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Cyclopropanes and cyclobutanes are often used as scaffolds in
selective functionalizations and in the expansion of molecular
complexity.[1,2] In contrast, applications of bicyclo-
[1.1.0]butanes[3] in organic synthesis have been much more
limited.[4] Because of their impressive strain energy of
64 kcalmol�1,[5] the latter compounds readily undergo electro-
philic, nucleophilic, and radical additions as well as cyclo-
addition reactions.[3] Of special interest for bicyclobutane
chemistry is the high p character of the central C�C bond,
which can be utilized for the synthesis of cyclobutene
derivatives.[6]

We recently described a cascade reaction initiated by the
hydrozirconation of alkynes followed by transmetalation to
dimethylzinc and addition to alkynyl imines.[7] Exposure of
the resulting N-metalated intermediates to the cyclopropa-
nation conditions developed by Furukawa et al.[8] resulted in
an unprecedented series of C�C bond-formation and
-cleavage processes, thus leading to bicyclo[1.1.0]butanes
and (dicyclopropylmethyl)amines.[7a]

Bicyclo[1.1.0]butanes can also be obtained by direct
cyclopropanation of propargyl phosphinylamides[9]

(Scheme 1). Treatment of 1a–c with Me2Zn followed by
addition of (CH2I)2Zn at �50 8C provided 2a–c.[10] Conju-
gated propargylamides with electron-withdrawing substitu-

Scheme 1. Synthesis of bicyclobutanes by a directed Simmons–Smith
reaction.
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ents in the aryl group provide higher yields in this trans-
formation. Alternatively, bicyclobutanes 2 can be accessed by
addition of bicyclo[1.1.0]butyllithium to the activated imines
(Scheme 2).[11] Treatment of 3 with MeLi followed by trans-
metallation with tBuLi and addition to imines 4 furnished
bicyclobutanes 2d–f in high yields.

Based on the ease of insertion of zinc carbenoids into the
bicyclobutane scaffold,[7] we decided to explore the intra-
molecular cycloadditions with alkenes and alkynes.[12] Under
modified phase-transfer conditions[13] (allyl bromide,
Bu4NHSO4, 50% aq. NaOH, toluene), N-allylation of 2e
proceeded efficiently; however, instead of the expected
product, we found that the initial product underwent a
spontaneous formal ene reaction[14] to give spirocycle 5 in
63% yield as the only detectable diastereomer based on the
1H NMR spectroscopic analysis of the crude reaction mixture
(Scheme 3).[15]

For a further investigation of the scope of this novel
cascade process (Table 1), various bicyclobutane derivatives
were reacted with allyl, 2-methylallyl, crotyl, propargyl, 3-
phenylpropargyl, and 3-triisopropylsilylpropargyl bromides
(entries 1–6, respectively). The course of the reaction was
dependent on the substitution of the allyl moiety and the
electronic environment at the bicyclobutane ring. For exam-
ple, reaction of 2awith 3-bromo-2-methylbutene led to theN-
allylated intermediate (90% yield), which underwent con-
version into 7 in 80% yield under reflux conditions in toluene.
To directly convert 2a into 7, our initial conditions had to be
modified—the reaction was carried out at elevated temper-
atures in the presence of a mixture of powdered NaOH and
K2CO3 (entry 2).

[12] Interestingly, when bicyclobutanes 2 were
treated with cinnamyl bromides, the pathway changed from
an Alder ene reaction to a formal [2+2] cycloaddition, thus
leading to the first synthesis of 3-azatricyclo[5.1.1.01,5]nonanes
(Table 2).[16,17] Yields in this remarkable conversion ranged
from modest (32% with the pyridine-substituted 2c ; entry 2)
to excellent (93%; entry 1), and both aromatic and aliphatic
groups a to the pyrrolidine nitrogen atoms were well

tolerated. It is, however, important to note that with our
current experimental protocol only bicyclobutanes conju-

Scheme 2. Synthesis of bicyclobutanes by addition of bicyclo-
[1.1.0]butyllithium. PG=protecting group, Ts=p-toluenesulfonyl.

Scheme 3. Cascade N-allylation—an Alder ene reaction.

Table 1: Reactions of bicyclobutanes with allyl and propargyl bromides.

Entry Substrates Product Yield [%]

1 2a, allyl bromide 82

2
2a, 3-bromo-2-methyl-
propene

66[a,b]

3 2b, (E)-crotyl bromide 51[a]

4 2a, propargyl bromide 87

5
2a, 3-phenylpropargyl
bromide

49

6
2d, 3-triisopropylsilyl-
propargyl bromide

62

[a] The reaction was carried out in the presence of a mixture of powdered
NaOH and K2CO3. [b] Obtained as a 2.9:1 mixture of diastereoisomers; only
the major isomer is shown.

Table 2: Reactions of bicyclobutanes with cinnamyl bromides.

Entry Substrates Product Yield [%]

1 2a, (E)-cinnamyl bromide 93

2 2c, (E)-cinnamyl bromide 32

3
2d, 1-((E)-3-bromoprop-1-enyl)-
4-(trifluoro-methyl)benzene

68

4 2e, (E)-cinnamyl bromide 59

5 2 f, (E)-cinnamyl bromide 54
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gated to aromatic rings were found to undergo either the
intramolecular ene or the [2+2] reaction.[18]

Scheme 4 summarizes our mechanistic model of the two
competing reaction pathways for the reactions of bicyclobu-

tanes with allyl bromides. A stepwise addition of the p system
across the central bicyclobutane C�C s bond leads to a
putative biradical species,[12b,c,d,e, 19] which in case of alkyl
substituents at R1 rapidly abstracts the inside hydrogen atom
to form the spirocyclic butene.[12c] If the biradical species is
stabilized by an aromatic group at R1, its prolonged lifetime
allows for a ring inversion of the cyclobutane and radical
recombination in a formal [2+2] cycloaddition process, thus
yielding the tricyclic pyrrolidine system.

To probe the lifetime of the proposed biradical interme-
diates[12b,c,d,e, 19] in the conversion of 2a into 6 and 12, we
introduced a cyclopropylallyl substituent (Scheme 5).[20] Bicy-
clobutane 2a was allowed to react with freshly prepared
bromide 17 and the unstable amide 18 was obtained in 68%
yield. Compound 18 underwent spontaneous conversion into
equimolar amounts of 19a and 19b upon standing at room
temperature. The lack of cyclopropane ring-opened products
is not unusual for short-lived biradical intermediates,[21a] and

the bifurcation in the reaction pathway with the cyclopropane
substituent at R1 supports our hypothesis of a common
intermediate for both spirocycle and tricycle formation. A
nonconcerted pathway for the formal [2+2] process was
further supported by the reaction of 2a with (Z)-cinnamyl
bromide, which afforded 12 in 52% yield under our standard
conditions instead of the diastereomeric product derived from
a stereospecific process.[21b] Thus, the lifetime of the inter-
mediate biradical is sufficiently long to allow s-bond rotation
at R1 to give the more stable anti conformer.

In summary, we have established a direct synthetic access
to (bicyclo[1.1.0]butylmethyl)amines from propargyl phos-
phinamides through a Simmons–Smith reaction with Et2Zn/
CH2I2 or by addition of bicyclo[1.1.0]butyllithium to activated
imines. Phase-transfer conditions proved optimal for the
introduction of N-allyl or N-propargyl substituents, and the
resulting amides underwent highly diastereoselective cascade
rearrangements by formal ene or [2+2] pathways to yield
novel spirocyclic and tricyclic pyrrolidine heterocycles.
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