) of 1.4×10^{-9} cm³/molecule·s) at 300 K. The experimental value at 300 K is $\sim 1.0 \times 10^{-9}$, corresponding to a reaction efficiency of 0.7. However, the contour of the plot (Figure 3) for this pair indicates that k is still increasing at the lowest experimental temperature (300 K); i.e., the limiting value has not been reached. Above 370 K, the variation of k with T may be expressed as k = 0.114 $\exp(-3.16 \ln T) \operatorname{cm}^3/(\operatorname{molecule} s)$. For the SF₆⁻ + SOF₄ reaction the analogous equation is $k = 0.124 \exp(-3.3 \ln T)$, which is applicable above 270 K. Lindinger et al.¹⁷ have investigated the kinetic energy (KE) dependence of the $SF_6^- + SO_2$ reaction at 300 K using a flow drift technique. Three product ions were found $(SO_2F^-, SF_5^-, and SO_2F_2^-)$, and a value for k of 1.0×10^{-9} cm³/(molecule·s) was measured for reaction of thermal ions (0.04-eV KE), in quantitative agreement with the present results. The reaction was also found to exhibit a negative energy dependence analogous to the negative T dependence observed here, with k decreasing to $\sim 1 \times 10^{-10}$ cm³/(molecule-s) at a KE of 0.5 eV. Streit⁸ has also reported a k of $(1.0 \pm 0.3) \times 10^{-9}$ cm³/(molecule-s) for this reaction at room temperature (thermal ions).

The variation of k with T for $SF_6^- + SF_4 \rightarrow SF_5^- + SF_5$ is shown in Figure 4. Measurements for this pair were complicated by hydrolysis and by the fact that some SF_5^- is also produced by dissociative electron attachment of SF₆ ($\sim 2.5\%$ of the SF₆⁻ signal) during the ionization pulse. Taken together, these factors induce a greater uncertainty than is characteristic of the other systems studied. However, it is clear from Figure 4 that this reaction pair also exhibits a negative T coefficient, and the contour of the plot indicates a smooth transition to a limiting low T value similar to that found for the $SF_6^- + SO_2$ reaction. The value of k at 298 K is approximately 7.4×10^{-10} cm³/(molecule-s), which is nearly equal to the collision k at this temperature (8.5×10^{-10}) . The latter can be calculated directly since values for the dipole moment (0.632 D) and polarizibility (6.02 \times 10⁻²⁴ cm³) are available.⁷

The reaction $SO_2F^- + SOF_4 \rightarrow SOF_5^- + SO_2$ also shows a negative T dependence, with no indication of a transition to a limiting value over our experimental range of 298-379 K (Figure 4). Again, the $\ln k$ versus $\ln T$ plot appears to give a straight line, with $k = 8.06 \times 10^{-5} \exp(-2.05 \ln T) \text{ cm}^3/(\text{molecule} \cdot \text{s})$. The last system studied as a function of T was the $SF_6^- + SiF_4$ pair. In this case no variation in reactivity was observed over the experimental range of 298-508 K (Figure 4). Within these limits F transfer to produce SiF_5^- was found to proceed with a k of (5.6 ± 0.8) $\times 10^{-10}$ cm³/(molecule·s), which corresponds to a collision efficiency of unity since the Langevin capture rate constant for this pair is $5.5 \times 10^{-10} \text{ cm}^3/(\text{molecule} \text{s})$. (SiF₄ has no dipole moment.) The negative temperature coefficients observed for the various F⁻ transfer reactions cannot be interpreted rigorously due to the lack of accurate thermochemical information. However,

the only system not showing a negative T dependence is the SF_6^- + SiF_4 pair, and this is also the only combination in which the neutral reactant has no permanent dipole moment. It is expected that the reactivity of ions with polar molecules will decrease slightly as T increases. This results from the fact that the total k(collision) is expected to exhibit a rather complex inverse T dependence.¹⁶ The effect of T on the predicted k(collsion) is quite gradual, however, and is shown in Figure 3 for the $SF_6^- + SO_2$ pair and in Figure 4 for the $SF_6^- + SF_4$ pair. Comparison of the experimental k's with k(collision) demonstrates that the observed decreases are substantially in excess of those predicted simply on the basis of variations in the capture rate constants. The presence of a permanent dipole in the colliding neutral (A) can influence the alignment within $(SF \cdot A)$ collision complexes, resulting in an internal chemical barrier to F⁻ transfer (low entropy transition state). When this situation occurs, a negative temperature coefficient is often observed in particle-transfer reactions.⁹ We should note, however, that the overall process $SF_6^- + SiF_4 \rightarrow SiF_5^-$ + SF₅ is also the most exothermic reaction of any of those studied (see section on Fluoride Affinities), creating a condition which may tend to overwhelm any special properties of the $(SF_6 \cdot SiF_4)$ collision complex which are common to the other pairs studied. Therefore, the relationship which appears to exist between a negative T dependence and dipole moment may be coincidental.

Hydration of SOF_5^- . A ΔG° of -5.1 kcal/mol was measured for the equilibrium $SOF_5^- + H_2O \leftrightarrow SOF_5^- H_2O$ at 297 K. Combining this value with an estimated ΔS° of 21 ± 2 eu, which is typical of ΔS° values for monohydration of inorganic anions,¹⁸ gives a ΔH° for the SOF₅- H_2O association ion of -11.3 ± 0.6 kcal/mol. For comparison, the ΔH° (binding enthalpy) in SF₆-H₂O is -10.5 kcal/mol,^{17b} indicating that SOF₅-H₂O is a slightly more stable complex. We should mention that slow hydrolysis of SOF₄ was noted during the course of this determination. This condition did not affect the equilibrium measurement due to the large excess of H_2O (see Experimental Section) and the fact that a knowledge of the concentration of SOF_4 is not required for evaluation of the equilibrium constant. That hydrolysis was occurring in these wet samples was evident from the composite mass spectra, which showed SiF5⁻ and SOF_5 -HF as terminal ions (see section on Hydrolysis).

Fluoride Affinities. The vapor-phase fluoride affinities of a variety of organic and inorganic molecules have been reported in a series of articles¹⁹ by Larson and McMahon (F⁻ affinity defined as ΔH_D° for the dissociation AF⁻ \rightarrow A + F⁻). Using ICR spectroscopy, they have established an extensive absolute affinity scale based on ΔG° measurements for numerous interlocking equilibria of the type $A_1F^- + A_2 \leftrightarrow A_2F^- + A_1$ and incorporating calculated ΔS° values for each reaction pair. For sulfur-containing molecules pertinent to this study, the following F⁻ affinities were reported (kcal/mol): SO₂F₂, 35.8; SOF₂, 37.4; SF₄, 43.8; and SO₂, 43.8. Bracketing experiments also gave an estimated value of 62 ± 4 kcal/mol for $\Delta H_D^{\circ}(\text{SiF}_4-\text{F})$. The present work supports this ordering and establishes the sequence SOF2, SO2F2 $\langle SF_5 \langle SF_4 \rangle \langle SO_2 \rangle \langle SOF_4 \rangle \langle SiF_4$. The difference in F affinities between SOF_4 and SiF_4 was also determined here to be 2.2 ± 0.4 kcal/mol via direct equilibrium measurements. The relative positioning of SF_5 within our ladder results from the fact that no reaction of SF_6^- was found with either SOF_2 or SO_2F_2 , while F^- transfer to SF_4 was found to proceed efficiently. According to the scale of Larson and McMahon, this places $\Delta H_{\rm D}^{\circ}(\rm SF_5-F^-)$ within the range 37.4-43.8 kcal/mol. The F⁻ affinity of SF₅ can be estimated independently from the overall enthalpy change associated with the reaction $SF_5 + F^- \rightarrow SF_6^-$, providing all of the necessary heats of formation are available. A value for $\Delta H_{f}^{\circ}(SF_{6}^{-})$ can be calculated from the relationship $SF_6 + e^- \rightarrow SF_6^- + EA$. (EA denotes electron affinity.) Combining the recent value^{10a} of EA (SF₆) = 24.2 ± 2 kcal/mol with

⁽¹⁴⁾ Meot-Ner, M.; Field, F. H. J. Chem. Phys. 1976, 64, 277.

⁽¹⁴⁾ Medi-Ner, M., Fleid, F. H. J. Chem. Phys. 1976, 04, 277.
(15) Sen Sharma, D. K.; Kebarle, P. J. Am. Chem. Soc. 1982, 104, 19.
(16) Su, T.; Chesnavich, W. J. Chem. Phys. 1982, 76, 5183.
(17) Lindinger, W.; Albritton, D. L.; Fehsenfeld, F. C. as reported in Ferguson, E. E. Int. J. Mass. Spectrom. Ion Phys. 1976, 19, 53.

^{(18) (}a) Keesee, R. G.; Castleman, A. W. J. Phys. Chem. Ref. Data, in press. (b) Sieck, L. W. J. Phys. Chem. 1986, 90, 6684. (c) Sieck, L. W. J.
 Phys. Chem. 1985, 89, 5552 and references cited therein.
 (19) Larson, J. W.; McMahon, T. B. J. Am. Chem. Soc. 1985, 107, 766

and references cited therein.

Figure 5. Normalized ion intensities observed as a function of time following pulsed ionization at 293 K of a sample of 0.1 mole fraction SF_6 in CH_4 prior to decomposition of the SF_6 in a negative corona discharge. Total pressure is 1.25 Torr. Data are displayed for every fifth channel.

Herron's²⁰ recommended ΔH_f° of 291.7 ± 0.2 kcal/mol for SF₆, it follows that $\Delta H_f^{\circ}(SF_6)$ is -315.9 ± 2 kcal/mol based on currently available information. Since $\Delta H_f^{\circ}(\mathbf{F})$ is well-defined as -59.5 ± 0.9 kcal/mol,²¹ and taking $\Delta H_{\rm f}^{\circ}(\rm SF_5)$ as $-218.1 \pm$ 3.2,²⁰ a F⁻ affinity for SF₅ of 38.3 \pm 3.9 kcal/mol results from the calculated energy requirement for the dissociation $SF_6 \rightarrow$ SF₅ + F^- (±3.9 kcal/mol is the simple propagated error). Considering the possible uncertainty in the EA value, which was obtained from ion-molecule equilibria measurements, as well as the number of individual heats of formation required for the various neutrals, the agreement between the independent value of 38.3 \pm 3.9 and the experimental limits 37.4 $\leq \Delta H_{\rm D}^{\circ}({\rm SF_5-F^-})$ \leq 43.8 kcal/mol apparently imposed by the measurements of Larson and McMahon is gratifying and certainly within the possible uncertainty introduced by combining calculated ΔS° values with direct ΔG° measurements to generate a ΔH° in the ICR studies (quoted as $\pm 2 \text{ kcal/mol}$).

Sequential Negative Ion Chemistry in Discharged SF₆. In order to probe the identities of the successive negative charge carriers present during electrical discharge in SF₆, a sample previously exposed to partial corona decomposition was subjected to pulsed-kinetic analysis. Figure 5 shows the time-dependent ion profiles observed in the starting material (conditions listed in figure legends). Trace quantities of SO_2 were apparently present, as indicated by the low level formation of SF_5^- , $SO_2F_2^-$, and $SO_2F^$ at longer reaction times. Otherwise, the composite spectrum was found to be clean in that no other ions exceeding 0.1% of total ionization were detected up to 20-ms analysis time. The fractional yields of SF_5^- , $SO_2F_2^-$, and SO_2F^- at 5 ms equate to a concentration of 2 ppm of SO_2 based on the measured k for $SF_6^- + SO_2$ \rightarrow products of 1 × 10⁻⁹ cm³/(molecule s) at 300 K. This same sample was subjected to slow decomposition in a negative point-plane corona discharge as described in the Experimental Section. The major discharge byproduct under these conditions is expected to be SOF_4 , with smaller quantities of SO_2 , SOF_2 , SO_2F_2 , and hydrolysis products such as HF. The yields of stable di- and polysulfur-containing compounds have not been determined, but are expected to be minimal. Figure 6 shows the initial anionic ion-molecule sequence occurring after pulsed ionization of the partially decomposed sample. Conditions were identical with those used to generate the data shown in Figure 5 except for an increase of a factor of 2 in the dilution factor. The accumulation of discharge byproducts and their subsequent chemistry

(20) Herron, J. T. J. Phys. Chem. Ref. Data 1987, 16, 1.

(21) Lias, S. G.; Liebman, J.; Bartmess, J.; Holmes, J.; Levin, R. J. Chem. Phys. Ref. Data, in press.

Figure 6. Normalized ion intensities observed as a function of time following pulsed ionization at 293 K of a sample of 0.05 mole fraction SF_6 in CH_4 after decomposition of the SF_6 in a negative corona discharge. Total pressure is 1.25 Torr. Data are displayed for every fifth channel.

induce a complex, but predictable, change in the temporal ion profiles. Three major features are evident: (i) SF₆⁻, the only significant ion produced initially, is replaced as the dominant charge carrier by SOF₅⁻ after a few milliseconds; (ii) the fractional yields of SO₂F⁻, SO₂F₂⁻, and SF₅⁻ are significantly increased over the undischarged sample, although remaining at low relative levels; and (iii) among all of the ions present, only SiF₅⁻ and SOF₅⁻ show fractional increases at longer diffusion times. The rapid disappearance of SF₆⁻ from the composite spectrum can be mainly ascribed to reaction with SOF₄. The yields of the minor ions SF₅⁻, SO₂F₂⁻, and SO₂F⁻ result from F⁻ transfer to small quantities of SO₂ and SF₄ produced in the discharge. Consistent with the F⁻ affinity scale, all of these intermediate ions react further with the major oxyfluoride present, SOF₄, to yield SOF₅⁻.

The appearance of SiF_5 as one of the terminal ions was not unexpected. As stated earlier, the hydrolysis of decomposition byproducts such as SF₄, SOF₄, SOF₂, SO₂F₂, etc., involving trace levels of water vapor results in the concurrent generation of HF. Other rapid reactions occurring within the active discharge zone, such as $F + H_2O \rightarrow OH + HF$, also yield HF directly.²² The net result is the gradual production of an otherwise stable product which reacts heterogeneously in turn with any silicon-containing material present in the discharge container to form SiF_4 , which eventually diffuses into the active region. We cannot identify with certainty the source of SiF4 in the present measurements. The reaction cell used for the corona-induced decomposition has a small internal quartz insulator but was otherwise free of silicon-containing components or contaminants (lubricants), as was the transfer line used for collection of the samples. Although the inlet system used for pulsed kinetic analysis does have additional sources of silicon (see section on Hydrolysis), there was no evidence that the fractional yield of SiF₅⁻ depended significantly upon the time interval between analysis and introduction of the discharged material into the mass spectrometer sample reservoir. On this basis it seems probable that the majority of the SiF_4 was slowly generated during the period in which the sample was contained in the discharge cell (120 h total, including 30.6 h of discharge). The long-term effect of trace SiF_4 on the composition of the negative charge carriers is shown in Figure 7. This sample of the discharged material, the same as shown in Figure 6, was not diluted with CH₄ in order to increase the rates of ion-molecule reaction with low-level products and more clearly identify the terminal ions (see conditions in figure legend). It is apparent from

⁽²²⁾ Walther, C. D.; Wagner, H. Ber. Bunsen-Ges. Phys. Chem. 1983, 87, 403.

Figure 7. Normalized ion intensities observed as a function of time following pulsed ionization at 293 K of the same sample of SF_6 for which data are shown in Figure 6, but undiluted by CH_4 . Pressure is 0.9 Torr. Data are displayed for every fifth channel.

the profiles that SiF_5^- will dominate the composite spectrum at analysis times beyond those possible with our instrumentation. As reported in the Experimental Section equilibrium was observed for the $SOF_5^- + SiF_4$ pair with a K_{eq} of 9 expected at 293 K for the F⁻ exchange $SOF_5^- + SiF_4 \leftrightarrow SiF_5^- + SOF_4$. The raw data of Figure 7 indicate that equilibrium was not attained in the partially decomposed sample under our pulsed analysis conditions since the SiF_5^-/SOF_5^- ratio was still slowly increasing at the longest reaction times. Combining the fact that the fractional intensities of SOF_5^- and SiF_5^- were equal at ~17 ms with a K_{eq} of 9 suggests that the concentration of SiF_4 was greater than 10% of the SOF_4 concentration in the discharged material since the limiting SiF_5^-/SOF_5^- ratio will certainly be greater than unity at reaction times sufficient to reach equilibrium under the conditions of Figure 7.

We must emphasize that this sample was subjected to moderate-to-heavy decomposition, with the total yield of detectable decomposition products approaching 1000 ppm of the starting material. These conditions were chosen in order to demonstrate the role of accumulated products in modifying the identify of the negative charge carriers during electrical breakdown. However, the yields of the various oxyfluorides and other byproducts are essentially linear with total discharge current^{1a} and are expected to affect the anionic chemistry even at very low conversion levels. For example, assume the following set of conditions: SF_6 at a pressure of 200 kPa (2 atm) and 300 K, only 10 ppm of reactive impurities either present in the starting material or generated by partial decomposition, and an average k for reaction of SF_6^- of 2×10^{-10} cm³/(molecule s), which we suggest is typical for low E/N (field strength) situations involving SF₆ as the bulk component.³ Using these values, solution of the standard second-order rate expression indicates that 90% of the SF_6^- produced initially will be replaced by other anions via reaction after only 20 μ s of transit time. It is clear from this straightforward calculation that the identity of the negative charge carrier(s) in measurements incorporating SF_6 cannot be defined with certainty in the absence of direct analysis of the composite kinetic mass spectrum. Particularly sensitive toward impurity involvement would be systems operating at elevated pressures (long diffusion times), such as drift cell experiments designed to provide information on mobilities and ion transport. The total particle density is material only in that diffusion times are pressure dependent and that reactive impurities will be of greater importance when ion transport is slow (low E/N). Our previous studies³ of SOF₄ production from corona discharges in various gas mixtures containing SF₆ indicates that deviations of the SOF_4 yield curves from linearity can be accounted for by destruction of SOF_4 via the reaction $SF_6^- + SOF_4$. However, other unidentified processes also appear to rapidly deactivate or consume SF_6 in the discharge gap. The present study suggests that the reaction $SF_6^- + SiF_4$ would be a significant competing destruction process at higher SiF₄ concentrations. At low levels, SiF₄ plays and indirect protective role by converting SOF5⁻ already produced into SOF_4 via the equilibrium $SOF_5^- + SiF_4 \leftrightarrow SiF_5^- + SOF_4$ (a situation analogous to that shown in Figure 7).

Acknowledgment. Both authors were supported in this research by the U.S. Department of Energy. L. W. Sieck was supported by the Office of Basic Energy Sciences, and R. J. Van Brunt was supported by the Office of Electric Energy Systems.

Registry No. SF_6^- , 25031-39-4; SO_2 , 7446-09-5; SOF_2 , 7783-42-8; SO_2F_2 , 2699-79-8; F_4OS , 13709-54-1; SF_4 , 7783-60-0; SiF_4 , 7783-61-1; F^- , 16984-48-8.