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a b s t r a c t

A new class of anti-biofilm compounds possessing 1,4-disubstituted-(1H)-1,2,3-triazolic cores was
designed. Their efficient synthesis was performed by means of click chemistry through 1,3-dipolar
cycloadditions. Two compounds were found to act as specific anti-biofilm agents against a gram negative
species.
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Biofilms, which present problems in many different areas, result
from the adherence of bacteria to surfaces. Although bacteria grow
very poorly when floating in water or biological fluids, they grow
extremely well on surfaces. Bacteria produce these biofilms, in
part, to help them attach to surfaces and bind to one another.1

Bacterial biofilms cause problems in medical health care since they
colonize implants such as artificial joints or catheters,2 while in
marine environment, formation of biofilms on immersed substrata
leads to major economic problems which conducted to the use of
toxic biocides to eradicate these communities.3,4 Although eradica-
tion of planktonic bacteria communities have been largely con-
trolled, it has been estimated that bacteria within a biofilm can
display up to 1000-fold increased resistance to antibiotic or biocide
treatment. In this context, design of original compounds which can
limit formation of bacterial biofilms is of great need in the directive
of the rational use of antibiotics and/or biocides. In this way, we
initiated a programme aimed to allow the discovery of new poten-
tial leads from marine organisms which could be optimized by the
preparation of analogues. Linear diterpenes eleganolone and ele-
ganediol were identified as major compounds from the brown alga
Bifurcaria bifurcata which crude extracts exhibited antibacterial
activities5 while more recently, meroditerpenes (derivatives from
geranylgeranyltoluquinol) were isolated from brown alga Halidrys
siliquosa and showed antibacterial properties against different
strain of gram negative bacteria (Fig. 1).6 Furthermore, another ter-
pene namely 3-(40-geranyloxy-30-methoxyphenyl)-2-trans prope-
noic acid isolated from Acronychia baueri Schott was reported for
its capacity to inhibit the formation of Porphyromonas gingivalis
ll rights reserved.
biofilm.7 For our purpose ‘click chemistry’ methodologies retained
our attention as an interesting process for the preparation of ana-
logues by mean of bioconjugations of a natural moiety (terpenoid)
and a synthetic part (related to the aromatic ring of meroditerp-
enes) through a triazole linker. A first polyprenyl-type library con-
taining 1,4-disubstituted triazoles was designed and reported to
exhibit anti-biofilm activities against a strain of Pseudoalteromonas
sp.8 However, since these compounds were obtained as Z/E mix-
tures from azido derivatives of terpenes, severe limitations of this
methodology resided in the difficulty to separate isomers and in
the final yield of pure E-isomers (27–60%). In continuation of our
investigations aimed to explore the chemical diversity around such
terpenic skeletons to probe anti-biofilm structure–activity rela-
tionships, we felt that the relatively simple structure of library A
invited the synthesis of new analogues. In this way, a new polypre-
nyl-type library B in which triazoles are obtained as pure E-isomers
was designed (Fig. 1).

In order to highlight analogies between the two series (A and B),
a molecular modeling study was performed with the 4-methoxy
derivatives (geranyl tail, R = OCH3) of each library.9 Results are
summarized in Figure 2. Although conformations of the two
compounds were similar, slight differences arised from these
calculations. Considering properties of library B versus library A,
the size of the triazolic linker between the terpenic unit and the
aromatic pharmacophore is longer of 1.76 Å, c Log(P) is lower and
an additional H-bonding site is located on the oxygen atom. Exam-
ination of electrostatic potential isosurface also highlighted
differences between the two series. In the two cases, two
electron-poor domains were highlighted: a large one constituted
of the terpenic chain and a smaller one constituted of the aromatic
ring, while an electron-rich domain is located of the triazole ring.
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Figure 1. Structure of targeted library B, natural diterpenoids and previously studied anti-biofilm agents (library A).

Figure 2. Conformations and properties of the two samples of library A (left) and B (right): electrostatic potential surfaces (up), the values are color-coded onto the total
electron density surface, with colors toward red indicating electron rich regions of the molecule.
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However, in the case of series B, this electron-poor area is extended
to the terpenic chain by overlapping the ether function. As these
elements should have their importance when considering
interactions with biological systems, we finally believe that design-
ing this new library should give some relevant informations in
terms of SAR in regards with anti-biofilm activities of such
compounds.

The practical interest of this second library resides in the facility
of preparation of aromatic azides from aromatic amines in situ, and
in the fact that resulting triazoles are obtained as pure E-isomers.
Synthesis of the targeted library was achieved by performing the
copper(I)-catalyzed 1,3-dipolar cycloaddition of organic azides
and alkynes resulting in the formation of 1,2,3-triazoles.10 In gen-
eral, these reactions usually proceed to completion in 6–36 h at
ambient temperature in water with a variety of organic co-sol-
vents, such as tert-butanol, ethanol, DMF, DMSO, THF, or CH3CN,
and this reaction is useful for large classes of azides and al-
kynes.11–15 Preparation of alkyne 1 and 2 was achieved as previ-
ously described.16,17 The reactions were investigated in a one pot
process without isolation of azides.18 In practice, all aromatic
azides were obtained from the corresponding amines by treatment
with sodium nitrite in acidic media for 2 h (HCl/H2O), followed by
addition of sodium azide (NaN3). Reactions were monitored by TLC
and after disappearance of the starting amine, a simple extraction
with dichloromethane led to the resulting azides to which a
solution of appropriate alkyne, CuSO4/sodium ascorbate in water/
ethanol mixture (50:50) was added. Choice of ethanol rather than
DMF, similar to our previous work, allowed an easier workup and a
better purity of products. All reactions were performed in good to
excellent yields at room temperature excepted for the 2-methoxy
derivatives 3, 12, which were obtained only in 5% and 7% respec-
tively. These poor yields can be explained by a probable steric
effect due to the methoxy group as well as by the nature of azides
which could be stabilized through a conjugation with the
2-methoxy group (ortho effect).19 These two derivatives were final-
ly obtained in good yield at 40 �C ( Scheme 1 and Table 1).20,21

Structures of all compounds were in good agreement with the
spectroscopic data.
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Table 1
Selected 1,2,3-triazolesa and biological screening against Pseudoalteromonas sp. D41
biofilm

Compounds n R Yield
(%)b

(%) of adhesiond

(brackets)e
EC50

(lM)

3 1 2-OCH3 80c 29 ± 9 (>90) 166 ± 14
4 1 3-OCH3 72 19 ± 6 (>90) 103 ± 10
5 1 4-OCH3 92 20 ± 8 (3 ± 8) 276 ± 132
6 1 3,5-(OCH3)2 63 76 ± 1 (>90) —
7 1 3,4,5-

(OCH3)3

96 36 ± 5 — —

8 1 3-OH 95 55 ± 24 (30 ± 6) —
9 1 4-OH 75 >90 — —
10 1 3-CO2H 87 32 ± 5 — 74 ± 8
11 1 4-CO2H 82 39 ± 9 — —
12 2 2-OCH3 75c 35 ± 7 (25 ± 7) —
13 2 3-OCH3 67 25 ± 4 (15 ± 39) 198 ± 33
14 2 4-OCH3 81 24 ± 6 (46 ± 7) 117 ± 13
15 2 3,5-(OCH3)2 57 76 ± 5 (0 ± 7) —
16 2 3,4,5-

(OCH3)3
91 50 ± 28 — —

17 2 3-OH 90 >90 (34 ± 2) —
18 2 4-OH 70 73 ± 29 — —
19 2 3-CO2H 92 >90 — —
20 2 4-CO2H 76 >90 — —
Eleganolone 3 — — 17 ± 11 — 174 ± 56
Eleganediol 3 — — 14 ± 6 — 224 ± 65

a All experiments were achieved in the same conditions of concentrations of
reactants, catalyst, and volume of solvents.

b Yield calculated from crude azides.
c Yield obtained at 40 �C.
d Percentage of adhesion at a concentration of 500 lM (% of adhesion).
e Values reported in brackets are those obtained for the corresponding analogues

of library A.8
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In order to assess anti-biofilm activity of these compounds as
well as the natural leads eleganolone and eleganediol against a
gram negative bacterial biofilm, a Pseudoalteromonas sp., strain
was chosen.22,23 All compounds were first screened at a concentra-
tion of 500 lM for their capacity to inhibit biofilm formation. At
this concentration, eleganolone and eleganediol showed the best
effect. Concerning the substituent effects on the aromatic ring,
mono-methoxy derivatives exhibit better activities than di or tri-
methoxy derivatives in the geranyl series (n = 1) as well as in the
farnesyl series (n = 2). Replacement of the methoxy group by a hy-
droxy group decreases the efficiency, and activities of the carbox-
ylic acids are modulated by the length of the terpenic chain.
When comparing the effect of derivatives of the previously de-
scribed library A and those of the present library B, further consid-
erations of structure–activity relationships can be highlighted.
Although it is difficult to affirm that the modification of the linker
enhance the activity, we can reasonably consider that in the case of
geranyl derivatives, the structure of the linker has an impact on the
activities of the methoxy derivatives since the second generation of
compounds are generally more active (except for the 4-methoxy
and 3-hydroxy derivatives), while in the case of the farnesyl
derivatives, the impact is moderate except for the 3,5-dimethoxy
derivative, which was the most potent compound of library A
(EC50 of E-isomer = 71 lM).

The more potent compounds 3, 4, 5, 10, 13, 14, as well as ele-
ganolone and elegandiol were selected to evaluate their EC50 (ex-
pressed as the effective concentration to inhibit 50% of the
bacterial adhesion). This evaluation showed a dose-dependent re-
sponse, since the most potent candidate at 500 lM was not the
best candidate of the selection. Three compounds 3, 5, 13 and
the two natural compounds were shown be finally inactive with
EC50 >150 lM. Two of them 4, 14 exhibited mild activities (respec-
tively 103 and 117 lM), and finally compound 10 was active at a
concentration of 74 lM. These value is in the range of the most
active derivative of library A bearing a farnesyl tail and
3,5-dimethoxy substituents on aromatic ring.

The further step was to investigate if these compounds exhib-
ited a specific anti-biofilm activity or if this observation was simply
related to a general toxic effect on the bacteria. In this way, the two
more active compounds 4 and 10 were tested for their capacity to
inhibit the growth of Pseudoalteromonas sp. (D41) using the antibi-
otic norfloxacin as a positive antibacterial reference.24,25 Experi-
ments were performed at the concentrations of 1, 2.5, 5, 10, 25,
80, 100 lM for each compound.26 Results showed that when com-
pared to norfloxacin, the two compounds 4, 10 exhibit no effect on
the bacterial growth even at high concentrations, indicating that
the anti-biofilm activity was not connected to antibacterial effect
(Fig. 3).
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Figure 3. Effect of compounds 4, 10 and norfloxacin on bacterial growth at concentrations of 10 lM (left) and 100 lM (right).
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In summary, from natural diterpenic frameworks, we have de-
signed biological active analogues in an efficient way allowing fur-
ther developments. Through the generation of this library, the
principal several relevant point when concerning SAR data in the
field of specific anti-biofilm activity is that, as hypothesized from
semi-empirical calculations which showed the similarities of the
two series, the nature of the linker modulates the activity but does
not generate fundamental changes in the biological response.
However, further studies are needed in order to highlight precisely
the effect of the terpenic chain. Finally, the low toxicity of the
derivatives allows us to focuses our interest in the development
of these molecules as non-toxic anti-biofilm compounds for poten-
tial use as non toxic co-biocides or co-antibiotics in view of rational
eradication of persistent biofilms. In this way, further studies are
actually in course in order to optimize the nature of the linker as
well as to define the mechanism of action of this class of
compounds.
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by three hand washings (36 g/L NaCl solution). The DAPI was then solubilized
in 200 lL of a 95% ethanol solution. Fluorescence was measured (kexc = 380 nm,
kem = 495 nm) using an Infinit 200 micro-plate fluorescence reader (TECAN,
Lyon, France). The dose-response curves fitting and the determination of the
EC50 for each molecule were achieved using GraphPad Prism software.
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26. Typical procedure for antibacterial assays: The antibacterial assay was
performed on Pseudoalteromonas sp. strain D41. The strains were grown on
VNSS at 20 �C under shaking (120 rpm) and sampled in the exponential phase.
The culture was subculture at an OD600 of 0.1 in VNSS. 200 lL of VNSS was
inoculated on border-rowwells of the 96-well PS microtiter plates
(steril,Greiner Bio-one Cellstar�). The 6th column was inoculated with
180 lL of VNSS and 20 lL of the bacterial subculture as a growth control.
The 10 wells of lines A and G were filed with 180 lL of VNSS and 20 lL of
Norfloxacin (standard biocides) or natural products at varied concentrations.
The others wells were filled with 160 lL of VNSS, 20 lL of the bacterial
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