Medicinal Chemisticaltech Library

Subscriber access provided by Caltech Library

Chemical Space Exploration Around Thieno[3,2-d]pyrimidin-4(3H)-one Scaffold led to a Novel Class of Highly Active Clostridium difficile Inhibitors

Xuwei Shao, Ahmed AbdelKhalek, Nader S. Abutaleb, Uday Kiran Velagapudi, Sabesan Yoganathan, Mohamed N. Seleem, and Tanaji T Talele

J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.9b01198 • Publication Date (Web): 04 Oct 2019 Downloaded from pubs.acs.org on October 6, 2019

Just Accepted

Article

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Chemical Space Exploration Around Thieno[3,2*d*]pyrimidin-4(3*H*)-one Scaffold led to a Novel Class of Highly Active *Clostridium difficile* Inhibitors

Xuwei Shao[†], Ahmed AbdelKhalek[‡], Nader S. Abutaleb[‡], Uday Kiran Velagapudi[†], Sabesan Yoganathan[†], Mohamed N. Seleem^{*,‡,⊥}, Tanaji T. Talele^{*,†}

[†] Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439-0001, United States

[‡] Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana 47907-2027, United States

¹ Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette,

Indiana 47907-2027, United States

ABSTRACT: *Clostridium difficile* infection (CDI) is the leading cause of healthcare-associated infection in the United States. Therefore, development of novel treatments for CDI is a high priority. Toward this goal, we began in vitro screening of a structurally diverse in-house library of 67 compounds against two pathogenic *C. difficile* strains (ATCC BAA 1870 and ATCC 43255), which yielded a hit compound, 2-methyl-8-nitroquinazolin-4(3*H*)-one (**2**) with moderate potency (MIC = 312/156 μ M). Optimization of **2** gave lead compound **6a** (2-methyl-7-nitrothieno[3,2-*d*]pyrimidin-4(3*H*)-one) with improved potency (MIC = 19/38 μ M), selectivity over normal gut microflora, CC₅₀s >606 μ M against mammalian cell lines, and acceptable stability in simulated gastric and intestinal fluid. Further optimization of **6a** at *C*2-, *N*3-, *C*4- and *C*7-positions resulted in a library of >50 compounds with MICs ranging from 3 – 800 μ M against clinical isolates of *C. difficile*. Compound **8f** (MIC = 3/6 μ M) was identified as a promising lead for further optimization.

INTRODUCTION

Clostridium difficile is a Gram-positive spore-forming anaerobic bacterium that causes diarrhea and serious intestinal conditions. Toxigenic strains of *C. difficile* produce two glycosylating toxins: toxin A (TcdA/enterotoxin) and toxin B (TcdB/cytotoxin), both of which initiate damage of the colon, life-threatening inflammation of the gut (*C. difficile* colitis), and a spectrum of intestinal pathologies ranging from mild diarrhea to pseudomembranous colitis in the infected host.¹⁻³ The CDI, confined to the gastrointestinal tract, is usually triggered by the use of antibiotics, which disturbs the reproduction of normal and protective gut microflora allowing *C. difficile* to proliferate in the colon and to produce toxins.⁴ According to Centers for Disease Control and Prevention (CDC), about half a million cases of CDI occur each year in the US hospitals and long-term health care facilities with an estimation of 29,000 deaths. The prevalence and severity of CDI appear to be rising, partly due to a larger elder population with high risk factors, an increasing use of

Journal of Medicinal Chemistry

antibiotics, a higher proportion of hypervirulent bacterial isolates with increased production of lethal toxins A and B,⁵ and the emergence of hypervirulent epidemic strains (BI/Nap1/027).⁶ Currently available therapeutics (metronidazole, vancomycin and fidaxomicin) for CDI are inadequate in efficacy and/or tolerability.³

Both metronidazole and vancomycin treatments encounter substantial disease relapse.⁷ Metronidazole, an antibiotic with activity against a wide spectrum of anaerobic bacteria and parasites, is only recommended for the treatment of mild-to-moderate episodes and is inferior to vancomycin.⁸ Moreover, it is essentially 100% bioavailable leading to limiting concentrations in the colon, the prime location of CDI.9 Unlike metronidazole, vancomycin is minimally absorbed into the systemic circulation upon oral administration, thereby resulting in a high concentration in the colon.¹⁰ However, its broad spectrum of action against Gram-positive bacteria leads to a reduced microbiome diversity and the potential selection of vancomycin-resistant enterococci.¹¹ In addition, recurrent infection caused by newer and stronger C. difficile strains is a formidable preclinical challenge.¹² Both metronidazole and vancomycin treatments can worsen the condition of patients due to the loss of beneficial gut microbiota, and subsequent recurrence at an alarming rate. Selectively targeting C. difficile over normal gut flora has been considered as a strategy to achieve prevention of recurrence.¹³ Compared with vancomycin, fidaxomicin (a macrolide antibiotic) demonstrates a narrower spectrum of activity and selectivity towards C. difficile; however, it does not greatly improve sustained clinical responses especially against hypervirulent strains BI/NAP1/027.¹⁴ In view of the transient efficacy of these antibiotics, particularly of metronidazole and vancomycin, patients are predisposed to $\sim 25\%$ relapse rate as compared to 15% for fidaxomicin and a subsequent prolongation of C. difficile shedding and transmission.^{15, 16} Although fidaxomic treatment showed significantly lower rates of CDI recurrence compared to

metronidazole and vancomycin, it does so only in non-NAP1 CDI patients. In addition, clinical resistance to fidaxomicin has already been documented.¹⁵ Although 93% of fidaxomicin remains unabsorbed after oral administration, it is detectable in the range of 25-50 ng/mL in the plasma of patients,¹⁷ which leads to a serious concern of potent cytotoxic effect. Moreover, the cost of fidaxomicin treatment is prohibitively expensive partly due to complexity in synthesizing a large molecule with molecular weight beyond 1000 Da. Although ridinilazole (NCT02784002) is currently undergoing clinical trials for the treatment of CDI, it remains to be seen whether it would offer any benefit over current treatment.¹⁸ Despite unmet medical need, progress toward anti-*C. difficile* drug development has been very limited.¹⁹⁻²³ Therefore, the discovery of new "best-inclass" drugs to fight against *C. difficile* is needed to adequately address CDI.

To identify highly selective novel C. difficile inhibitors, we conducted whole-cell screening of a set of 67 in-house compounds (see Supporting Information, Table S1), comprising diverse structural classes (valine-, proline-, phenylalanine-, and tyrosine-derived thiazole peptidomimetics and quinazolinones. benzoxazines. indazoles, benzodioxines. imidazopyridines. and benzodioxepines) with molecular weights (MW) ranging from 164 to 652 Da. This screening method allowed us to ensure penetration of the C. difficile cell membrane as well as to obtain minimum inhibitory concentrations (MICs) as biological readouts to identify promising hit compounds. Each scaffold in the library had a sufficient number of structurally close analogues to produce robust results while capturing key SAR trends. This screening test identified two previously reported quinazolinone analogues²⁴ as hit compounds, 6-nitroquinazolin-4(3H)-one (1, MIC = $335/335 \ \mu$ M, hereafter, against two C. difficile clinical strains; ATCC BAA 1870/ATCC 43255) and 2-methyl-8-nitroquinazolin-4(3H)-one (2, MIC = $312/156 \mu$ M) (3% success rate) that showed moderate to weak MICs (Figure 1). In vitro MIC values were compared with three FDA

approved drugs, vancomycin, metronidazole and fidaxomicin. Compound **2** was established as a promising fragment hit for further medicinal chemistry optimization because of its selectivity profile toward multiple clinical strains of *C. difficile* over human normal microflora (MIC >1248 μ M) such as *Lactobacillus*, *Bifidobacterium*, *Escherichia coli*, and *Enterobacter cloacae*) (Figure **1**). Medicinal chemistry optimization of hit **2** via analogue synthesis produced compounds **3-5** with a loss of potency suggesting the contribution of the *C*8-nitro substituent. Next, we decided to implement scaffold hopping strategy, which led to identification of small MW scaffolds **6a** (MIC = 19/38 μ M), **6b** (MIC = 41/41 μ M) and **6c** (MIC = 38/38 μ M). Compound **6a** was prioritized for further SAR study based on its structural novelty, ease of synthetic derivatization, favorable potency, selectivity, and in vitro mammalian cell toxicity as shown in Figure 1. Herein, we report the synthesis, antibacterial screening, bactericidal investigation, cytotoxicity, and physicochemical property evaluations of analogues based on a newly identified lead scaffold **6a** as *C. difficile* inhibitors.

Figure 1. Antimicrobial profile of HTS hits 1-2, hit analogues 3-5, and scaffold hopping compounds 6a-6c along with positive standards and the plan for chemical space exploration of 6a-6c. VAN = vancomycin; FDX = fidaxomicin and MTZ = metronidazole.

RESULTS AND DISCUSSION

Chemistry. Fused pyrimidinone derivatives were synthesized starting from amino and methyl ester substituted aromatic/heteroaromatic intermediates (Scheme 1). Acetylation of commercially available chemicals **14-16** and **20-22** was performed using acetic anhydride, and subsequent treatment of intermediates with ammonium hydroxide to obtain compounds **2-4** and **7a**.²⁴ Hydrogenation of the nitro group of **2** yielded **5**.²⁵ The reaction conditions used for the preparation of **7b** and **7c** required an alternate strategy due to varying reactivity of starting materials. As illustrated, intermediates **24b** and **24c** were prepared by the same procedure that was used for the synthesis of compound **2** and heated in a mixture of NaOH, and aqueous methanol to obtain the

Scheme 1: Synthesis of Fused Pyrimidinone Derivatives^a

 O_2N

^{*a*}Reagents and conditions: (a) acetic anhydride, **14** (for **17**), **15** (for **18**), **16** (for **19**), **20** (for **23a**), **21** (for **23b**), **22** (for **23c**), rt, 12-24 h, 65-85%; (b) 30% NH₄OH, **17** (for **2**), **18** (for **3**), **19** (for **4**), **23a** (for **7a**), **23b** (for **24b**), **23c** (for **24c**), rt, 6-8 h, 62-70%; (c) H₂/Pd/C, MeOH, 50 psi, rt, 8 h, 70%; (d) Aq. NaOH, MeOH, **24b** (for **7b**), **24c** (for **7c**), reflux, 4-6 h, 35-40%; (e) HNO₃, conc. H₂SO₄, 0 °C - rt, 4-12 h, 40-82%.

To investigate the role of *C*2-methyl group, **7d-7g** with *C*2-H, -ethyl, -propyl, and -phenyl substituents were prepared from **20** and **23e-23g**, respectively.^{28, 29} The nitrated derivatives **6d-6f** were prepared from **7d-7f** by following the same method used for the preparation of **6a**.²⁷ Target compound **6g** was obtained from nitration of **7g** wherein two nitro groups (*C*7 of the bicyclic scaffold and *meta*-position of the *C*2-phenyl substituent) were introduced in the same reaction. To analyze the role of *C*7-nitro group, compounds with *C*7-methyl group (**7h** and **7i**) were synthesized from commercially available **25** over two-steps for **7h** and one-step for **7i** (Scheme 2).

Scheme 2: Synthesis of Thienopyrimidinone Derivatives^a

^{*a*}Reagents and conditions: (a) formamide, rt, 6-8 h, 60-65%; (b) HNO₃, conc. H₂SO₄, **7e** (for **6e**), **7f** (for **6f**), **7g** (for **6g**), 0 °C - rt, 6-8 h, 50-70%. (c) triethylamine, DCM, propionyl bromide (for **23e**), butanoyl bromide (for **23f**), benzoyl chloride (for **23g**), rt, 4-8 h, 80-85%; (d) 30% NH₄OH, **23e** (for **7e**), **23f** (for **7f**), **23g** (for **7g**), **23h** (for **7h**), rt, 6-8 h, 28-60%; (e) acetic anhydride, rt, 14 h, 75%.

To pursue more potent compounds, lead 6a was condensed with (un)substituted aromatic/heteroaromatic aldehydes using microwave conditions to obtain *C*2-styryl derivatives **8a-8n** (Scheme 3). ^{30, 31}

Scheme 3: Synthesis of C2-Styryl Derivatives of Thienopyrimidinone Core^a

^{*a*}Reagents conditions: benzaldehyde (for **8a**). furfural (for 2and (a) **8b**). thiophenecarboxaldehyde (for 8c), 4-formylbenzoic acid (for 8d), 5-formyl-2-furoic acid (for 8e), 4-fluorobenzaldehyde (for 8f), 2-fluorobenzaldehyde (for 8g), 3-fluorobenzaldehyde (for 8h), 4nitrobenzaldehyde (for 8i), 4-cyanobenzaldehyde (for 8j), 4-chlorobenzaldehyde (for 8k), 4ethynylbenzaldehyde (for 8I), 4-hydroxylbenzaldehyde (for 8m), 4-methoxybenzaldehyde (for 8n), AcOH, MW, 180 °C, 5-6 h, 20-37%.

A wide range of substituents were installed at *N*3-position of **6a** as shown in Scheme 4 to generate a library of *N*3-alkylated analogues. For example, **9a-9h** were prepared by reacting **6a** with various (un)substituted phenylalkyl halides in the presence of potassium carbonate in DMF.³² To avoid complexity associated with multiple nitrated products during the synthesis of target compounds **10a-10d**, we began the synthetic sequence with a selective nitration of the thiophene substrate **23a**. Thus, intermediate **23a** was nitrated using concentrated sulfuric acid and fuming nitric acid to produce **26**. Intermediate **26** was hydrolyzed in the presence of lithium hydroxide to

yield **27**, which was subsequently cyclized using acetic anhydride under reflux condition to obtain isatoic anhydride-like intermediate **28**. Intermediate **28** was then condensed with substituted anilines to produce target compounds **10a-10d**.³⁰ To prepare analogues with *N*3-ester (**11a** and **11b**), -carboxylic acid (**11c**), and -amide (**11d-11f**) substituents, **6a** was subjected to *N*-alkylation using respective halides in the presence of potassium carbonate and DMF to yield **11a** and **11b**.³² The ester **11a** was subjected to lithium hydroxide-mediated hydrolysis to obtain **11c**, and the resulting carboxylic acid was coupled with aromatic/aliphatic amines to yield **11d-11f**.³³

Scheme 4: Synthesis of N3-Substituted Derivatives of Thienopyrimidinone Core^a

^{*a*}Reagents and conditions: (a) benzyl bromide (for **9a**), (2-bromoethyl)benzene (for **9b**), 1bromo-3-phenylpropane (for **9c**), 4-nitrobenzyl bromide (for **9d**), 2-nitrobenzyl bromide (for **9e**), 3-nitrobenzyl bromide (for **9f**), 4-cyanobenzyl bromide, (for **9g**), 4-methoxybenzyl bromide (for **9h**), ethyl bromoacetate (for **11a**), *tert*-butyl 2-chloroacetate (for **11b**), K₂CO₃, DMF, rt, 8-12 h, 42-60%; (b) HNO₃, conc. H₂SO₄, -40 °C - rt, 4 h, 41%; (c) LiOH, THF, H₂O, **26** (for **27**), **11a** (for **11c**), rt, 8-10 h, 65-87%; (d) acetic anhydride, reflux, 3 h, 84%; (e) 4-methoxylaniline (for **10a**), 3-aminobenzoic acid (for **10b**), 4-isopropylaniline (for **10c**), 4-aminobiphenyl (for **10d**), AcOH, reflux, 6-8 h, 24-35%; (f) aniline (for **11d**), morpholine (for **11e**), *N*-methyl piperazine (for **11f**), EDC, HBTU, triethylamine, DCM, rt, 6h, 33-40%.

 As depicted in Scheme 5, compound **12a** was prepared from the reaction of **6a** with phosphorus oxychloride. The *C*4-chloro group was then nucleophilically displaced by aniline or morpholine under microwave condition to obtain **12b** or **12c**.³⁴

Scheme 5: Synthesis of C4-Substituted Analogues of Thienopyrimidinone Core^a

^{*a*}Reagents and conditions: (a) phosphorus oxychloride, reflux, 18 h, 40%, (b) aniline (for **12b**), morpholine (for **12c**), DMF, MW, 150 °C, 50-70 min, 35-45%.

Target compound **13a** with *C*2- and *N*3-disubstitution was prepared from the reaction of **9a** and 4-fluorobenzaldehyde. The 2,4-disubstituted compound **13b** was obtained by treating **8f** with phosphorus oxychloride, which upon nucleophilic substitution by morpholine led to **13c** as shown in Scheme 6.

Scheme 6: Synthesis of Disubstituted Analogues of Thienopyrimidinone Core^a

^{*a*}Reagents and conditions: (a) 4-fluorobenzaldehyde, AcOH, MW, 180 °C, 4 h, 22%, (b) phosphorus oxychloride, reflux, 18 h, 72%; (c) morpholine, DMF, MW, 150 °C, 1 h, 32%.

Elucidation of Regioisomers from Nitration Reaction. Variety of techniques, including X-ray crystallography, 1-D (¹H and ¹³C) and 2-D (HSQC and HMBC) NMR analyses, were employed to determine the regioselectivity of products obtained from the nitration reaction. We hypothesized that the position of the nitro group in representative compound **6a** would be at *C*7 instead of *C*6. This hypothesis was tested initially based on determination of the single X-ray crystal structure of **6a**-derived analogue **11b**, and supported by ¹H and ¹³C NMR chemical shifts analyses. Unambiguous assignment of regioisomer **11b** was accomplished by solving its single X-ray crystal structure (**Figure 2**) (for the details of crystallography see Supporting Information, **Table S2-S9**). The *C*6-thiophene proton chemical shift of **6a** is 9.30 ppm and **11b** is 9.36 ppm, and the thiophene *C*6 chemical shift of **6a** and **11b** are 138.99 and 139.98, respectively. These similar chemical shifts provide evidence for identical regioisomerism within compounds **6a** and **11b**.

Figure 2. Crystal structure of compound 11b.

There is no distinct sets of HMBC correlation present to differentiate the nitro group's position on the furan ring of compound **6b** (see Supporting Information, **Figure S1**). It was noted that the reactivity of the starting material **7b** is similar to the sulfur-isostere **7a**, from which compound **6a** was derived. Therefore, we believe that the nitro group is at 7-position in **6b** similar to that observed for **6a**. The HMBC spectra of **7b** illustrates that both *C*6 and *C*7 protons have same number of HBMC correlations (see Supporting Information, **Figure S2**).

Both HSQC and HMBC experiments were performed to investigate correlations between the carbons and protons within compound **7c**, which was the starting material for the nitration reaction to generate **6c**. The proton chemical shifts of thiophene protons in **7c** are assigned using the HSQC experiment (see Supporting Information, **Figure S3**). The correlation between individual carbon atom and the proton attached to it was evidenced by the HSQC spectrum of **7c** (see Supporting Information, **Figure S3**). Additional HMBC analysis of **7c** shows four HMBC correlations for the hydrogen at 5-position, and three HMBC correlations for the hydrogen at 7-position as expected

(see Supporting Information, **Figure S4**). The HMBC spectrum of compound **6c** shows four HMBC correlations for a single thiophene proton (see Supporting Information, **Figure S5**). These observations lead to the conclusion that the nitration reaction afforded the 7-nitro analogue as the exclusive regioisomer.

For analogues 6d - 6g, which are structurally analogous to 6a, we observed that the thiophene proton (9.31 – 9.41 ppm) and the carbon atom (138.89 – 139.21 ppm) with proton attached, have very similar chemical shift values compared to compound 6a (¹H 9.30 ppm, ¹³C 138.99 ppm) indicating the presence of a nitro group at 7-position.

Structure-Activity Relationship. An in vitro antibacterial screening protocol was designed to identify compounds with potent inhibitory activity toward C. difficile, and minimal effect on normal human microflora and mammalian cells. To achieve this goal, we tested target compounds against two pathogenic strains of C. difficile (ATCC BAA 1870 and ATCC 43255) as shown in Tables 1-5. MIC values (μ M and μ g/mL) are used to describe antibacterial activities of the compounds and used for the interpretation of SAR data. An initial SAR study was focused on elucidation of the role of nitro substituent on hit-to-lead scaffolds 6a-6c toward C. difficile inhibition as shown in Table 1. Des-nitro analogues of **6a-6c** gave **7a** (MIC >770/385 μ M), **7b** (MIC >852/852 μ M), and 7c (MIC = 192/768 μ M) with a substantial loss of anti-C. difficile potency. Other *des*-nitro derivatives such as 7d (MIC = $420/840 \ \mu$ M), 7g (MIC > $560/>560 \ \mu$ M), 7h (MIC >710/>710 μ M), and 7i (MIC >770/>770 μ M) were also manifested with a loss of potency. These results allowed us to conclude the essential role of a nitro substituent at the C7position. Next, we decided to elucidate the contribution of a C2-methyl group on anti-C. difficile potency (Table 1). Toward this goal, we prepared and tested C2-desmethyl (6d, MIC = $20/10 \,\mu$ M), C2-ethyl (6e, MIC = $35/35 \ \mu$ M), C2-propyl (6f, MIC = $67/67 \ \mu$ M) and C2-meta-nitrophenyl (6g,

 MIC = $50/50 \ \mu$ M) analogues exhibiting potency comparable to that of **6a**. Therefore, we hypothesized that further extensions at the *C*2-position may be tolerated while expanding chemical space to obtain potent compounds.

 Table 1. The Minimum Inhibitory Concentration (MIC) of Compounds with Core

 Modifications against Pathogenic C. difficile Strains

		М	IC
Compound	Structure	μΜ (μ	g/mL)
		ATCC BAA 1870	ATCC 43255
1	O ₂ N NH	335 (64)	335 (64)
2	NO ₂	312 (64)	156 (32)
3	O N N N	>794 (>128)	>794 (>128)
4	NH F	>718 (>128)	>718 (>128)
5	NH NH ₂	>730 (>128)	>730 (>128)

ACS Paragon Plus Environment

6a	O N O_2N O	19 (4)	38 (8)
6b	O N O_2N N	41 (8)	41 (8)
6с	O N N O ₂ N	38 (8)	38 (8)
6d	O N N O ₂ N	20 (4)	10 (2)
6e	O N O_2N N	35 (8)	35 (8)
6f	O N O_2N O	67 (16)	67 (16)
6g	O NH O ₂ N NO ₂	50 (16)	50 (16)
7a	S N N	>770 (>128)	385 (64)

7ь		>852 (>128)	>852 (>128)
7c	S NH	192 (32)	768 (128)
7d	S N N	420 (64)	840 (128)
7g	S NH N	>560 (>128)	>560 (>128)
7h	S N N	>710 (>128)	>710 (>128)
7 i	S N N	>770 (>128)	>770 (>128)
Vancomycin	-	0.7 (1)	0.3 (0.5)
Metronidazole	-	0.7 (0.125)	1.5 (0.25)
Fidaxomicin	-	0.1 (0.0625)	0.1 (0.0625)

Table 2 shows the MICs of C2-styryl analogues. The C2-styryl derivative **8a** yielded a promising MIC of 13/52 μ M. Considering the favorable result, we replaced the phenyl ring with isosteres such as furan-2-yl (**8b**, MIC = 27/27 μ M) and thiophen-2-yl (**8c**, MIC = 13/13 μ M) which suggested the tolerance for these isosteric replacements. Next, we prepared carboxy substituted

derivatives of **8a** and **8b** leading to **8d** (MIC = 46/184 μ M) and **8e** (MIC >384/>384 μ M) with a considerable loss of potency. This loss of potency may be attributed to unfavorable interactions with the target and/or poor permeability. On the contrary, 4-fluorophenyl analogue (**8f**, MIC = 3/6 μ M) showed excellent potency. A fluoro-scan was conducted to identify the most favorable position for a fluoro group, which led to 2-fluoro (**8g**, MIC = 6/12 μ M) and 3-fluoro (**8h**, MIC = 13/13 μ M) analogues. Since 4-fluoro analogue yielded the potent MIC value, we explored substitutions of different electron-withdrawing/-donating groups at the 4-position. While 4-nitro analogue (**8i**, MIC = 24/12 μ M) gave comparable activity, the 4-cyano analogue (**8j**, MIC >197/>197 μ M) proved detrimental. The 4-chloro analogue (**8k**, MIC = 6/6 μ M) being a classical isostere of 4-fluoro group retained potency similar to that observed for the 4-fluoro analogue. Retention of potency by 4-acetylene derivative (**8l**, MIC = 6/12 μ M) indicated a tolerance for the conformationally rigid acetylene group. Similar to the electron-withdrawing groups, electron-donating groups also showed favorable potency as exemplified by 4-hydroxy (**8m**, MIC = 26/13 μ M) and 4-methoxy (**8n**, MIC = 12/12 μ M) analogues.

Table 2. The Minimum Inhibitory Concentration (MIC) of Compounds with C2Substitutions against Pathogenic C. difficile Strains

		MI	С
Compound	Structure	μΜ (με	g/mL)
		ATCC BAA 1870	ATCC 43255
8a	O N N O ₂ N	13 (4)	52 (16)

8b	O NH O ₂ N	27 (8)	27 (8)
8c	O NH O ₂ N N N S NH S O ₂ N	13 (4)	13 (4)
8d	O NH O ₂ N COOH	46 (16)	184 (64)
8e		>384 (>128)	>384 (>128)
8f	O NH O ₂ N F	3 (1)	6 (2)
8g	O NH O ₂ N N N	6 (2)	12 (4)
8h	S NH O ₂ N F	13 (4)	13 (4)

8 i		24 (8)	12 (4)
8j	O_2N NO_2	>197 (>64)	>197 (>64)
8k	O S N N O C I	6 (2)	6 (2)
81	O NH O ₂ N	6 (2)	12 (4)
8m	O N N O ₂ N OH	26 (8)	13 (4)
8n	O NH O ₂ N	12 (4)	12 (4)
Vancomycin	-	0.7 (1)	0.3 (0.5)
Metronidazole	-	0.7 (0.125)	1.5 (0.25)
Fidaxomicin	-	0.1 (0.0625)	0.1 (0.0625)

The next SAR included investigation of various N3-substituents in lead **6a** as shown in Table 3. At the onset, we inserted N3-substituents such as benzyl (9a, MIC = $7/56 \mu$ M), phenylethyl (9b, MIC = $13/13 \mu$ M) and phenylpropyl (9c, MIC = $12/12 \mu$ M) to investigate the influence of varying linker length and obtained potency that was comparable to that observed for **6a**. Based on these analogues, it may be suggested that the binding pocket of N3-substituents is located further from the N3-position. Based on the favorable MIC values and straightforward derivatization, we chose benzyl analogue 9a for further SAR study. Scanning of the nitro group on the benzyl moiety at different positions produced 4-nitro (9d, MIC = $6/12 \mu$ M), 2-nitro (9e, MIC = $23/23 \mu$ M) and 3nitro (9f, MIC = $23/23 \mu$ M) analogues. Considering favorable contribution of 4-substituents, we prepared 4-cyano analogue (9g, MIC = $25/50 \ \mu$ M), which showed 4-fold reduced potency. The electron-donating 4-methoxy analogue (9h, MIC = $24/24 \ \mu$ M) also suffered a loss of activity compared to **9d**. To determine the role of flexible methylene linkers in N3-phenylalkyl analogues, we directly linked N3 with substituted phenyl rings leading to the synthesis of four derivatives (10a, MIC = $202/101 \ \mu$ M), (10b, MIC > $386/193 \ \mu$ M), (10c, MIC > $389/389 \ \mu$ M) and (10d, MIC = $352/176 \,\mu$ M) with rigid aniline substitutions. However, these analogues proved less potent than the benzyl counterparts, and thus suggesting the importance of the methylene bridge. Loss of activity of N3-aryl derivatives **10a-10d** suggests the presence of a geometrically restricted target binding pocket at the N3-vector and allows only for arylalkyl substitutent to bind effectively as seen in **9a-9c**. These findings prompted us to investigate untapped chemical space around **6a**, which led to N3-ethoxycarbonyl methylene analogue (11a, MIC = 54/54 μ M), N3-tertbutyloxycarbonyl methylene analogue (11b, MIC = 49/98 μ M), and methylene carboxylic acid (11c, MIC >475/>475 μ M). This data suggested the tolerance for an ester group at N3-position. The detrimental effect of a carboxyl group in **11c** may be due to poor permeability through C.

difficile cell membrane and/or unfavorable interaction with the target, which is consistent with the activity loss observed for the other carboxylic acid analogues **8d**, **8e**, and **10b**. Thus, we decided to convert unfavorable carboxyl group to an amide by coupling it with an aniline, morpholine, and *N*-methylpiperazine, respectively, to produce **11d** (MIC = $46/23 \mu$ M), **11e** (MIC = $47/94 \mu$ M), and **11f** (MIC = $91/91 \mu$ M) with a >5-fold recovery of activity compared to the carboxyl analogue **11c**. **Table 3. The Minimum Inhibitory Concentration (MIC) of Compounds with** *N***3**

		MIC	
Compound	Structure	μM (μg/	mL)
		ATCC BAA 1870	ATCC 43255
9a	O N O_2N	7 (2)	56 (16)
9b	$O_2 N$	13 (4)	13 (4)
9c	O N O_2N	12 (4)	12 (4)
9d	O N O_2N O_2N O_2N	6 (2)	12 (4)

1	
I	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
27	
34	
35	
36	
37	
38	
39	
40	
Δ1	
40	
42	
43	
44	
45	
46	
47	
48	
10	
49 50	
50	
51	
52	
53	
54	
55	
55	
50	
57	
58	

9e	O NO_2 S N O_2 O_2N	23 (8)	23 (8)
9f	O N O_2N N NO_2 NO_2	23 (8)	23 (8)
9g	O N O_2N O	25 (8)	50 (16)
9h	O N O_2N	24 (8)	24 (8)
10a	O_{2N}	202 (64)	101 (32)
10b	S N COOH	>386 (>128)	193 (64)
10c	O N O_2N	>389 (>128)	>389 (>128)

10d	O N O ₂ N	352 (128)	176 (64)
11a	$S \rightarrow N \rightarrow 0$ $O_2 N \rightarrow 0$	54 (16)	54 (16)
11b	$S \rightarrow N \rightarrow O \rightarrow O$ $O_2N \rightarrow O \rightarrow O$	49 (16)	98 (32)
11c	O N O ₂ N O H O H	>475 (>128)	>475 (>128)
11d	$S \rightarrow N = 0$ $O_2N \rightarrow 0$	46 (16)	23 (8)
11e	S N O N O N O O_2N N O N O N O N O	47 (16)	94 (32)
11f	S N N N N N O O_2N N O N	91 (32)	91 (32)
Vancomycin	-	0.7 (1)	0.3 (0.5)
Metronidazole	-	0.7 (0.125)	1. 5 (0.25)
<u> </u>			<u> </u>

Fidaxomicin	-	0.1 (0.0625)	0.1 (0.0625)

Our next SAR involved expansion of a chemical space around C4-position of **6a**, which led to synthesis of C4-chloro derivative (**12a**, MIC = $17/34 \ \mu$ M) as shown in Table 4. We noticed that **12a** featured a significant change in the scaffold structure (transforming sp³-hybridized *N*3 to sp²-hybridized *N*3) with increased planarity, and still exhibited comparable activity to that of **6a**. We took advantage of the ease of nucleophilically displacing the C4-chloro with aniline and morpholine to obtain **12b** (MIC = $28/14 \ \mu$ M) and (**12c**, MIC = $14/14 \ \mu$ M) with essentially retention of activity as that of **12a**.

Table 4. The Minimum Inhibitory Concentration (MIC) of Compounds with C4Substitutions against Pathogenic C. difficile Strains

		MIC			
Compound	Structure	$\mu M (\mu g/mL)$			
		ATCC BAA 1870	ATCC 43255		
12a	O_2N	17 (4)	34 (8)		
12b	HN S N O ₂ N	28 (8)	14 (4)		

12c	S N N O_2N N N N N N N N N N	14 (4)	14 (4)
Vancomycin	-	0.7 (1)	0.3 (0.5)
Metronidazole	-	0.7 (0.125)	1.5 (0.25)
Fidaxomicin	-	0.1 (0.0625)	0.1 (0.0625)

The SAR data gathered so far indicated the favorable contribution of *C*2-arylidene, *N*3-benzyl and *C*4-chloro derivatives for *C. difficile* growth inhibition. Next, we decided to combine these structural features into a single molecule to evaluate whether additive effect on potency could be achieved (Table 5). This has led to the synthesis and testing of *C*2-, *N*3-disubstituted analogue (**13a**, MIC = 157/157 μ M) with substantial loss of activity. The *C*2-, *C*4-disubstituted analogues **13b** (MIC = 95/95 μ M) and **13c** (MIC = 166/166 μ M) were also proved detrimental. This data suggests that the disubstitutions oppose each other's productive binding within respective pockets of the target. Overall summary of the SAR findings is depicted in Figure 3.

Table 5. The Minimum Inhibitory Concentration (MIC) of Compounds with C2-and N3- orC2- and C4-Disubstitutions against Pathogenic C. difficile Strains

		MIC			
Compound	Structure	$\mu M (\mu g/mL)$			
		ATCC BAA 1870	ATCC 43255		

13a	O O ₂ N F	157 (64)	157 (64)
13b	CI N O_2N F	95 (32)	95 (32)
13c	O N O_2N N O_2N F	166 (64)	166 (64)
Vancomycin	-	0.7 (1)	0.3 (0.5)
Metronidazole	-	0.7 (0.125)	1.5 (0.25)
Fidaxomicin	-	0.1 (0.0625)	0.1 (0.0625)

Figure 3. SAR summary of the thienopyrimidinone series of anti-*C. difficille* agents.

After exploration of the chemical space around lead compound **6a**, we sought to investigate the killing kinetics of the most potent compound in the series, **8f**. The minimum bactericidal concentration (MBC) of compound **8f** was 6 μ M, which is two-fold higher than its MIC. Since the MBC value is <3 times the MIC, we concluded that compound **8f** is bactericidal. To confirm the bactericidal activity of compound **8f**, we performed a time-kill assay and compared killing kinetics of **8f** to the standard anti-clostridial drugs, vancomycin and fidaxomicin, at 8 x MIC. Interestingly, compound **8f** completely eradicated the bacteria in 6 h after incubation as opposed to 24 h required for eradication by fidaxomicin (**Figure 4**).

Figure 4. Time-kill assay of compound 8f against C. difficile ATCC BAA 1870.

We next investigated the toxicity of representative compounds (**6a**, **8f**, **8g**, **8k**, **9a**, **9c**, **9d** and **12c**) against human and animal cells. As presented in Figure 5, the cytotoxicity of most potent compounds was tested against three cell lines; human colon colorectal adenocarcinoma (Caco-2

Journal of Medicinal Chemistry

cells), human ileocecal adenocarcinoma (HRT-18 cells) and African green monkey kidney cells (Vero cells). All tested compounds showed no toxicity against the tested cell lines at >256 μ M, indicating high selectivity of these class of compounds towards *C. difficile*.

Figure 5. In vitro cytotoxicity evaluation of the most potent compounds against 3 different cell lines; human colon colorectal adenocarcinoma (Caco-2), human ileocecal adenocarcinoma (HRT-18) and African green monkey kidney cells (Vero).

Since the killing of beneficial gut microflora leads to a significant growth of opportunistic pathogens such as *C. difficile* and subsequent colonization and recurrence of CDI, it is important to determine whether representative set of compounds (**6a**, **8f**, **8g**, **8k**, **9a**, **9c**, **9d** and **12c**) are selective toward *C. difficile* while sparing normal gut microflora. These compounds did not show any activity against human normal gut bacteria at >425 μ M, including *Lactobacillus*,

Bifidobacterium, E. coli, and *Enterobacter cloacae* (Table 6). On the contrary MICs of positive controls (vancomycin, fidaxomicin and metronidazole) ranged from $1 - 1496 \mu$ M.

Table 6. Activity of Selected Compounds against Human Normal Flora^a

	MIC (µM)											
	6a	8f	8g	8k	9a	9c	9d	12c	Vancomycin	Metronidazole	Fidaxomicin	Gentamicin
Lactobacillus gasseri HM-400	1212	>807	>807	>767	>425	>777	>739	>913	≤1	>1496	≤2	NT
Lactobacillus casei ATCC 334	>1212	>807	>807	>767	>425	>777	>739	>913	>177	47	>242	NT
Lactobacillus crispatus HM-103	>1212	>807	>807	>767	>425	>777	>739	>913	≤1	>1496	30	NT
Bifidobacterium bifidum ATCC 11863	>1212	>807	>807	>767	>425	>777	>739	>913	>177	>1496	>242	NT
Escherichia coli ATCC 25922	>1212	>807	>807	>767	>850	>777	>739	>913	NT	NT	NT	8
Enterobacter cloacae ATCC BAA-1143	>1212	>807	>807	>767	>850	>777	>739	>913	NT	NT	NT	≤1

NT = Not tested

Aqueous solubility plays an important role in determining the suitability of thienopyrimidinone derivatives for targeting the site of action i.e., intestine and also to facilitate preclinical to clinical transition, therefore we determined the solubility of representative potent compounds in PBS buffer (pH 7.3 to 7.5). Compound **6a** showed >500 μ g/mL solubility in PBS buffer whereas compounds **8f**, **9c**, **9d**, and **12c** exhibited lower solubility ranging from 10 to 20 μ g/mL. Stability of these compounds in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was also evaluated at two time points (Table 7). We observed that SGF stability followed the order of **9d>6a>8f>9c**=12c, whereas SIF stability was in the order of **9d>6a>12c>8f>9c**.

Table 7. Aqueous Solubility in PBS Buffer (pH 7.3 – 7.5) and Stability in SGF (Simulated Gastric Fluid) / SIF (Simulated Intestinal Fluid) of Representative Thienopyrimidinone Analogues

Compound	Aqueous solubility ^a (µg/mL)	Percentage remaining in SGF 4 h	Percentage remaining in SGF 8 h	Percentage remaining in SIF 4 h	Percentage remaining in SIF 8 h
6a	>500	90%	90%	91%	76%
8f	14.79	50%	48%	60%	51%
9c	10.76	45%	<10%	<10%	<10%
9d	12.73	>95%	>95%	>95%	90%
12c	18.69	<10%	<10%	79%	80%

^{*a*} Aqueous solubility was determined in PBS buffer at pH 7.3 – 7.5.

CONCLUSIONS

The SAR data gathered during hit identification and hit-to-lead exploratory medicinal chemistry revealed key pharmacophore features of thienopyrimidinone series that contributed to their potency against clinical strains of *C. difficile*. These observations included: a) the nitrophenyl portion of the hit **2** from the initial screening can be replaced with isosteric nitrothienyl and

nitrofuranyl to enhance potency in a ligand-efficient manner (e.g., 2 vs 6a-6c), b) the C2-methyl substitution does not significantly influence potency (e.g., 6a vs 6d-6f), c) the presence of an electron-withdrawing regiospecific nitro group on a bicyclic scaffold is indispensable to the potency of these compounds (e.g., 1 vs 2, 7a vs 6a, 7b vs 6b, and 7c vs 6c), d) the C2-methyl can be extended to an aryl/heteroaryl styrene moiety without significant loss of potency (e.g., 6a vs **8a-8c**, **8f-8i** and **8k-8m**), e) the N3-position of thienopyrimidinone scaffold can be substituted with various arylalkyl moieties, aliphatic esters or aliphatic amides (e.g., 6a vs 9a, 9d-9h, 11a, 11b and 11d-11f) with retention of potency; however, direct aromatic ring attachment led to a noticeable loss of potency (e.g., 6a vs 10a-10d), f) the C4 carbonyl oxygen can be replaced with chloro and aromatic/aliphatic amines with retention of activity (e.g., 6a vs 12a-12c), g) either C2-, N3- or C2-, C4-disubstitutions on pyrimidine ring of **6a** proved detrimental (e.g., **6a** vs **13a-13c**), and h) compounds (e.g., 8d, 8e, 10b, and 11c) with the carboxylic acid substituent showed detrimental activities. The most promising compound (8f) from this series exhibited excellent profile: i) potent and rapid killing against C. difficile strains, ii) excellent selectivity over human normal flora, iii) low cytotoxicity against mammalian cells, iv) increased GI stability, and v) desirable aqueous solubility. Unlike synthetically intractable and architecturally complex macrocyclic antibiotics, vancomycin (MW = 1449 Da) and fidaxomicin (MW = 1058 Da) that are difficult to structurally optimize, the current series of small MW thienopyrimidinones offer significant scope for further medicinal chemistry optimization to explore SAR, and improve in vitro activity without increasing the molecular size and complexity beyond 600 Da. EXPERIMENTAL

Chemicals and Bacterial Strains. Chemical reagents and solvents were purchased from Combi-Blocks Inc. (San Diego, CA), Aldrich Chemical Co. (Milwaukee, WI), TCI America

(Portland, OR), Gold Biotechnology (St. Louis, MO), AK scientific (Union City, CA), Alfa Aesar (Ward Hill, MA) and Sigma-Aldrich (St. Louis, MO), and were used as received. Bacterial strains (described in Supporting Information **Table S10**) were purchased from American Type Culture Collection (ATCC) or Biodefense and Emerging Infections Research Resources Repository (BEI resources). Bacterial media were purchased from Becton, Dickinson and Company (Cockeysville, MD) while cell culture media and fetal bovine serum were purchased from Fisher scientific (Waltham, MA).

Chemistry-General. All chemical reagents were verified for uniformity by thin layer chromatography (TLC) with silica gel as the adsorbent layer (250 microns) on aluminum backed plates (Agela Technologies, Torrance, CA). Reaction progress was monitored by TLC and visualized by ultraviolet (UV) light at 254 nm. ¹H NMR spectra (at 400 MHz) and ¹³C NMR spectra (at 100 MHz) were recorded on a Bruker 400 UltrashieldTM spectrometer. Chemical shifts (δ) of ¹H NMR and ¹³C NMR were reported downfield from the tetramethylsilane (TMS, internal standard) in parts per million (ppm) units. The ¹H NMR data are presented as stated below: chemical shift [multiplicity s (singlet), bs (broad singlet), d (doublet), t (triplet), g (quartet), hept (heptet), dd (doublet of doublets), and m (multiplet), number of protons, coupling constant]. The ¹³C NMR (proton decoupled, fluorine coupled) data are presented as below: chemical shift [multiplicity d (doublet)]. Flash chromatography was carried out on a Reveleris X2 flash chromatography system (Buchi Corporation, New Castle, DE). Preparative TLC was used for the purification of certain target compounds using Silica Gel GF 1000 um 20x20 cm glass backed plates from Analtech (Miles Scientific, Newark, DE). Purity of the target compounds was established by HPLC analysis using Waters 600 HPLC system with a Waters 717 plus autosampler, Waters 2487 dual 35 λ absorbance detector at 254 nm (Waters, Milford, MA) and a
C18 reverse phase column (Luna \$ 5 μ m C18 100 Å, LC Column 150 x 4.6 mm) at respective flow rate. Purity of the target compounds was established to be \geq 95% based on HPLC analysis. The purity of all target compounds was determined by the ratio of major peak area to the total combined area of peaks. Melting points were determined using Stuart digital melting point apparatus SMP20 (Cole-Parmer, Staffordshire, UK) and are uncorrected. Mass spectra were recorded for known target compounds using an Agilent 1260 infinity series liquid chromatography (LC) system (C18 column, Agilent InfinityLab poroshell 120, EC-C18, 2.7 µm 4.6 x 50 mm) connected to Agilent 6120 quadrupole mass spectrometer (MS). Aqueous solubility in PBS buffer and stability in simulated gastric fluid and simulated intestinal fluid were determined using Waters 600 HPLC system with a Waters 717 plus autosampler, Waters 2487 dual 36λ absorbance detector (Waters, Milford, MA) and a C18 reverse phase column (Symmetry C18, 5 μ m, 3.9 x 150 mm) at a flow rate of 1 mL/min. The X-ray intensity data were measured on a Bruker APEX-II CCD system equipped with a graphite monochromator and a Mo sealed tube ($\lambda = 0.71073$ Å). High resolution mass spectra (HRMS) were obtained for all unknown target compounds from the Columbia University Chemistry Department Mass Spectrometry Facility on a Waters Xevo G2-XS QToF mass spectrometer equipped with H-Class UPLC inlet and a LockSpray ESI source.

General Procedure for Synthesis of Thienopyrimidinone Analogues (Method A).²⁴ Commercially available amino and methyl ester substituted aromatic/heteroaromatic compound (1 eq mmol) was added to a flask containing acetic anhydride (20 mL). After stirring at room temperature for 12 to 24 h, excess liquid was removed under vacuum. The crude product was then purified using flash chromatography with dry loading method as described below. The crude residue was dissolved in acetone and methanol (50:50) mixture and 8 g of silica gel was added into the same flask. Completely dried solid was transferred into a solid loader and installed onto flash chromatography. Without further purification unless otherwise indicated, respective intermediates were stirred in 30% aqueous solution of ammonium hydroxide (30 mL) at rt until a complete conversion of starting material was examined by TLC. During the process, the mixture turned into a clear solution from a suspension. Ammonia was first released at a lower temperature under vacuum, and then water was evaporated at a higher temperature. A solid product was obtained by flash chromatography using dry loading method and dichloromethane/methanol as an eluent system.

General Procedure for the Insertion of a Nitro Group on the Core Structures (Method B).²⁷ Concentrated sulfuric acid (10 mL) was cooled down to 0 °C on ice bath. Respective scaffold (1 eq) was added and stirred for half an hour before drop wise addition of fuming nitric acid (1 mL). The resulting mixture was stirred for half an hour at 0 °C and 8 h at rt to produce yellow solution, which was then poured into excess ice water and neutralized with NaHCO₃ to pH 7. The solid precipitates were filtered and subsequently washed with water.³⁵

General Procedure for the Synthesis of C2-styryl Derivatives of Thienopyrimidinone Core (Method C).^{30, 31} To a 0.5-2 mL microwave vial, compound **6a** (1 eq), (un)substituted aromatic/heteroaromatic aldehydes (5 eq), and acetic acid (2 mL) were added. After the vial was crimped, the mixture was subjected to irradiation and the temperature was maintained at 180 °C for 1 h in a mono-cavity microwave initiator. After heating, compressed air was used to cool down the reaction mixture. The process was repeated 5 times and the resulting mixture was purified by flash chromatography using dry loading method and dichloromethane/methanol as an eluent system.

D).³² Compound **6a** (1 eq) was reacted with (un)substituted phenylalkyl halide or halo acetate (1.8

eq) in the presence of K_2CO_3 (2 eq) in *N*,*N*-dimethylformamide (15 mL) at rt for 8-12 h. After complete consumption of starting material monitored by TLC, the mixture was diluted with ethyl acetate (100 mL) and washed with saturated aqueous solution of NaHCO₃ and brine three times each. Organic layer was dried over anhydrous MgSO₄ and evaporated under vacuum. The resulting crude product was subjected to purification by flash chromatography using dry loading method and dichloromethane/methanol as an eluent system.

General Procedure for the Synthesis of *N*3-aryl Derivatives of Thienopyrimidinone Core (Method E).³⁰ Cyclic anhydride 28 (1 eq) was reacted with respective anilines (1.1 eq) for 6-8 h under reflux, using acetic acid as the solvent. The reaction was then vacuum dried to remove excess acetic acid and the target compounds were purified using flash chromatography with a mixture of dichloromethane and methanol as an eluting system.

2-Methyl-8-nitroquinazolin-4(3*H***)-one (2).²⁴ Intermediate 2-methyl-8-nitro-4***H***-benzo[d][1,3]oxazin-4-one 17** (206 mg, 1.0 mmol) was used as starting material to prepare compound **2** according to method A as an orange solid (123 mg, 60% yield), mp 247-249 °C. ¹H NMR (400 MHz; DMSO- d_6 ; TMS) δ 12.62 (s, 1H), 8.27 (dd, J = 24.6 Hz, 7.4 Hz, 2H), 7.59 (t, J = 7.7 Hz, 1H), 2.37 (s, 3H). ESI-MS: m/z 206.1 [M + H]⁺. HPLC flow rate 0.5 mL/min, t_R (acetonitrile/water 90:10) = 5.9 min, purity 99%.

2-Methylpyrido[2,3-*d*]**pyrimidin-4**(*3H*)-one (3).³⁶ Intermediate 2-methyl-4*H*-pyrido[2,3-d][1,3]oxazin-4-one **18** (162 mg, 1.0 mmol) was used as the starting material to synthesize target compound **3** according to method A as a white solid (78 mg, 48% yield), mp 275-278 °C [lit. mp 261-263 °C].³⁷ ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.50 (s, 1H), 8.90 (q, *J* = 5.2 Hz, 1H), 8.46 (dd, *J* = 12.0 Hz, 3.2 Hz, 1H), 7.48 (q, *J* = 17.2 Hz, 1H), 2.40 (s, 3H). ESI-MS: *m/z* 162.1 [M + H]⁺. HPLC flow rate 0.5 mL/min, *t*_R (acetonitrile/water 90:10) = 4.2 min, purity 99%.

 8-Fluoro-2-methylquinazolin-4(3*H***)-one (4).²⁴ Intermediate 8-fluoro-2-methyl-4***H***-benzo[d][1,3]oxazin-4-one 19** (179 mg, 1.0 mmol) was used for the preparation of **4** according to method A as a white solid (121 mg, 68% yield), mp 273-275 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.45 (s, 1H), 7.94 (d, *J* = 7.9 Hz, 1H), 7.73 – 7.68 (m, 1H,), 7.54 – 7.49 (m, 1H), 2.36 (s, 3H). ESI-MS: *m/z* 179.1 [M + H]⁺. HPLC flow rate 1 mL/min, *t*_R (acetonitrile/water 65:35) = 5.7 min, purity 97%.

8-Amino-2-methylquinazolin-4(3*H*)-one (5).²⁵ To a 50 mL beaker, compound 2 (205 mg, 1.0 mmol), Pd/C (20 mg) and ethanol (20 mL) were added and the beaker was transferred into a Parrhydrogenation vessel. Upon three times replacements of air by nitrogen, hydrogen gas was introduced until 50 psi. The reaction mixture was removed and filtered through celite after confirming no further consumption of hydrogen. Compound **5** was collected upon concentration under vacuum as a yellow solid (123 mg, 70% yield), mp 232-234 °C [lit. mp 226-230 °C].²⁴ ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.05 (s, 1H), 7.19 (dd, *J* = 7.7 Hz, 1.4 Hz, 1H), 7.11 (t, *J* = 15.3 Hz, 1H), 6.93 (dd, *J* = 7.7 Hz, 1.2 Hz, 1H), 5.57 (s, 2H), 2.34 (s, 3H). ESI-MS: *m/z* 176.1 [M + H]⁺. HPLC flow rate 1 mL/min, *t*_R (acetonitrile/water 65:35) = 4.9 min, purity 99%.

2-Methyl-7-nitrothieno[**3**,**2**-*d*]**pyrimidin-4**(**3***H*)**-one** (**6a**). Nitro group was introduced onto **7a** (166 mg, 1.0 mmol) according to method B to yield **6a** as a white solid (158 mg, 75% yield), mp 249-252 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.90 (s, 1H), 9.31 (s, 1H), 2.44 (s, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 159.23, 157.84, 149.26, 141.31, 138.99, 122.05, 21.87. HRMS (*m/z*): [M + H]⁺ calcd for C₇H₆N₃O₃S, 212.0124; found: 212.0099.

2-Methyl-7-nitrofuro[3,2-*d*]pyrimidin-4(3*H*)-one (6b). Compound 7b (150 mg, 1.0 mmol) was subjected to nitration according to method B to obtain 6b as a white solid (160 mg, 82% yield), mp 270-273 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.98 (s, 1H), 8.05 (s, 1H), 2.39 (s, 3H).

¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 158.39, 154.56, 152.56, 147.18, 137.32, 108.19, 21.73. HRMS (*m/z*): [M + H]⁺ calcd for C₇H₆N₃O₄, 196.0353; found: 196.0333.

2-Methyl-7-nitrothieno[3,4-*d***]pyrimidin-4(3***H***)-one (6c). Nitration of 7c (166 mg, 1.0 mmol) using method B gave 6c as a white solid (84 mg, 40% yield), mp 256-258 °C. ¹H NMR (400 MHz; DMSO-***d***₆; TMS) δ 12.43 (s, 1H), 8.84 (s, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz; DMSO-***d***₆; TMS): δ 161.18, 157.40, 147.01, 138.43, 135.17, 125.67, 22.41. HRMS (***m/z***): [M + H]⁺ calcd for C₇H₆N₃O₃S, 212.0124; found: 212.0131.**

7-Nitrothieno[3,2-*d*]pyrimidin-4(3*H*)-one (6d).³⁵ Compound 7d (152 mg, 1.0 mmol) was nitrated as per method B to produce 6d as a white solid (130 mg, 69% yield), mp 240-243 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 13.03 (s, 1H), 9.35 (s, 1H), 8.37 (s, 1H). ESI-MS: *m/z* 198.0 [M + H]⁺). HPLC flow rate 0.5 mL/min, *t*_R (acetonitrile/water 90:10) = 5.8 min, purity 96%.

2-Ethyl-7-nitrothieno[**3**,**2**-*d*]**pyrimidin-4**(**3***H*)-one (**6**e). Nitration of **7**e (180 mg, 1.0 mmol)) according to method B yielded **6**e as a white solid (158 mg, 70% yield), mp 270-273 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.87 (s, 1H), 9.31 (s, 1H), 2.70 (q, *J* = 5.7 Hz, 2H), 1.26 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 163.29, 157.96, 149.31, 141.51, 138.89, 122.25, 28.28, 11.93. HRMS (*m*/*z*): [M + H]⁺ calcd for C₈H₈N₃O₃S, 226.0281; found: 226.0289.

7-Nitro-2-propylthieno[3,2-*d*]pyrimidin-4(3*H*)-one (6f). The nitro group was inserted in compound 7f (194 mg, 1.0 mmol) according to method B to produce 6f as a white solid (156 mg, 65% yield), mp 282-284 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.88 (s, 1H), 9.31 (s, 1H), 2.66 (t, J = 7.5 Hz, 2H), 1.80 – 1.70 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 162.28, 157.95, 149.32, 141.50, 138.92, 122.21, 36.66, 20.95, 13.92. HRMS (*m/z*): [M + H]⁺ calcd for C₉H₁₀N₃O₃S, 240.0437; found: 240.0448.

7-Nitro-2-(3-nitrophenyl)thieno[3,2-*d***]pyrimidin-4(3***H***)-one (6g). Nitro group was introduced onto 7g** (228 mg, 1.0 mmol) according to method B to obtain **6g** as a white solid (159 mg, 50% yield), mp >310 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 13.56 (s, 1H), 9.41 (s, 1H), 9.05 (t, *J* = 4.1 Hz, 1H), 8.62 (d, *J* = 8.0 Hz, 1H), 8.47 (d, *J* = 8.0 Hz, 1H), 7.90 (t, *J* = 7.8 Hz, 1H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 158.36, 155.04, 148.84, 148.44, 141.70, 139.77, 134.86, 134.14, 130.95, 126.81, 123.53, 123.47. HRMS (*m/z*): [M + H]⁺ calcd for C₁₂H₇N₄O₅S, 319.0132; found: 319.0144.

2-Methylthieno[3,2-*d*]pyrimidin-4(3*H*)-one (7a). Compound 7a was prepared from methyl 3aminothiophene-2-carboxylate 20 (157 mg, 1.0 mmol)) using method A as a white solid (83 mg, 50% yield), mp 235-238 °C [lit. mp 242 °C].³⁸ ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.41 (s, 1H), 8.14 (d, *J* = 8.2 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 2.37 (s, 3H). ESI-MS: *m/z* 167.0 [M + H]⁺. HPLC flow rate 0.5 mL/min, *t*_R (acetonitrile/water 90:10) = 4.2 min, purity 98%.

2-Methylfuro[3,2-*d***]pyrimidin-4(3***H***)-one (7b).²⁶ Intermediate 24b** (50 mg, 0.3 mmol) was refluxed in a mixture of 4M NaOH aqueous solution (10 mL) and methanol (20 mL) for 1 h. The resulting mixture was then neutralized to pH 7 using aqueous solution of 1M HCl and extracted with ethyl acetate three times. Organic layers were combined, dried over anhydrous MgSO₄ and concentrated. The residue was purified using flash chromatography by dry loading method to obtain **7b** as a white solid (16 mg, 35% yield), mp 228-231 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.46 (s, 1H), 8.17 (d, *J* = 8.2 Hz, 1H), 6.88 (d, *J* = 8.2 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 155.46, 152.12, 150.32, 148.33, 136.16, 107.89, 20.98. HRMS (*m/z*): [M + H]⁺ calcd for C₇H₇N₂O₂, 151.0502; found: 151.0487.

2-Methylthieno[**3**,**4**-*d*]**pyrimidin-4**(**3***H*)**-one** (**7c**).³⁹ Compound **7c** was prepared from **24c** (55 mg, 0.3 mmol) according the procedure described for the preparation of **7b**. Compound **7c** was

obtained as a white solid (20 mg, 40% yield), mp 200-203 °C [lit. mp 232-233 °C].³⁹ ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 11.62 (s, 1H), 8.41 (d, *J* = 3.2 Hz, 1H), 7.63 (d, *J* = 3.3 Hz, 1H), 2.25 (s, 3H). ESI-MS: *m/z* 167.0 [M + H]⁺. HPLC flow rate 0.5 mL/min, *t*_R (acetonitrile/water 90:10) = 4.4 min, purity 96%.

Thieno[3,2-*d*]pyrimidin-4(3*H*)-one (7d).^{28, 40} To a round bottom flask containing 20 mL formamide, methyl 3-aminothiophene-2-carboxylate **20** (157 mg, 1.0 mmol) was added and the reaction mixture was allowed to stir at rt for 6 h. The solution was then diluted with 100 mL of ethyl acetate, washed 3 times with brine and the organic layer was dried over MgSO₄. Compound 7d was purified using flash chromatography by dry loading method as a white solid (99 mg, 65% yield), mp 222-224 °C [lit. mp 222-223 °C].⁴¹ ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.51 (s, 1H), 8.19 (d, *J* = 5.4 Hz, 1H), 8.16 (s, 1H), 7.41 (d, *J* = 5.3 Hz, 1H). ESI-MS: *m/z* 153.0 [M + H]⁺. HPLC flow rate 0.5 mL/min, *t*_R (acetonitrile/water 90:10) = 4.1 min, purity 97%.

2-Ethylthieno[3,2-*d*]pyrimidin-4(3*H*)-one (7e).³⁸ To synthesize 7e, intermediate 23e (170 mg, 0.8 mmol) was treated with 20 mL of 30% ammonium hydroxide aqueous solution and stirred for 6 h at rt. Excess ammonia was released at low temperature and liquid was removed at high temperature under vacuum to obtain 7e as a white solid (87 mg, 60% yield). ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.41 (s, 1H), 8.18 (d, *J* = 5.2 Hz, 1H), 7.30 (d, *J* = 2.6 Hz, 1H), 2.65 (t, *J* = 8.0 Hz, 2H), 0.97 (t, *J* = 7.8 Hz, 3H).

2-Propylthieno[3,2-*d***]pyrimidin-4(3***H***)-one (7f).³² Compound 7f was prepared from 23f (182 mg, 0.8 mmol) according to the procedure described for 7e as a white solid (90 mg, 58% yield). ¹H NMR (400 MHz; DMSO-***d***₆; TMS) \delta 12.39 (s, 1H), 8.14 (d,** *J* **= 5.2 Hz, 1H), 7.34 (d,** *J* **= 2.9 Hz, 1H), 2.60 (t,** *J* **= 7.6 Hz, 2H), 1.78 – 1.67 (m, 2H), 0.92 (t,** *J* **= 7.4 Hz, 3H).**

2-Phenylthieno[3,2-*d***]pyrimidin-4(3***H***)-one (7g).⁴² Compound 7g was prepared using 23g (209 mg, 0.8 mmol) according to the procedure described for 7e. Isolated product was a white solid (51 mg, 28% yield), mp 228-230 °C [lit. mp >240 °C].⁴² ¹H NMR (400 MHz; DMSO-***d***₆; TMS) \delta 12.41 (s, 1H), 8.12 (d,** *J* **= 5.42 Hz, 1H), 7.93 (d,** *J* **= 5.4 Hz, 2H,), 7.81 (d,** *J* **= 6.7 Hz, 1H), 7.68 – 7.58 (m, 3H). ESI-MS:** *m/z* **229.0 [M + H]⁺. HPLC flow rate 1 mL/min,** *t***_R (acetonitrile/water 75:25) = 3.3 min, purity 95%.**

2,7-Dimethylthieno[**3,2-***d*]**pyrimidin-4**(*3H*)**-one**(**7h**).⁴³ Compound **7h** was prepared according to method A from methyl 3-amino-4-methylthiophene-2-carboxylate **25** (171 mg, 1.0 mmol) as a white solid (77 mg, 43% yield), mp 255-257 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.39 (s, 1H), 7.78 (s, 1H), 2.39 (s, 3H), 2.28 (s, 3H). HRMS (*m*/*z*): [M + H]⁺ calcd for C₈H₉N₂OS, 181.0430; found: 181.0442.

7-Methylthieno[3,2-*d*]pyrimidin-4(3*H*)-one (7i).³⁵ Compound 7i was prepared using methyl 3-amino-4-methylthiophene-2-carboxylate 25 (171 mg, 1.0 mmol) according to the procedure described for 7d as a white solid (100 mg, 60% yield), mp 244-246 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.51 (s, 1H), 8.18 (s, 1H), 7.84 (s, 1H), 2.32 (s, 3H). ESI-MS: *m/z* 167.0 [M + H]⁺. HPLC flow rate 1 mL/min, *t*_R (acetonitrile/water 65:35) = 6.2 min, purity 95%.

(*E*)-7-Nitro-2-styrylthieno[3,2-*d*]pyrimidin-4(3*H*)-one (8a). Compound 8a was prepared using 6a (150 mg, 0.7 mmol) and benzaldehyde (0.36 mL, 3.5 mmol) according to method C as a brown solid (60 mg, 28% yield), mp >310 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 13.00 (s, 1H), 9.35 (s, 1H), 7.98 (d, *J* = 16.0 Hz, 1H), 7.69 (d, *J* = 6.9 Hz, 2H), 7.50 – 7.43 (m, 3H), 7.07 (d, *J* = 16.1 Hz, 1H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 157.90, 155.90, 149.42, 141.60, 140.33, 139.33, 135.08, 130.64, 129.63, 128.33, 122.33, 120.66. HRMS (*m/z*): [M + H]⁺ calcd for C₁₄H₁₀N₃O₃S, 300.0437; found: 300.0454.

(*E*)-2-(2-(Furan-2-yl)vinyl)-7-nitrothieno[3,2-*d*]pyrimidin-4(3*H*)-one (8b). Compound 8b was prepared using 6a (150 mg, 0.7 mmol) and furan-2-carbaldehyde (0.29 mL, 3.5 mmol) according to method C as a dark brown solid (45 mg, 22% yield), mp >310 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.99 (s, 1H), 9.34 (s, 1H), 7.90 (s, 1H), 7.81 (d, *J* = 15.5 Hz, 1H), 7.02 (d, *J* = 3.4 Hz, 1H), 6.82 (d, *J* = 15.5 Hz, 1H), 6.68 (q, *J* = 1.3 Hz, 1H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 157.87, 155.77, 151.27, 149.40, 146.30, 141.44, 139.28, 127.15, 121.92, 117.29, 116.09, 113.37. HRMS (*m*/*z*): [M + H]⁺ calcd for C₁₂H₈N₃O₄S, 290.0230; found: 290.0253.

(*E*)-7-Nitro-2-(2-(thiophen-2-yl)vinyl)thieno[3,2-*d*]pyrimidin-4(3*H*)-one (8c). Compound 8c was prepared using **6a** (150 mg, 0.7 mmol) and 2-thiophene carbaldehyde (0.33 mL, 3.5 mmol) according to method C as a dark brown solid (66 mg, 31% yield), mp >310 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.90 (s, 1H), 9.34 (s, 1H), 8.14 (d, *J* = 15.4 Hz, 1H), 7.74 (d, *J* = 4.9 Hz, 1H), 7.56 (d, *J* = 3.3 Hz, 1H), 7.19 (t, *J* = 3.7 Hz, 1H), 6.80 (d, *J* = 15.3 Hz, 1H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 157.88, 155.71, 149.42, 141.49, 140.17, 139.33, 133.30, 132.21, 129.89, 129.24, 122.03, 118.94. HRMS (*m*/*z*): [M + H]⁺ calcd for C₁₂H₈N₃O₃S₂, 306.0002; found: 306.0011.

(*E*)-4-(2-(7-Nitro-4-oxo-3,4-dihydrothieno[3,2-*d*]pyrimidin-2-yl)vinyl)benzoic acid (8d). Compound 8d was prepared using 6a (150 mg, 0.7 mmol) and 4-formylbenzoic acid (525 mg, 3.5 mmol) according to method C as a dark brown solid (58 mg, 24% yield), mp >310 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 13.10 (s, 2H), 9.36 (s, 1H), 8.04 – 8.00 (m, 3H), 7.80 (d, *J* = 8.2 Hz, 2H), 7.18 (d, *J* = 16.3 Hz, 1H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 167.27, 157.88, 155.54, 149.30, 141.58, 139.42, 139.13, 139.00, 132.17, 130.48, 128.40, 122.99, 122.68. HRMS (*m/z*): [M + H]⁺ calcd for C₁₅H₁₀N₃O₅S, 344.0336; found: 344.0349. Page 45 of 75

(*E*)-5-(2-(7-Nitro-4-oxo-3,4-dihydrothieno[3,2-*d*]pyrimidin-2-yl)vinyl)furan-2-carboxylic acid (8e). Compound 8e was prepared using 6a (150 mg, 0.7 mmol) and 5-formyl-2-furoic acid (490 mg, 3.5 mmol) according to method C as a dark brown solid (47 mg, 20% yield), mp >310 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 13.43 (s, 1H), 13.03 (s, 1H), 9.36 (s, 1H), 7.83 (d, *J* = 15.8 Hz, 1H), 7.34 (d, *J* = 3.6 Hz, 1H), 7.16 (d, *J* = 3.6 Hz, 1H), 7.05 (d, *J* = 15.8 Hz, 1H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 159.46, 157.70, 155.13, 153.92, 149.19, 146.31, 141.47, 139.39, 126.38, 122.53, 120.98, 120.09, 116.79. HRMS (*m/z*): [M + H]⁺ calcd for C₁₃H₈N₃O₆S, 334.0128; found: 334.0149.

(*E*)-2-(4-Fluorostyryl)-7-nitrothieno[3,2-*d*]pyrimidin-4(3*H*)-one (8f). Compound 8f was prepared from 6a (150 mg, 0.7 mmol) and 4-fluorobenzaldehyde (0.38 mL, 3.5 mmol) according to method C as a brown solid (44 mg, 20% yield), mp >310 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 13.00 (s, 1H), 9.34 (s, 1H), 7.96 (d, *J* = 16.0 Hz, 1H), 7.76 (dd, *J* = 10.2 Hz, 4.2 Hz, 2H), 7.32 (t, *J* = 8.9 Hz, 2H), 7.02 (d, *J* = 16.4 Hz, 1H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 163.50 (d, *J* = 247.8 Hz), 157.84, 155.77, 149.33, 141.47, 139.36, 138.97, 131.68 (d, *J* = 3.0 Hz), 130.52 (d, *J* = 8.2 Hz), 122.27, 120.45, 116.58 (d, *J* = 21.5 Hz). HRMS (*m*/*z*): [M + H]⁺ calcd for C₁₄H₉FN₃O₃S, 318.0343; found: 318.0363.

(*E*)-2-(2-Fluorostyryl)-7-nitrothieno[3,2-*d*]pyrimidin-4(3*H*)-one (8g). Compound 8g was prepared using 6a (150 mg, 0.7 mmol) and 2-fluorobenzaldehyde (0.38 mL, 3.5 mmol) according to method C as a dark brown solid (82 mg, 37% yield), mp 301-303 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 13.11 (s, 1H), 9.36 (s, 1H), 8.01 (d, *J* = 16.0 Hz, 1H), 7.80 (t, *J* = 3.7 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.37 – 7.31 (m, 2H), 7.18 (d, *J* = 16.4 Hz, 1H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 161.03 (d, *J* = 249.4 Hz), 157.87, 155.64, 149.30, 141.58, 139.41, 132.53 (d, *J* = 3.4 Hz), 129.44, 129.41, 125.68 (d, *J* = 3.4 Hz), 123.19 (d, *J* = 6.4 Hz), 122.75, 122.72 (d, *J* = 27.7

Hz), 116.73 (d, J = 21.8 Hz). HRMS (m/z): [M + H]⁺ calcd for C₁₄H₉FN₃O₃S, 318.0343; found: 318.0367.

(*E*)-2-(3-Fluorostyryl)-7-nitrothieno[3,2-*d*]pyrimidin-4(3*H*)-one (8h). Compound 8h was prepared using 6a (150 mg, 0.7 mmol) and 3-fluorobenzaldehyde (0.38 mL, 3.5 mmol) according to method C as a dark brown solid (73 mg, 33% yield), mp 304-307 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 13.03 (s, 1H), 9.36 (s, 1H), 7.96 (d, *J* = 16.2 Hz, 1H), 7.58 – 7.51 (m, 3H), 7.31 – 7.26 (m, 1H), 7.12 (d, *J* = 16.2 Hz, 1H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 162.99 (d, *J* = 244.1 Hz), 157.85, 155.59, 149.31, 141.60, 139.35, 138.88, 137.65 (d, *J* = 8.1 Hz), 131.57 (d, *J* = 8.3 Hz), 124.60 (d, *J* = 2.3 Hz), 122.61, 122.35, 117.27 (d, *J* = 21.4 Hz), 114.55 (d, *J* = 21.9 Hz). HRMS (*m*/*z*): [M + H]⁺ calcd for C₁₄H₉FN₃O₃S, 318.0343; found: 318.0341.

(*E*)-7-Nitro-2-(4-nitrostyryl)thieno[3,2-*d*]pyrimidin-4(3*H*)-one (8i). Compound 8i was obtained using 6a (150 mg, 0.7 mmol) and 4-nitrobenzaldehyde (529 mg, 3.5 mmol) according to method C as a dark orange solid (48 mg, 20% yield), mp >310 °C. ¹H NMR (400 MHz; DMSO*d*₆; TMS) δ 13.11 (s, 1H), 9.36 (s, 1H), 8.30 (d, *J* = 8.8 Hz, 2H), 8.04 (d, *J* = 16.0 Hz, 1H), 7.96 (d, *J* = 8.6 Hz, 2H), 7.26 (d, *J* = 16.1 Hz, 1H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 157.80, 155.19, 149.18, 148.22, 141.60, 141.49, 139.49, 137.67, 129.36, 125.01, 124.70, 123.00. HRMS (*m/z*): [M + H]⁺ calcd for C₁₄H₉N₄O₅S, 345.0288; found: 345.0333.

(*E*)-4-(2-(7-Nitro-4-oxo-3,4-dihydrothieno[3,2-*d*]pyrimidin-2-yl)vinyl)benzonitrile (8j). Compound 8j was prepared from 6a (150 mg, 0.7 mmol) and 4-cyanobenzaldehyde (459 mg, 3.5 mmol) according to method C as a dark brown solid (70 mg, 31% yield), mp >310 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 13.08 (s, 1H), 9.36 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 3H), 7.80 (d, *J* = 7.5 Hz, 2H), 7.17 (d, *J* = 15.7 Hz, 1H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 167.30, 157.99, 155.64, 149.29, 141.59, 139.38, 139.12, 138.95, 132.25, 130.47, 128.38, 123.09, 122.68. ESI-MS:

m/z 325.0 [M + H]⁺. HPLC flow rate 1 mL/min, $t_{\rm R}$ (acetonitrile/water 50:50) = 3.0 min, purity 95%.

(*E*)-2-(4-Chlorostyryl)-7-nitrothieno[3,2-*d*]pyrimidin-4(3*H*)-one (8k). Compound 8k was prepared using 6a (150 mg, 0.7 mmol) and 4-chlorobenzaldehyde (492 mg, 3.5 mmol) according to method C as a dark brown solid (47 mg, 20% yield), mp 307-308 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 13.02 (s, 1H), 9.35 (s, 1H), 7.95 (d, *J* = 15.9 Hz, 1H), 7.71 (d, *J* = 8.6 Hz, 2H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.07 (d, *J* = 16.1 Hz, 1H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 157.94, 155.74, 149.35, 141.57, 139.36, 138.86, 135.06, 134.04, 130.02, 129.66, 122.48, 121.54. HRMS (*m*/*z*): [M + H]⁺ calcd for C₁₄H₉ClN₃O₃S, 334.0048; found: 334.0072.

(*E*)-2-(4-Ethynylstyryl)-7-nitrothieno[3,2-*d*]pyrimidin-4(3*H*)-one (8l). Compound 8l was prepared from 6a (150 mg, 0.7 mmol) and 4-ethynylbenzaldehyde (455 mg, 3.5 mmol) according to method C as a dark brown solid (57 mg, 25% yield), mp >310 °C. ¹H NMR (400 MHz; DMSO d_6 ; TMS) δ 13.04 (s, 1H), 9.36 (s, 1H), 7.97 (d, J = 16.3 Hz, 1H), 7.70 (d, J = 8.3 Hz, 2H), 7.57 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 16.0 Hz, 1H), 4.39 (s, 1H).). ¹³C NMR (100 MHz; DMSO- d_6 ; TMS): δ 159.25, 157.89, 155.89, 149.41, 141.58, 140.31, 139.32, 138.94, 135.08, 130.63, 129.62, 128.32, 122.32, 120.65. HRMS (*m/z*): [M + H]⁺ calcd for C₁₆H₁₀N₃O₃S, 324.0437; found: 324.0463.

(*E*)-2-(4-Hydroxystyryl)-7-nitrothieno[3,2-*d*]pyrimidin-4(3*H*)-one (8m). Compound 8m was prepared using 6a (150 mg, 0.7 mmol) and 4-hydroxybenzaldehyde (427 mg, 3.5 mmol) according to method C as a dark brown solid (62 mg, 28% yield), mp >310 °C. ¹H NMR (400 MHz; DMSO- d_6 ; TMS) δ 12.90 (s, 1H), 10.09 (s, 1H), 9.34 (s, 1H), 7.91 (d, *J* = 15.7 Hz, 1H), 7.52 (d, *J* = 8.6 Hz, 2H), 6.87 – 6.82 (m, 3H). ¹³C NMR (100 MHz; DMSO- d_6 ; TMS): δ 160.14, 157.97, 156.46,

149.63, 141.53, 140.66, 139.25, 130.29, 126.14, 121.64, 116.76, 116.50. HRMS (*m/z*): [M + H]⁺ calcd for C₁₄H₁₀N₃O₄S, 316.0387; found: 316.0402.

(*E*)-2-(4-Methoxystyryl)-7-nitrothieno[3,2-*d*]pyrimidin-4(3*H*)-one (8n). Compound 8n was prepared using 6a (150 mg, 0.7 mmol) and 4-methoxybenzaldehyde (0.43 mL, 3.5 mmol) according to method C as a dark brown solid (81 mg, 35% yield), mp 294-297 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.92 (s, 1H), 9.34 (s, 1H), 7.94 (d, *J* = 15.5 Hz, 1H), 7.64 (d, *J* = 9.0 Hz, 2H), 7.03 (d, *J* = 8.2 Hz, 2H), 6.92 (d, *J* =15.5 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 161.41, 157.94, 156.28, 149.53, 141.53, 140.15, 139.21, 130.05, 127.68, 121.84, 117.93, 115.09, 55.82. HRMS (*m*/*z*): [M + H]⁺ calcd for C₁₅H₁₂N₃O₄S, 330.0543; found: 330.0573.

3-Benzyl-2-methyl-7-nitrothieno[3,2-*d***]pyrimidin-4(3***H***)-one (9a). Compound 9a was prepared from the reaction of 6a** (106 mg, 0.5 mmol) and benzyl bromide (0.11 mL, 0.9 mmol) according to method D as a white solid (72 mg, 48% yield), mp 220-221 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.36 (s, 1H), 7.38 – 7.28 (m, 3H), 7.22 (d, *J* = 7.3 Hz, 2H), 5.43 (s, 2H), 2.56 (s, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 160.06, 157.81, 147.49, 141.18, 139.77, 136.07, 129.31, 128.00, 126.89, 121.98, 47.03, 23.64. HRMS (*m/z*): [M + H]⁺ calcd for C₁₄H₁₂N₃O₃S, 302.0594; found: 302.0616.

2-Methyl-7-nitro-3-phenethylthieno[**3**,**2**-*d*]**pyrimidin-4**(*3H*)-one (**9b**). Compound **9b** was obtained from the reaction of **6a** (106 mg, 0.5 mmol) and (2-bromoethyl)benzene (0.12 mL, 0.9 mmol) according to method D as a white solid (66 mg, 42% yield), mp 227-229 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.33 (s, 1H), 7.35 – 7.24 (m, 5H), 4.28 (t, *J* = 7.8 Hz, 2H), 2.99 (t, *J* = 7.6 Hz, 2H), 2.56 (s, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 159.82, 157.35, 147.31,

 141.11, 139.52, 138.45, 129.30, 129.10, 127.19, 121.90, 46.37, 33.78, 23.37. HRMS (*m/z*): [M + H]⁺ calcd for C₁₅H₁₄N₃O₃S, 316.0750; found: 316.0766.

2-Methyl-7-nitro-3-(3-phenylpropyl)thieno[3,2-*d***]pyrimidin-4(3***H***)-one (9c).** Compound **9c** was obtained by reacting **6a** (106 mg, 0.5 mmol) with 1-bromo-3-phenylpropane (0.14 mL, 0.9 mmol) according to method D as a white solid (69 mg, 42% yield), mp 207-209 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.30 (s, 1H), 7.31 – 7.26 (m, 4H), 7.20 – 7.16 (m, 1H), 4.08 (t, *J* = 7.9 Hz, 2H), 2.71 (t, *J* = 7.6 Hz, 2H), 2.62 (s, 3H), 2.21 – 1.94 (m, 2H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 159.74, 157.41, 147.28, 141.33, 141.07, 139.35, 128.78, 128.72, 126.41, 121.86, 44.45, 32.77, 29.31, 23.32. HRMS (*m/z*): [M + H]⁺ calcd for C₁₆H₁₆N₃O₃S, 330.0907; found: 330.0927.

2-Methyl-7-nitro-3-(4-nitrobenzyl)thieno[3,2-*d***]pyrimidin-4(***3H***)-one (9d). Compound 9d was prepared by reacting 6a** (106 mg, 0.5 mmol) with 4-nitrobenzyl bromide (194 mg, 0.9 mmol) according to method D as a dark orange solid (104 mg, 60% yield), mp 218-220 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.38 (s, 1H), 8.21 (d, *J* = 8.7 Hz, 2H), 7.52 (d, *J* = 8.8 Hz, 2H), 5.55 (s, 2H), 2.56 (s, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 159.94, 157.75, 147.57, 147.37, 143.91, 141.21, 139.86, 128.20, 124.39, 121.97, 46.96, 23.70. HRMS (*m/z*): [M + H]⁺ calcd for C₁₄H₁₁N₄O₅S, 347.0445; found: 347.0456.

2-Methyl-7-nitro-3-(2-nitrobenzyl)thieno[3,2-*d*]**pyrimidin-4(3***H***)-one (9e). Compound 9e was obtained from the reaction of 6a** (106 mg, 0.5 mmol) and 2-nitrobenzyl bromide (194 mg, 0.9 mmol) according to method D as a white solid (95 mg, 55% yield), mp 190-192 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.38 (s, 1H), 8.23 (d, *J* = 8.2 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.61 (t, *J* = 8.0 Hz, 1H), 7.08 (d, *J* = 7.7 Hz, 1H), 5.71 (s, 2H), 2.54 (s, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 160.09, 157.66, 147.87, 147.68, 141.23, 139.80, 135.17, 131.21, 129.31, 127.09,

125.98, 121.93, 45.54, 23.52. HRMS (m/z): [M + H]⁺ calcd for C₁₄H₁₁N₄O₅S, 347.0445; found: 347.0468.

2-Methyl-7-nitro-3-(3-nitrobenzyl)thieno[3,2-*d***]pyrimidin-4(***3H***)-one (9f). Compound 9f was prepared using 6a** (106 mg, 0.5 mmol) and 3-nitrobenzyl bromide (194 mg, 0.9 mmol) according to method D as a white solid (83 mg, 48% yield), mp 194-197 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.37 (s, 1H), 8.18 – 8.16 (m, 2H), 7.70 – 7.63 (m, 2H), 5.55 (s, 2H), 2.58 (s, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 159.98, 157.88, 148.51, 147.56, 141.20, 139.85, 138.39, 133.62, 130.87, 123.05, 122.24, 122.00, 46.71, 23.78. HRMS (*m/z*): [M + H]⁺ calcd for C₁₄H₁₁N₄O₅S, 347.0445; found: 347.0462.

4-((2-Methyl-7-nitro-4-oxothieno[3,2-*d***]pyrimidin-3(4***H***)-yl)methyl)benzonitrile (9g). Compound 9g was prepared from the reaction of 6a (106 mg, 0.5 mmol) and 4-cyanobenzyl bromide (176 mg, 0.9 mmol) according to method D as a white solid (72 mg, 44% yield), mp 198-200 °C. ¹H NMR (400 MHz; DMSO-***d***₆; TMS) \delta 9.37 (s, 1H), 7.84 (d,** *J* **= 7.2 Hz, 2H), 7.44 (d,** *J* **= 7.5 Hz, 2H), 5.50 (s, 2H), 2.54 (s, 3H). ¹³C NMR (100 MHz; DMSO-***d***₆; TMS): \delta 159.91, 157.74, 147.52, 141.82, 141.14, 139.86, 133.19, 127.88, 121.97, 119.09, 110.80, 47.05, 23.67. HRMS (***m/z***): [M + H]⁺ calcd for C₁₅H₁₁N₄O₃S, 327.0546; found: 327.0562.**

3-(4-Methoxybenzyl)-2-methyl-7-nitrothieno[3,2-*d***]pyrimidin-4(***3H***)-one (9h). Compound 6a** (106 mg, 0.5 mmol) was reacted with 4-methoxybenzyl bromide (0.13 mL, 0.9 mmol) according to method D to obtain **9h** as a white solid (80 mg, 48% yield), mp 189-192 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.35 (s, 1H), 7.19 (d, *J* = 8.7 Hz, 2H), 6.91 (d, *J* = 8.7 Hz, 2H), 5.34 (s, 2H), 3.73 (s, 3H), 2.58 (s, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 160.07, 159.09, 157.85, 147.41, 141.11, 139.78, 128.53, 127.85, 122.00, 114.66, 55.55, 46.53, 23.62. HRMS (*m/z*): [M + H]⁺ calcd for C₁₅H₁₄N₃O₄S, 332.0700; found: 332.0714. **3-(4-Methoxyphenyl)-2-methyl-7-nitrothieno[3,2-d]pyrimidin-4(3***H***)-one (10a). Target compound 10a** was obtained according to method E and intermediate **28** (100 mg, 0.47 mmol) and 4-methoxyaniline (64 mg, 0.52 mmol) as a yellowish green solid (52 mg, 35% yield), mp 265-267 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 8.46 (s, 1H), 7.41 (d, *J* = 8.9 Hz, 2H), 7.12 (d, *J* = 8.9 Hz, 2H), 3.84 (s, 3H), 2.18 (s, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 160.11, 159.62, 158.04, 156.21, 153.50, 129.87, 129.69, 126.89, 125.41, 115.36, 55.93, 24.47. HRMS (*m/z*): [M + H]⁺ calcd for C₁₄H₁₂N₃O₄S, 318.0543; found: 318.0572.

3-(2-Methyl-7-nitro-4-oxothieno[3,2-d]pyrimidin-3(4*H***)-yl)benzoic acid (10b). Target compound 10b** was obtained from intermediate **28** (100 mg, 0.47 mmol) and 3-aminobenzoic acid (71 mg, 0.52 mmol) according to method E as a white solid (37 mg, 24% yield), mp 252-255 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 12.94 (s, 1H), 10.13 (s, 1H), 8.21 (t, *J* = 1.9 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.60 (d, *J* = 7.9 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 1H), 2.06 (s, 3H). ESI-MS: *m/z* 332.0 [M + H]⁺. HPLC flow rate 1 mL/min, *t*_R (acetonitrile/water 65:35) = 6.0 min, purity 95%.

3-(4-Isopropylphenyl)-2-methyl-7-nitrothieno[3,2-d]pyrimidin-4(3*H***)-one (10c). Target compound 10c** was obtained from intermediate **28** (100 mg, 0.47 mmol) and 4-isopropylaniline (0.07 mL, 0.52 mmol) according to method E as a pale yellow solid (43 mg, 28% yield), mp 108-110 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.85 (s, 1H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.3 Hz, 2H), 2.82 (hept, *J* = 7.0 Hz, 1H), 2.02 (s, 3H), 1.17 (d, *J* = 6.9 Hz, 6H). ESI-MS: *m/z* 330.1 [M + H]⁺. HPLC flow rate 1 mL/min, *t*_R (acetonitrile/water 65:35) = 5.0 min, purity 95%.

3-([1,1'-Biphenyl]-4-yl)-2-methyl-7-nitrothieno[3,2-d]pyrimidin-4(3*H*)-one (10d). Target compound 10d was obtained intermediate 28 (100 mg, 0.47 mmol) and 4-aminobiphenyl (88 mg, 0.52 mmol) according to method E as a pale yellow solid (51 mg, 30% yield), mp 175-177 °C. ¹H NMR (400 MHz; DMSO- d_6 ; TMS) δ 10.05 (s, 1H), 7.72 – 7.58 (m, 6H), 7.44 (t, J = 7.7 Hz, 2H),

7.33 (t, J = 7.4 Hz, 1H), 2.07 (s, 3H). ESI-MS: m/z 364.1 [M + H]⁺. HPLC flow rate 1 mL/min, t_R (acetonitrile/water 75:25) = 4.2 min, purity 99%.

Ethyl 2-(2-methyl-7-nitro-4-oxothieno[3,2-d]pyrimidin-3(4*H*)-yl)acetate (11a). Compound 11a was prepared by reacting **6a** (211 mg, 1.0 mmol) with ethyl bromoacetate (0.2 mL, 1.8 mmol) according to method D as a white solid (134 mg, 45% yield), mp 145-147 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.36 (s, 1H), 5.00 (s, 2H), 4.20 (q, *J* = 7.3 Hz, 2H), 2.61 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 167.96, 159.86, 157.22, 147.55, 141.22, 140.01, 121.31, 62.14, 46.06, 23.05, 14.44. HRMS (*m*/*z*): [M + H]⁺ calcd for C₁₁H₁₂N₃O₅S, 298.0492; found: 298.0498.

tert-Butyl 2-(2-methyl-7-nitro-4-oxothieno[3,2-*d*]pyrimidin-3(4*H*)-yl)acetate (11b). Compound **6a** (211 mg, 1.0 mmol) was reacted with *tert*-butyl 2-chloroacetate (0.26 mL, 1.8 mmol) to obtain **11b** as a white solid (195 mg, 60% yield), mp 190-193 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.36 (s, 1H), 4.91 (s, 2H), 2.58 (s, 3H), 1.44 (s, 9H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 167.02, 159.81, 157.21, 147.51, 141.20, 139.98, 121.34, 83.08, 46.50, 28.06, 23.46. HRMS (*m/z*): [M + H]⁺ calcd for C₁₃H₁₆N₃O₅S, 326.0805; found: 326.0804.

2-(2-Methyl-7-nitro-4-oxothieno[3,2-*d*]pyrimidin-3(4*H*)-yl)acetic acid (11c). Compound 11a (100 mg, 0.3 mmol) was hydrolyzed to obtain 11c (52 mg, 65% yield) as a white solid by following procedure described for preparation of 27, mp 225-228 °C. ¹H NMR (400 MHz; DMSO d_6 ; TMS) δ 13.52 (s, 1H), 9.35 (s, 1H), 4.92 (s, 2H), 2.60 (s, 3H). ¹³C NMR (100 MHz; DMSO d_6 ; TMS): δ 169.31, 159.93, 157.24, 147.51, 141.19, 139.88, 121.38, 45.96, 23.48. HRMS (*m/z*): [M + H]⁺ calcd for C₉H₈N₃O₅S, 270.0179; found: 270.0173.

2-(2-Methyl-7-nitro-4-oxothieno[3,2-*d*]pyrimidin-3(4*H*)-yl)-*N*-phenylacetamide (11d).³³ A mixture of compound 11c (269 mg, 1.0 mmol), EDC (211 mg, 1.1 mmol), HBTU (417 mg, 1.1

mmol) and triethylamine (0.28 mL, 2.0 mmol) in dichloromethane was stirred for 30 min, then aniline (0.15 mL, 1.5 mmol) was added. Upon complete conversion of starting material, the reaction mixture was diluted with water and subsequently extracted with ethyl acetate. Combined organic layers were dried over MgSO₄ and evaporated. Crude product was purified using dry loading method and dichloromethane/methanol mobile phase on flash chromatography to obtain **11d** as a light yellow solid (121 mg, 35% yield), mp 260-262 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 10.51 (s, 1H), 9.36 (s, 1H), 7.58 (d, *J* = 7.4 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 2H), 7.08 (t, *J* = 4.3 Hz, 1H), 5.04 (s, 2H), 2.63 (s, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 165.22, 160.51, 157.42, 147.57, 141.20, 139.88, 138.95, 129.38, 124.18, 121.41, 119.59, 47.55, 23.72. HRMS (*m*/*z*): [M + H]⁺ calcd for C₁₅H₁₃N₄O₄S, 345.0652; found: 345.0626.

2-Methyl-3-(2-morpholino-2-oxoethyl)-7-nitrothieno[3,2-*d***]pyrimidin-4(***3H***)-one (11e). Compound 11e** was prepared as per the procedure described for **11d** using compound **11c** (269 mg, 1.0 mmol) and morpholine (0.13 mL, 1.5 mmol) as starting materials. Purified product was obtained as a white solid (112 mg, 33% yield), mp 239-241 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.35 (s, 1H), 5.15 (s, 2H), 3.68 (t, *J* = 3.3 Hz, 2H), 3.60 (t, *J* = 4.6 Hz, 4H), 3.47 (t, *J* = 4.1 Hz, 2H), 2.53 (s, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 164.81, 160.42, 157.29, 147.52, 141.20, 139.69, 121.39, 66.51, 45.49, 45.30, 23.50. HRMS (*m/z*): [M + H]⁺ calcd for C₁₃H₁₅N₄O₅S, 339.0758; found: 339.0739.

2-Methyl-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)-7-nitrothieno[3,2-*d*]pyrimidin-4(3*H*)one (11f). Compound 11f was prepared as per the procedure described for 11d, using compound 11c (269 mg, 1.0 mmol) and *N*-methyl piperazine (0.17 mL, 1.5 mmol) as starting materials. Purified product was obtained as a white solid (141 mg, 40% yield), mp 140-143 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.34 (s, 1H), 5.14 (s, 2H), 3.57 (t, *J* = 4.7 Hz, 2H), 3.48 (t, *J* = 5.0 Hz, 2H), 2.52 (s, 3H), 2.41 (t, J = 4.7 Hz, 2H), 2.30 (t, J = 4.7 Hz, 2H), 2.22 (s, 3H). HRMS (m/z): [M + H]⁺ calcd for C₁₄H₁₈N₅O₄S, 352.1074; found: 352.1074.

4-Chloro-2-methyl-7-nitrothieno[3,2-*d***]pyrimidine (12a).³⁴ Compound 6a (211 mg, 1.0 mmol) was added into a round bottom flask containing phosphorus oxychloride (20 mL, 215 mmol). Reaction mixture was stirred under reflux for 18 h. Once starting material was fully converted, the solution was transferred portion wise into ice water. The mixture was neutralized with aqueous solution of NaHCO₃ and extracted 3 times with ethyl acetate. Organic layers were combined, dried over anhydrous MgSO₄ and evaporated. Resulting crude product was purified by flash chromatography (dichloromethane/methanol 93:3) to obtain a pale yellow solid (92 mg, 40% yield), mp 164-165 °C. ¹H NMR (400 MHz; DMSO-***d***₆; TMS) δ 9.69 (s, 1H), 2.81 (s, 3H). ¹³C NMR (100 MHz; DMSO-***d***₆; TMS): δ 156.32, 152.18, 147.02, 140.67, 140.63, 135.54, 115.89. HRMS (***m/z***): [M + H]⁺ calcd for C₇H₅ClN₃O₂S, 229.9786; found: 229.9765.**

2-Methyl-7-nitro-*N*-**phenylthieno**[**3**,**2**-*d*]**pyrimidin**-**4**-**amine** (**12b**).³⁴ Compound **12a** (50 mg, 0.2 mmol) and aniline (0.09 mL, 1.0 mmol) were added into a microwave tube. The mixture was kept in a single cavity microwave initiator, and the reaction was carried out at 150 °C for 50 min. The reaction mass was diluted with a mixture of ethyl acetate/water. Organic layer was separated, dried over MgSO₄, and evaporated. Resulting crude product was purified using flash chromatography (dichloromethane/methanol 99:1) to obtain **12b** as a white solid (20 mg, 35% yield), mp 202-205 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 10.01 (s, 1H), 9.36 (s, 1H), 7.78 (d, *J* = 7.7 Hz, 2H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.17 (t, *J* = 7.7 Hz, 1H), 2.57 (s, 3H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 165.72, 155.54, 151.79, 141.17, 139.10, 138.91, 129.19, 124.76, 123.11, 113.89, 26.31. HRMS (*m/z*): [M + H]⁺ calcd for C₁₃H₁₁N₄O₂S, 287.0597; found: 287.0621.

4-(2-Methyl-7-nitrothieno[3,2-*d*]pyrimidin-4-yl)morpholine (12c). Compound 12c was prepared as per the procedure described for 12b, using 12a (50 mg, 0.2 mmol) and morpholine (0.09 mL, 1.0 mmol) as starting materials. Target compound was isolated as a pale yellow solid (25 mg, 45% yield), mp 182-185 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.40 (s, 1H), 3.93 (t, *J* = 5.1 Hz, 4H), 3.76 (t, *J* = 5.1 Hz, 4H), 2.53 (s, 3H). HRMS (*m/z*): [M + H]⁺ calcd for C₁₁H₁₃N₄O₃S, 281.0703; found: 281.0724.

(*E*)-3-Benzyl-2-(4-fluorostyryl)-7-nitrothieno[3,2-*d*]pyrimidin-4(3*H*)-one (13a). Reaction of 9a (100 mg, 0.3 mmol) and 4-fluorobenzaldehyde (0.16 mL, 1.5 mmol) was carried out according to method C to obtain 13a as a brown solid (27 mg, 22% yield), mp 192-195 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.40 (s, 1H), 7.93 (d, *J* = 15.1 Hz, 1H), 7.78 (q, *J* = 3.4 Hz, 2H), 7.40 – 7.22 (m, 8H), 5.70 (s, 2H). HRMS (*m*/*z*): [M + H]⁺ calcd for C₂₁H₁₅FN₃O₃S, 408.0813; found: 408.0815.

(*E*)-4-Chloro-2-(4-fluorostyryl)-7-nitrothieno[3,2-*d*]pyrimidine (13b). Compound 8f (100 mg, 0.3 mmol) was reacted with phosphorous oxychloride (15 mL, 161 mmol) to afford 13b using procedure described for the preparation of 12a as a yellow solid (72 mg, 72% yield), mp 256-258 °C. ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.69 (s, 1H), 8.06 (d, *J* = 16.1 Hz, 1H), 7.95 – 7.91 (m, 2H), 7.42 (d, *J* = 16.0 Hz, 1H), 7.28 (t, *J* = 8.9 Hz, 2H). ¹³C NMR (100 MHz; DMSO-*d*₆; TMS): δ 162.34 (d, *J* = 247.8 Hz), 162.08, 153.90, 151.96, 143.35, 140.01, 138.23, 131.15 (d, *J* = 2.9 Hz), 129.81 (d, *J* = 8.6 Hz), 126.55, 125.14, 115.33 (d, *J* = 21.7 Hz). HRMS (*m*/*z*): [M + H]⁺ calcd for C₁₄H₈ClFN₃O₂S, 336.0004; found: 335.9991.

(*E*)-4-(2-(4-fluorostyryl)-7-nitrothieno[3,2-d]pyrimidin-4-yl)morpholine (13c). Compound 13b (67 mg, 0.2 mmol) and morpholine (0.09 mL, 1.0 mmol) were reacted according to the procedure described for 12b to afford 13c as a white solid (25 mg, 32% yield), mp 245-248 °C. ¹H

NMR (400 MHz; DMSO- d_6 ; TMS) δ 9.43 (s, 1H), 7.93 (d, J = 16.3 Hz, 1H), 7.82 (dd, J = 8.3 Hz, 3.2 Hz, 2H), 7.25 (t, J = 8.3 Hz, 2H), 7.15 (d, J = 7.8 Hz, 1H), 4.02 (t, J = 8.9 Hz, 4H), 3.81 (t, J = 3.8 Hz, 4H). ¹³C NMR (100 MHz; DMSO- d_6 ; TMS): δ 162.98 (d, J = 247.3 Hz), 161.71, 157.63, 152.85, 141.60, 137.98, 136.81, 132.77 (d, J = 3.3 Hz), 130.28 (d, J = 8.2 Hz), 128.08, 116.25 (d, J = 21.6 Hz), 113.05, 66.33, 46.30. HRMS (m/z): [M + H]⁺ calcd for C₁₈H₁₆FN₄O₃S, 387.0922; found: 387.0938.

2-Methyl-8-nitro-4H-benzo[d][1,3]oxazin-4-one (17). Intermediate 17 was prepared using commercially available methyl 2-amino-3-nitrobenzoate 14 (196 mg, 1.0 mmol) and acetic anhydride according to method A as an orange solid (180 mg, 87% yield). ¹H NMR (400 MHz; DMSO- d_6 ; TMS) δ 8.12 (d, J = 7.9 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 2.05 (s, 3H).

2-Methyl-4H-pyrido[2,3-d][1,3]oxazin-4-one (18).⁴⁴ Intermediate 18 was prepared using commercially available methyl 2-aminonicotinate 15 (152 mg, 1.0 mmol) and acetic anhydride according to method A as a white solid (105 mg, 65% yield). ¹H NMR (400 MHz; DMSO- d_6 ; TMS) δ 8.22 (dd, J = 4.9 Hz, 1.7 Hz, 1H), 8.15 (dd, J = 7.8 Hz, 1.8 Hz, 1H), 6,70 (dd, J = 7.7 Hz, 4.9 Hz, 1H), 3.83 (s, 3H).

8-Fluoro-2-methyl-4H-benzo[d][1,3]oxazin-4-one (19). Intermediate 19 was prepared using commercially available methyl 2-amino-3-fluorobenzoate 16 (169 mg, 1.0 mmol) and acetic anhydride according to method A as a white solid (143 mg, 80% yield). ¹H NMR (400 MHz; DMSO- d_6 ; TMS) δ 7.93 (d, J = 7.7 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.58 (t, J = 7.9 Hz, 1H), 2.43 (s, 3H).

Methyl 3-acetamidothiophene-2-carboxylate (23a). Intermediate 23a was prepared using commercially available methyl 3-aminothiophene-2-carboxylate 20 (157 mg, 1.0 mmol) and acetic

anhydride (20 mL) according to method A as a white solid (167 mg, 84% yield). ¹H NMR (400 MHz; CDCl₃; TMS) δ 9.99 (s, 1H), 7.93 (d, *J* = 5.4 Hz, 1H), 7.89 (d, *J* = 5.4 Hz, 1H), 3.84 (s, 3H), 2.17 (s, 3H).

Methyl 3-acetamidofuran-2-carboxylate (23b).⁴⁵ Intermediate 23b was prepared using commercially available methyl 3-aminofuran-2-carboxylate 21 (141 mg, 1.0 mmol) and acetic anhydride (20 mL) according to method A as a white solid (119 mg, 65% yield). ¹H NMR (400 MHz; CDCl₃; TMS) δ 12.66 (s, 1H), 7.85 (s, 1H), 6.82 (s, 1H), 2.64 (s, 3H), 2.33 (s, 3H).

Methyl 4-acetamidothiophene-3-carboxylate (23c). Intermediate 23c was prepared using commercially available methyl 4-aminothiophene-3-carboxylate 22 (157 mg, 1.0 mmol) and acetic anhydride (20 mL) according to method A as a white solid (165 mg, 83% yield). ¹H NMR (400 MHz; DMSO- d_6 ; TMS) δ 9.83 (s, 1H), 8.35 (d, J = 3.5 Hz, 1H), 7.90 (d, J = 3.6 Hz, 1H), 3.85 (s, 3H), 2.13 (s, 3H).

Methyl 3-propionamidothiophene-2-carboxylate (23e).⁴⁶ Methyl 3-aminothiophene-2carboxylate **20** (157 mg, 1.0 mmol) was stirred with triethylamine (0.21 mL, 1.5 mmol) and propionyl bromide (0.11 mL, 1.2 mmol) in dichloromethane at rt for 4 h. The mixture was then neutralized with 1 M aqueous HCl solution and extracted 3 times with dichloromethane. Combined organic layers were dried over anhydrous MgSO₄ and concentrated under vacuum. Product was isolated as a white solid (171 mg, 80% yield). ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 10.02 (s, 1H), 7.97 (d, *J* = 5.4 Hz, 1H), 7.90 (d, *J* = 5.4 Hz, 1H), 3.84 (s, 3H), 2.46 (t, *J* = 7.5 Hz, 2H), 1.11 (t, *J* = 7.5 Hz, 3H).

Methyl 3-butyramidothiophene-2-carboxylate (23f). Intermediate 23f was prepared using methyl 3-aminothiophene-2-carboxylate 20 (157 mg, 1.0 mmol) and butanoyl bromide (0.12 mL, 1.2 mmol) as starting materials following procedure described for the preparation of 23e. Isolated

product was white solid (193 mg, 85% yield). ¹H NMR (400 MHz; DMSO- d_6 ; TMS) δ 10.11 (s, 1H), 8.03 (d, J = 5.3 Hz, 1H), 7.89 (d, J = 5.3 Hz, 1H), 3.83 (s, 3H), 2.76 (t, J = 7.4 Hz, 2H), 1.51 – 1.37 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H).

Methyl 3-benzamidothiophene-2-carboxylate (23g). Intermediate 23g was prepared using methyl 3-aminothiophene-2-carboxylate 20 (157 mg, 1.0 mmol) and benzoyl bromide (0.14 mL, 1.2 mmol) as starting materials by procedure described for the preparation of 23e. Isolated product was white solid (214 mg, 82% yield). ¹H NMR (400 MHz; DMSO- d_6 ; TMS) δ 11.02 (s, 1H), 8.12 (d, J = 5.3 Hz, 1H), 8.00 (d, J = 5.3 Hz, 1H,), 7.96 (d, J = 7.1 Hz, 2H), 7.71 – 7.61 (m, 3H), 3.89 (s, 3H).

Methyl 3-acetamido-4-methylthiophene-2-carboxylate (23h). Intermediate **23h** was prepared using commercially available methyl 3-amino-4-methylthiophene-2-carboxylate **25** (171 mg, 1.0 mmol) and acetic anhydride as starting materials according to method A as a white solid (160 mg, 75% yield). ¹H NMR (400 MHz; CDCl₃; TMS) δ 9.62 (s, 1H), 7.51 (s, 1H), 3.75 (s, 3H), 2.03 - 2.02 (m, 6H).

3-Acetamidofuran-2-carboxamide (24b).⁴⁷ Intermediate **24b** was prepared using **23b** (168 mg, 1.0 mmol) and ammonium hydroxide aqueous solution (30 mL) according to method A as a white solid (103 mg, 62% yield). ¹H NMR (400 MHz; DMSO-*d*₆; TMS) δ 9.66 (s, 1H), 7.77 (s, 1H), 7.70 (d, *J* = 1.7 Hz, 1H), 7.55 (s, 1H), 7.22 (d, *J* = 1.7 Hz, 1H), 2.10 (s, 3H).

4-Acetamidothiophene-3-carboxamide (24c).³⁹ Intermediate **24c** was prepared using **23c** (199 mg, 1.0 mmol) and ammonium hydroxide aqueous solution (30 mL) according to method A as a white solid (74 mg, 40% yield). ¹H NMR (400 MHz; DMSO- d_6 ; TMS) δ 11.00 (s, 1H), 8.27 (d, J = 3.4 Hz, 1H), 8.14 (s, 1H), 7.87 (d, J = 3.3 Hz, 1H), 7.61 (s, 1H), 2.08 (s, 3H).

Page 59 of 75

Methyl 3-acetamido-4-nitrothiophene-2-carboxylate (26).⁴⁸ Intermediate **26** was prepared according to modified nitration procedure.⁴⁸ A mixture of **23a** (500 mg, 2.5 mmol) and sulfuric acid (5 mL) was stirred at -40 °C (using dry ice and acetonitrile) and to the mixture, 0.4 mL of nitric acid (65-68%) was carefully added in a drop wise manner. The temperature was maintained at -40°C throughout the addition of nitric acid, and the reaction was gradually allowed to attain rt and stirred for a period of 4 h. Later, the reaction was transferred to excess of ice/water in small portions. Resulting yellow precipitate was filtered, dried and purified by flash chromatography to obtain **26** as a pale yellow solid (250 mg, 41% yield). ¹H NMR (400 MHz, DMSO-*d*₆; TMS) δ 10.06 (s, 1H), 8.70 – 8.49 (m, 1H), 3.91 (s, 3H), 2.21 (s, 3H).

3-Acetamido-4-nitrothiophene-2-carboxylic acid (27). To a solution of **26** (250 mg, 1.1 mmol) in 1:1 ratio of tetrahydrofuran and water, lithium hydroxide (50 mg, 2.0 mmol) was added and the mixture was stirred at rt for 10 h. The reaction was then subjected to evaporation under vacuum and further treated with concentrated HCl to obtain pale yellow precipitate of **27** (220 mg, 87% yield). ¹H NMR (400 MHz, DMSO-*d*₆; TMS) δ 10.13 (s, 1H), 8.63 (s, 1H), 2.19 (s, 3H).

2-Methyl-7-nitro-4*H***-thieno[3,2-d][1,3]oxazin-4-one (28).**⁴⁸ Intermediate **28** was prepared by refluxing **27** (200 mg, 0.9 mmol) in excess acetic anhydride for 3 h. Remaining acetic anhydride from the reaction mixture was removed under vacuum. The crude product was further treated with acetone and filtered to obtain **28** as a pale brown solid (160 mg, 84% yield). ¹H NMR (400 MHz, DMSO- d_6 ; TMS) δ 8.41 (s, 1H), 2.47 (s, 3H).

Minimum Inhibitory Concentrations (MICs) of Thienopyrimidinone Analogues against *C. difficile* **Strains.** Following the guidelines defined by the Clinical and Laboratory Standards Institute (CLSI),⁴⁹ *Clostridium difficile* strains were grown anaerobically on brain heart infusion supplemented (BHIS) agar plates (Brain heart infusion, BD, supplemented with yeast extract, Vitamin K1 and Hemin, Sigma) at 37 °C for 48 h. Afterwards, a bacterial suspension of ~10⁵ CFU/mL was prepared in BHIS broth and seeded in 96-well plates containing serial dilutions of the compounds and controls. Plates were then incubated anaerobically at 37 °C for 48 h. Reported MICs are the minimum concentration of each compound at which inhibition of the bacterial growth could be visually observed.⁵⁰ The MBC of the most potent compound, **8f**, was determined by subculturing **8f**-inhibited bacteria on a drug-free BHIS agar plates and subsequently incubated anaerobically at 37 °C for 24 h. Reported MBC is the concentration at which 99.9% of the initial bacterial count was eradicated.^{51, 52}

Time-kill assay of 8f against *C. difficile*. An 18-20 h culture of *C. difficile* ATCC BAA 1870 was diluted 1:50 in fresh BHIS broth to achieve a starting concentration of 10⁶ CFU/mL. The bacterial suspension was mixed with 8 X MIC of **8f**, vancomycin, fidaxomicin or DMSO in triplicates. Bacterial concentration was measured at the indicated time points by serially diluting samples from each bacterial suspension followed by culturing, in duplicates on BHIS agar plates. CFU were counted after anaerobic incubation for 24 h at 37 °C.⁵³

In Vitro Antimicrobial Evaluation of Thienopyrimidinone Analogues against Normal Microflora. With slight modification, CLSI and previous reports were followed in order to determine the MICs of the most active compounds against human microflora.^{54, 55} Bacteria were first grown for 48 hours at 37 °C, anaerobically using BHIS agar for *Bifidobacterium* and in 5% CO₂ using MRS agar plate for *Lactobacillus*. Approximately a 10⁵ CFU/mL suspension was prepared (in BHIS broth for *Bifidobacterium* or in MRS broth for *Lactobacillus*) for each strain and seeded in 96-well plates. Compounds were added at the required concentrations in the 96-well plates and incubated as mentioned for each species for 48 hours at 37 °C before recording the MIC values.

For *Escherichia coli* and *Enterobacter cloacae*, the activity of the compounds was tested in accordance with the CLSI.⁵⁴ Briefly, bacteria were grown on tryptic soy agar (TSA) plates for 16-20 h at 37 °C. A bacterial suspension was prepared in phosphate buffered saline (PBS), matched to the turbidity of a 0.5 McFarland standard solution and diluted in tryptic soy broth (TSB) to achieve a bacterial concentration of ~ 10^5 CFU/mL. The final bacterial suspension was incubated in 96-well plates with serial dilutions of the compounds and the controls for 16-20 h at 37 °C. MICs were defined as the lowest concentration of each agent that inhibited the bacterial growth.^{56, 57}

In Vitro Cytotoxicity Analysis of Thienopyrimidinone Analogues. The most potent compounds were selected for further testing for their cytotoxicity against three different cell lines; human colon colorectal adenocarcinoma (Caco-2), human ileocecal adenocarcinoma (HRT-18) and African green monkey kidney cells (Vero) as described previously.^{58, 59} Briefly, cells were grown in T75 flasks at 37 °C in 5% CO₂ atmosphere till they reached ~90% confluency using the growth media recommended by the supplier. Cells were transferred to cell culture-treated 96-well plates, incubated at 37 °C in 5% CO₂ and allowed to reach confluency. Next, the growth media were replaced with fresh ones containing the indicated concentrations of the compounds or DMSO (as a negative control) in triplicates and incubated at 37 °C in 5% CO₂ for 2 h. After incubation, media were removed and the cells were washed before the addition of 20% MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2*H*-tetrazolium). MTS was incubated with the cells for additional 4 h at 37 °C in 5% CO₂ then the absorbance for each well was recorded as an optical density at 490 nm. Data is presented as percentage cell viability as compared to the DMSO treated cells.

Determination of the Aqueous Solubility of Thienopyrimidinone Analogues. Solution at a concentration of 1 mg/mL was obtained by dissolving interested compound in methanol. The stock solution was passed through a 0.45-micron nylon membrane filter. Samples at different concentrations (1 μ g/mL, 5 μ g/mL, 50 μ g/mL, and 100 μ g/mL) were prepared and loaded onto HPLC. Isocratic mobile phase (acetonitrile/water 50:50) was used and a flow rate as 1.0 mL/min. Standard curve was achieved by plotting AUC (area under the curve) versus concentration at 254 nm. To prepare saturated solution, 3 mg of target compound was added into an Eppendorf tube containing 3 mL PBS solution. The mixture was agitated for 24 h at 25 °C and centrifuged for 3 min at 16000 rpm. A mixture of 300 μ L of supernatant and 300 μ L acetonitrile was prepared. Absorbance was measured on HPLC, and solubility was calculated from absorbance, standard curve and dilution factor.

Assessment of the Stability of Thienopyrimidinone Analogues in Simulated Gastric Fluid (SGF) and Simulated Intestinal Fluid (SIF). Stability of target compounds in SGF (pH = 1.6) and SIF (pH = 6.0) was evaluated following reported procedure with modification. Stock solutions at concentration of 50 μ g/mL were prepared with methanol. Mixture of 200 μ L of stock solution and 800 μ L SGF/SIF was stirred vigorously and incubated at 37 °C. After 4 h and 8 h incubation, samples were loaded onto HPLC and eluted using isocratic mobile phase (acetonitrile/water 50:50) at a flow rate of 1.0 mL/min. The remaining percentage at each injection time point was calculated as AUC (after incubation)/AUC (before incubation) at λ 254 nm.⁶⁰

In Silico PAINS Analysis. All the synthesized target compounds were subjected to PAINS filters by using a KNIME (v3.74, KNIME GmbH, Konstanz, Germany) workflow.⁶¹ Molecular formula strings of target compounds were manually input into the workflow, and the output file for the run indicated no PAINS were found.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI:

Table S1 reporting list of in-house HTS compound library; single crystal X-ray crystallographic data and refinement of **11b**; Cambridge Crystallographic Data Centre (CCDC) 1884213 (<u>www.ccdc.cam.ac.uk./data</u> request/cif) contains the supplementary crystallographic data for **11b** (Table S2-S9); HSQC NMR of **7c**; HMBC NMR of **6b**, **6c**, **7b** and **7c**; Table S10 reporting various bacterial strains used in this study; ¹H NMR, ¹³C NMR and HRMS spectra of target compounds (PDF)

Molecular SMILES strings and MIC values (CSV)

AUTHOR INFORMATION

Corresponding Author

* For T.T.T. Phone: (718)-990-5405. Fax: (718)-990-1877. E-mail: talelet@stjohns.edu

* For M.N.S. Phone: (765)-494-0763. Fax: (765)-496-2627. E-mail. mseleem@purdue.edu.

ORCID

Tanaji T. Talele: 0000-0002-5938-6505

Mohamed N. Seleem: 0000-0003-0939-0458

Notes

Tanaji T. Talele is a co-founder of Hysplex, LLC, with interests in PARP-inhibitor development. The other authors declare no competing financial interest.

Author Contributions

All authors have given approval to the final version of the manuscript.

ACKNOWLEDGMENTS

This work was supported by the Department of Pharmaceutical Sciences and seed grant program (579-1110-6709) of St. John's University and partial support for this study was provided by NIH (R01AI130186) to M. N. S. We are grateful for the assistance of Tony Hu at the Department of Chemistry of New York University with the X-ray analysis. We thank Brandon Fowler at the Department of Chemistry of Columbia University for assisting in obtaining HR-MS data. We are also grateful to Leonard Barasa from St. John's University for his help during LC-MS analysis.

ABBREVIATIONS USED

AUC, area under the curve; BHIS, brain heart infusion supplemented; CDI, *Clostridium difficile* infection; CLSI, clinical and laboratory standards institute; DCM, dichloromethane; DMF, dimethylformamide; EDC, ethyl(dimethylaminopropyl) carbodiimide; FDX, fidaxomicin; HBTU, (2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; MBC, minimum bactericidal concentration; MIC, minimum inhibitory concentration; MTZ, metronidazole; MW, microwave; PAINS, pan assay interference compounds; SGF, simulated gastric fluid; SIF, simulated intestinal fluid; THF, tetrahydrofuran; TSA, tryptic soy agar; TSB, tryptic soy broth; VAN, vancomycin

REFERENCES

1. Dobson, G.; Hickey, C.; Trinder, J. *Clostridium difficile* colitis causing toxic megacolon, severe sepsis and multiple organ dysfunction syndrome. *Intensive Care Med.* **2003**, *29*, 1030.

2. Mylonakis, E.; Ryan, E. T.; Calderwood, S. B. *Clostridium difficile*-associated diarrhea: A review. *Arch. Intern. Med.* **2001**, *161*, 525-533.

3. Surawicz, C. M.; Brandt, L. J.; Binion, D. G.; Ananthakrishnan, A. N.; Curry, S. R.; Gilligan, P. H.; McFarland, L. V.; Mellow, M.; Zuckerbraun, B. S. Guidelines for diagnosis, treatment, and prevention of *Clostridium difficile* infections. *Am. J. Gastroenterol.* **2013**, *108*, 478-498.

4. Dethlefsen, L.; Huse, S.; Sogin, M. L.; Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. *PLoS Biol.* **2008**, *6*, e280.

5. McDonald, L. C.; Killgore, G. E.; Thompson, A.; Owens, R. C., Jr.; Kazakova, S. V.; Sambol, S. P.; Johnson, S.; Gerding, D. N. An epidemic, toxin gene-variant strain of *Clostridium difficile*. *N. Engl. J. Med.* **2005**, *353*, 2433-2441.

6. Deneve, C.; Janoir, C.; Poilane, I.; Fantinato, C.; Collignon, A. New trends in *Clostridium difficile* virulence and pathogenesis. *Int. J. Antimicrob. Agents* **2009**, *33 Suppl 1*, S24-S28.

Kelly, C. P.; LaMont, J. T. *Clostridium difficile--*more difficult than ever. *N. Engl. J. Med.* 2008, *359*, 1932-1940.

8. McDonald, L. C.; Gerding, D. N.; Johnson, S.; Bakken, J. S.; Carroll, K. C.; Coffin, S. E.; Dubberke, E. R.; Garey, K. W.; Gould, C. V.; Kelly, C.; Loo, V.; Shaklee Sammons, J.; Sandora,

T. J.; Wilcox, M. H. Clinical practice guidelines for *Clostridium difficile* infection in adults and children: 2017 Update by the infectious diseases society of America (IDSA) and society for healthcare epidemiology of America (SHEA). *Clin. Infect. Dis.* **2018**, *66*, e1-e48.

9. Bolton, R. P.; Culshaw, M. A. Faecal metronidazole concentrations during oral and intravenous therapy for antibiotic associated colitis due to *Clostridium difficile*. *Gut* **1986**, *27*, 1169-1172.

 Pepin, J.; Alary, M. E.; Valiquette, L.; Raiche, E.; Ruel, J.; Fulop, K.; Godin, D.; Bourassa,
 C. Increasing risk of relapse after treatment of *Clostridium difficile* colitis in Quebec, Canada. *Clin. Infect. Dis.* 2005, 40, 1591-1597.

11. Louie, T. J.; Cannon, K.; Byrne, B.; Emery, J.; Ward, L.; Eyben, M.; Krulicki, W. Fidaxomicin preserves the intestinal microbiome during and after treatment of *Clostridium difficile* infection (CDI) and reduces both toxin reexpression and recurrence of CDI. *Clin. Infect. Dis.* **2012**, *55 Suppl 2*, S132-S142.

12. Chandrasekaran, R.; Lacy, D. B. The role of toxins in *Clostridium difficile* infection. *FEMS Microbiol. Rev.* **2017**, *41*, 723-750.

13. Khosravi, A.; Mazmanian, S. K. Disruption of the gut microbiome as a risk factor for microbial infections. *Curr. Opin. Microbiol.* **2013**, *16*, 221-227.

14. Mullane, K. Fidaxomicin in *Clostridium difficile* infection: latest evidence and clinical guidance. *Ther. Adv. Chronic Dis.* **2014**, *5*, 69-84.

Louie, T. J.; Miller, M. A.; Mullane, K. M.; Weiss, K.; Lentnek, A.; Golan, Y.; Gorbach,
 S.; Sears, P.; Shue, Y. K. Fidaxomicin versus vancomycin for *Clostridium difficile* infection. *N. Engl. J. Med.* 2011, *364*, 422-431.

16. Bouza, E.; Dryden, M.; Mohammed, R.; Peppe, J.; Chasan-Taber, S.; Donovan, J. Results of a phase III trial comparing tolevamer, vancomycin and metronidazole in patients with *Clostridium difficile*-associated diarrhoea. *Clin. Microbiol. Infect.* **2008**, *14*, S103-S104.

17. Sears, P.; Crook, D. W.; Louie, T. J.; Miller, M. A.; Weiss, K. Fidaxomicin attains high fecal concentrations with minimal plasma concentrations following oral administration in patients with *Clostridium difficile* infection. *Clin. Infect. Dis.* **2012**, *55 Suppl 2*, S116-S120.

18. Jarrad, A. M.; Karoli, T.; Blaskovich, M. A.; Lyras, D.; Cooper, M. A. *Clostridium difficile* drug pipeline: challenges in discovery and development of new agents. *J. Med. Chem.* **2015**, *58*, 5164-5185.

19. Sharma, S. K.; Yip, C.; Esposito, E. X.; Sharma, P. V.; Simon, M. P.; Abel-Santos, E.; Firestine, S. M. The design, synthesis, and characterizations of spore germination inhibitors effective against an epidemic strain of *Clostridium difficile*. *J. Med. Chem.* **2018**, *61*, 6759-6778.

20. Tsutsumi, L. S.; Owusu, Y. B.; Hurdle, J. G.; Sun, D. Progress in the discovery of treatments for *C. difficile* infection: A clinical and medicinal chemistry review. *Curr. Top. Med. Chem.* **2014**, *14*, 152-175.

Letourneau, J. J.; Stroke, I. L.; Hilbert, D. W.; Cole, A. G.; Sturzenbecker, L. J.; Marinelli,
 B. A.; Quintero, J. G.; Sabalski, J.; Li, Y.; Ma, L.; Pechik, I.; Stein, P. D.; Webb, M. L. Synthesis

and SAR studies of novel benzodiazepinedione-based inhibitors of *Clostridium difficile* (*C. difficile*) toxin B (TcdB). *Bioorg. Med. Chem. Lett.* **2018**, *28*, 3601-3605.

22. Cherian, P. T.; Wu, X.; Yang, L.; Scarborough, J. S.; Singh, A. P.; Alam, Z. A.; Lee, R. E.; Hurdle, J. G. Gastrointestinal localization of metronidazole by a lactobacilli-inspired tetramic acid motif improves treatment outcomes in the hamster model of *Clostridium difficile* infection. *J. Antimicrob. Chemother.* **2015**, *70*, 3061-3069.

23. Ratia, K.; Light, S. H.; Antanasijevic, A.; Anderson, W. F.; Caffrey, M.; Lavie, A. Discovery of selective inhibitors of the *Clostridium difficile* dehydroquinate dehydratase. *PLoS One* **2014**, *9*, e89356.

24. Kulkarni, S. S.; Singh, S.; Shah, J. R.; Low, W. K.; Talele, T. T. Synthesis and SAR optimization of quinazolin-4(3*H*)-ones as poly(ADP-ribose)polymerase-1 inhibitors. *Eur. J. Med. Chem.* **2012**, *50*, 264-273.

25. Mase, N.; Nishina, Y.; Isomura, S.; Sato, K.; Narumi, T.; Watanabe, N. Fine-bubble-based strategy for the palladium-catalyzed hydrogenation of nitro groups: Measurement of ultrafine bubbles in organic solvents. *Synlett* **2017**, *28*, 2184-2188.

26. Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Okada, M.; Ohta, M.; Tsukamoto, S.; Parker, P.; Workman, P.; Waterfield, M. Synthesis and biological evaluation of 4morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110alpha inhibitors. *Bioorg. Med. Chem.* **2006**, *14*, 6847-6858.

27. Patel, M. R.; Bhatt, A.; Steffen, J. D.; Chergui, A.; Murai, J.; Pommier, Y.; Pascal, J. M.; Trombetta, L. D.; Fronczek, F. R.; Talele, T. T. Discovery and structure-activity relationship of

 novel 2,3-dihydrobenzofuran-7-carboxamide and 2,3-dihydrobenzofuran-3(2*H*)-one-7carboxamide derivatives as poly(ADP-ribose)polymerase-1 inhibitors. *J. Med. Chem.* **2014**, *57*, 5579-5601.

28. Price, C. C.; Leonard, N. J.; Curtin, D. Y. 4-(4'-Diethylamino-1'-methylbutylamino)-7chloroquinazoline. *J. Am. Chem. Soc.* **1946**, *68*, 1305-1306.

29. Campos, J.; Queiroz, M.-J.; Berteina-Raboin, S. The first catalytic direct C–H arylation on C2 and C3 of thiophene ring applied to thieno-pyridines, -pyrimidines and -pyrazines. *Catalysts* **2018**, *8*, 137.

30. Bouley, R.; Ding, D.; Peng, Z.; Bastian, M.; Lastochkin, E.; Song, W.; Suckow, M. A.; Schroeder, V. A.; Wolter, W. R.; Mobashery, S.; Chang, M. Structure-activity relationship for the 4(3*H*)-quinazolinone antibacterials. *J. Med. Chem.* **2016**, *59*, 5011-5021.

31. Baghbanzadeh, M.; Molnar, M.; Damm, M.; Reidlinger, C.; Dabiri, M.; Kappe, C. O. Parallel microwave synthesis of 2-styrylquinazolin-4(3*H*)-ones in a high-throughput platform using HPLC/GC vials as reaction vessels. *J. Comb. Chem.* **2009**, *11*, 676-684.

32. Theoclitou, M. E.; Aquila, B.; Block, M. H.; Brassil, P. J.; Castriotta, L.; Code, E.; Collins, M. P.; Davies, A. M.; Deegan, T.; Ezhuthachan, J.; Filla, S.; Freed, E.; Hu, H.; Huszar, D.; Jayaraman, M.; Lawson, D.; Lewis, P. M.; Nadella, M. V.; Oza, V.; Padmanilayam, M.; Pontz, T.; Ronco, L.; Russell, D.; Whitston, D.; Zheng, X. Discovery of (+)-*N*-(3-aminopropyl)-*N*-[1-(5-benzyl-3-methyl-4-oxo-[1,2]thiazolo[5,4-d]pyrimidin -6-yl)-2-methylpropyl]-4-methylbenzamide (AZD4877), a kinesin spindle protein inhibitor and potential anticancer agent. *J. Med. Chem.* 2011, *54*, 6734-6750.

33. Patel, B. A.; Abel, B.; Barbuti, A. M.; Velagapudi, U. K.; Chen, Z. S.; Ambudkar, S. V.; Talele, T. T. Comprehensive synthesis of amino acid-derived thiazole peptidomimetic analogues to understand the enigmatic drug/substrate-binding site of P-glycoprotein. *J. Med. Chem.* **2018**, *61*, 834-864.

34. Devine, W.; Woodring, J. L.; Swaminathan, U.; Amata, E.; Patel, G.; Erath, J.; Roncal, N.
E.; Lee, P. J.; Leed, S. E.; Rodriguez, A.; Mensa-Wilmot, K.; Sciotti, R. J.; Pollastri, M. P.
Protozoan parasite growth inhibitors discovered by cross-screening yield potent scaffolds for lead discovery. *J. Med. Chem.* 2015, *58*, 5522-5537.

35. Lee, A. C.; Ramanujulu, P. M.; Poulsen, A.; Williams, M.; Blanchard, S.; Ma, D. M.; Bonday, Z.; Goh, K. L.; Goh, K. C.; Goh, M. K.; Wood, J.; Dymock, B. W. Thieno[3,2-d]pyrimidin-4(3*H*)-one derivatives as PDK1 inhibitors discovered by fragment-based screening. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 4023-4027.

36. Sirisoma, N.; Pervin, A.; Zhang, H.; Jiang, S.; Adam Willardsen, J.; Anderson, M. B.; Mather, G.; Pleiman, C. M.; Kasibhatla, S.; Tseng, B.; Drewe, J.; Cai, S. X. Discovery of *N*-methyl-4-(4-methoxyanilino)quinazolines as potent apoptosis inducers. Structure-activity relationship of the quinazoline ring. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 2330-2334.

37. Gavin, J. T.; Annor-Gyamfi, J. K.; Bunce, R. A. Quinazolin-4(3*H*)-ones and 5,6dihydropyrimidin-4(3*H*)-ones from beta-aminoamides and orthoesters. *Molecules* **2018**, *23*, 2925.

38. Sanchez, A. I.; Meneses, R.; Minguez, J. M.; Nunez, A.; Castillo, R. R.; Filace, F.; Burgos, C.; Vaquero, J. J.; Alvarez-Builla, J.; Cortes-Cabrera, A.; Gago, F.; Terricabras, E.; Segarra, V. Microwave-assisted synthesis of potent PDE7 inhibitors containing a thienopyrimidin-4-amine scaffold. *Org. Biomol. Chem.* **2014**, *12*, 4233-4242.

39. Shinkwin, A. E.; Whish, W. J.; Threadgill, M. D. Synthesis of thiophenecarboxamides, thieno[3,4-c]pyridin-4(5*H*)-ones and thieno[3,4-d]pyrimidin-4(3*H*)-ones and preliminary evaluation as inhibitors of poly(ADP-ribose)polymerase (PARP). *Bioorg. Med. Chem.* **1999**, *7*, 297-308.

40. Wang, L.; Xu, S.; Liu, X.; Chen, X.; Xiong, H.; Hou, S.; Zou, W.; Tang, Q.; Zheng, P.; Zhu, W. Discovery of thinopyrimidine-triazole conjugates as c-Met targeting and apoptosis inducing agents. *Bioorg. Chem.* **2018**, *77*, 370-380.

41. Song, Y.-H. A facile synthesis of new 4-(phenylamino) thieno [3, 2-d] pyrimidines using
3-aminothiophene-2-carboxamide. *Heterocycl. Comm.* 2007, *13*, 33.

42. Snegaroff, K.; Lassagne, F.; Bentabed-Ababsa, G.; Nassar, E.; Ely, S. C.; Hesse, S.; Perspicace, E.; Derdour, A.; Mongin, F. Direct metallation of thienopyrimidines using a mixed lithium-cadmium base and antitumor activity of functionalized derivatives. *Org. Biomol. Chem.* **2009**, *7*, 4782-4788.

43. Cai, S. K., W.; Sirisoma, N. N-alkyl-N-aryl-thienopyrimidin-4-amines and analogs as activators of caspases and inducers of apoptosis and the use thereof. US Patent US20070213305A1, **2007**.

44. Nagase, T.; Mizutani, T.; Ishikawa, S.; Sekino, E.; Sasaki, T.; Fujimura, T.; Ito, S.; Mitobe, Y.; Miyamoto, Y.; Yoshimoto, R.; Tanaka, T.; Ishihara, A.; Takenaga, N.; Tokita, S.; Fukami, T.; Sato, N. Synthesis, structure-activity relationships, and biological profiles of a quinazolinone class of histamine H3 receptor inverse agonists. *J. Med. Chem.* **2008**, *51*, 4780-4789.
45. Rao, S. P.; Rao, K. V. B.; Otter, B. A.; Klein, R. S.; Wu-Yun, R. C-glycosylation of substituted heterocycles under Friedel-Crafts conditions (I): a two-step synthesis of the thieno[3,4-d]pyrimidine c-nucleoside analog of inosine. *Tetrahedron Lett.* **1988**, *29*, 3537-3540.

46. Gillespie, R. J.; Cliffe, I. A.; Dawson, C. E.; Dourish, C. T.; Gaur, S.; Giles, P. R.; Jordan, A. M.; Knight, A. R.; Lawrence, A.; Lerpiniere, J.; Misra, A.; Pratt, R. M.; Todd, R. S.; Upton, R.; Weiss, S. M.; Williamson, D. S. Antagonists of the human adenosine A2A receptor. Part 2: Design and synthesis of 4-arylthieno[3,2-d]pyrimidine derivatives. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 2920-2923.

47. Sangapure, S. S.; Agasimundin, Y. S. ChemInform Abstract: Studies in benzofurans- part III. Synthesis and reactions of 2-alkyl- or 2-aryl-3,4-dihydro-4-oxobenzofuro(3,2-d)pyrimidines and 4-thio analogs. *Chemischer Informationsdienst* **1978**, *9*.

48. Wang, L.; Liu, F.; Jiang, N.; Zhou, W.; Zhou, X.; Zheng, Z. Design, synthesis, and biological evaluation of novel PARP-1 inhibitors based on a 1*H*-thieno[3,4-d] imidazole-4-carboxamide scaffold. *Molecules* **2016**, *21*, 772.

49. C.a.L.S.I. (CLSI), Methods for antimicrobial susceptibility testing of anaerobic bacteria, 8th edition, **2012**, M11-A8.

50. AbdelKhalek, A.; Abutaleb, N. S.; Mohammad, H.; Seleem, M. N. Antibacterial and antivirulence activities of auranofin against *Clostridium difficile*. *Int. J. Antimicrob. Agents* **2019**, *53*, 54-62.

Mohammad, H.; Reddy, P. V.; Monteleone, D.; Mayhoub, A. S.; Cushman, M.; Hammac,
G. K.; Seleem, M. N. Antibacterial characterization of novel synthetic thiazole compounds against
Methicillin-Resistant *Staphylococcus pseudintermedius*. *PLoS One* 2015, *10*, e0130385.

52. Mohammad, H.; Younis, W.; Chen, L.; Peters, C. E.; Pogliano, J.; Pogliano, K.; Cooper, B.; Zhang, J.; Mayhoub, A.; Oldfield, E.; Cushman, M.; Seleem, M. N. Phenylthiazole antibacterial agents targeting cell wall synthesis exhibit potent activity in vitro and in vivo against vancomycin-resistant *Enterococci. J. Med. Chem.* **2017**, *60*, 2425-2438.

53. Skinner, K.; Birchall, S.; Corbett, D.; Thommes, P.; Locher, H. H. Time-kill kinetics of cadazolid and comparator antibacterial agents against different ribotypes of *Clostridium difficile*. *J. Med. Microbiol.* **2018**, *67*, 1402-1409.

54. C.a.L.S.I. (CLSI), Methods for dilution antimicrobial susceptibility tests for bacteria that Grow Aerobically; Approved Standard- 9th edition, **2012**, M07-A9.

55. Kushiro, A.; Chervaux, C.; Cools-Portier, S.; Perony, A.; Legrain-Raspaud, S.; Obis, D.; Onoue, M.; van de Moer, A. Antimicrobial susceptibility testing of lactic acid bacteria and bifidobacteria by broth microdilution method and Etest. *Int. J. Food Microbiol.* **2009**, *132*, 54-58.

56. Mohammad, H.; AbdelKhalek, A.; Abutaleb, N. S.; Seleem, M. N. Repurposing niclosamide for intestinal decolonization of vancomycin-resistant *enterococci. Int. J. Antimicrob. Agents* **2018**, *51*, 897-904.

57. Younis, W.; AbdelKhalek, A.; Mayhoub, A. S.; Seleem, M. N. In vitro screening of an FDA-approved library against *ESKAPE* pathogens. *Curr. Pharm. Des.* **2017**, *23*, 2147-2157.

58. Mohammad, H.; Younis, W.; Ezzat, H. G.; Peters, C. E.; AbdelKhalek, A.; Cooper, B.; Pogliano, K.; Pogliano, J.; Mayhoub, A. S.; Seleem, M. N. Bacteriological profiling of diphenylureas as a novel class of antibiotics against methicillin-resistant *Staphylococcus aureus*. *PLoS One* **2017**, *12*, e0182821.

59. Bergstrom, B. E.; Abdelkhalek, A.; Younis, W.; Hammac, G. K.; Townsend, W. M.; Seleem, M. N. Antibacterial activity and safety of commercial veterinary cationic steroid antibiotics and neutral superoxidized water. *PLoS One* **2018**, *13*, e0193217.

60. Zhou, W.; Viswanathan, K.; Hill, D.; Anderson, A. C.; Wright, D. L. Acetylenic linkers in lead compounds: a study of the stability of the propargyl-linked antifolates. *Drug Metab. Dispos.* **2012**, *40*, 2002-2008.

61. Baell, J. B.; Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. *J. Med. Chem.* **2010**, *53*, 2719-2740.

