Schwingungsspektren und Normalkoordinatenanalyse von Bis(trifluormethyl)methylphosphan, -arsan und -stiban $(CF_3)_2ECH_3$ (E = P, As, Sb)

R. DEMUTH, J. APEL und J. GROBE

Eduard Zintl-Institut der Technischen Hochschule, Darmstadt, West Germany

(Received 22 January 1977)

Abstract—The gas phase i.r. and liquid phase Raman spectra of $(CF_3)_2ECH_3$ (E = P, As, Sb) have been studied in detail. The absorption bands are assigned by analogy to $E(CH_3)_3$ and $(CH_3)_2AsX$ (X = Cl. Br) and by a normal coordinate analysis combining the force constants for HCF₃, $E(CH_3)_3$, and $(CH_3)_2AsX$ according to the LSFF method to give a MVFF. According to the results presented $\nu E-C(F_3)$ can be considered as "characteristic frequency".

EINFÜHRUNG

In der vorausgegangenen Arbeit [1] wurde über Schwingungsspektren und Normalkoordinatenanalyse der Verbindungen $CF_3E(CH_3)_2$ (E = P, As, Sb) berichtet. Die schwingungsspektroskopische Analyse der Reihe (CF₃)₂ECH₃ rundet frühere Untersuchungen an den Verbindungstypen $(CH_3)_3E$, (CH₃)₂ECF₃ und (CF₃)₃E ab. Die hier beschriebenen Resultate werden in Beziehung zu den früheren Daten gestellt, um Aussagen über Parallelen und Unterschiede zwischen CH₃- und CF₃-Substituenten abzuleiten und die bisher gefundenen schwingungsspektroskopischen Charakteristika der CF₃-Gruppe zu ergänzen. Der Einfluß der CH3-bzw. CF3-Substituenten auf die Donor-Akzeptorfähigkeit der Bindungspartner E ist Inhalt einer photoelektronen-spektroskopischen Untersuchung [2] sowie einer Arbeit über Carbonylkomplexe des Typs Mo(CO)₅L, $Mo(CO)_4L_2$ (cis- u. trans) (M = Cr, Mo, W; $L = (CH_3)_n P(CF_3)_{3-n} [3]).$

EXPERIMENTELLES

Substanzen

Die Verbindungen $(CF_3)_2ECH_3$ (E = P, As, Sb) wurden außer nach den Literaturmethoden von HASZELDINE und WEST [4] zum Teil durch Spaltung von $Y_2(CF_3)_4$, Hg[P(CF_3)_2] und $(CH_3)_3SnY(CF_3)_2$ (Y = P, As) dargestellt. Diesen Spaltungsreaktionen sind trotz in der Regel niedriger Ausbeute günstige Syntheseverfahren, da sie mit geringeren Trennproblemen verbunden sind als der Substituentenaustausch bei der Umsetzung von E(CF_3)_3 mit CH_3I [2].

Spektren

Die Infrarot-Spektren wurden an den gasförmigen Substanzen in 10 cm-Küvetten mit KBr- bzw. Polyäthylenfenstern im Bereich von 200–4000 cm⁻¹ mit einem Gerät Perkin-Elmer 325 bei Drucken zwischen <2 und 80 mbar registriert (Wellenzahlgenauigkeit scharfer Banden besser als ± 1 cm⁻¹).

Die Aufnahme der Raman-Spektren erfolgte an den flüssigen Proben (Kapillaren von 1 mm innerem Durchmesser) mit einem Gerät Cary 82 (Kr⁺-Laser-Anregung, 500 mW bei 647,1 nm; Wellenzahlgenauigkeit $\pm 2 \text{ cm}^{-1}$; Polarisationszustände qualitativ ermittelt).

ALLGEMEINES

Die Schwingungen der CH₃-Gruppe sind mit Ausnahme von pCH₃ von den übrigen Molekülschwingungen ausreichend separiert und lassen sich auf der Basis früherer Untersuchungen an (CH₃)₃E [5, 6], $(CH_3)_2AsX$ (X = Cl, Br) [7] und $CF_3E(CH_3)_2$ [1] zuordnen. In der Normalkoordinatenanalyse wird die CH₃-Gruppe nicht im einzelnen erfaßt, sondern hier als Massenpunkt der Masse 15 betrachtet. Tabelle 1 zeigt die Verteilung der 24 Grundschwingungen des (CF₃)₂EC-Teils auf die Rassen a' und a" (C_s-Symmetrie). Wegen zu tiefer Lage sind die beiden Torsionen v_{13} und v_{24} außerhalb des Meßbereiches zu erwarten; außerdem war eine kleinere Anzahl von CF₃-Schwingungen als grundsätzlich möglich zu erwarten, da frühere Untersuchungen [8, 15] fast durchweg C_{3r}-Lokalsymmetrie für die CF3-Gruppen anzeigten. Für die untersuchten Moleküle liegen bisher keine Strukturuntersuchungen vor, so daß die für die Aufstellung der G-Matrizen benötigten Strukturdaten aus den Werten von $E(CH_3)_3$ [9, 10] und $E(CF_3)_3$ [11] extrapoliert werden mußten (Tabelle 2).

SPEKTREN UND IHRE ZUORDNUNG

Die i.r. und Raman-Daten der Verbindungen $(CF_3)_2ECH_3$ werden in Tabelle 3 wiedergegeben; typische Spektren sind in den Abbildungen 1 und 2 dargestellt. Die i.r.- und Raman-Frequenzen stimmen gut überein; die geringen Abweichungen sind auf den

Tabelle 1. Grundschwingungen der Moleküle $(CF_3)_2ECH_3$ (E = P, As, Sb)

	<i>a</i> '(Ra p, i.r.)	a"(Ra dp. i.r.
vas CF3	<i>v</i> ₁ , <i>v</i> ₂	¥14-¥15
v, CF3	v 3	¥16
δ, CF3	v ₄	¥ ; +
δ _{as} CF3	¥ 5, ¥ 6	V18.V14
Ø CF3	¥ 7,¥ 8	¥20.¥21
v EC ₂	vg	v22
δEC2	¥10	
v EC	v ₁₁	
δ CEC	v ₁₂	¥23
τ	۳ua	¥24

	(CF ₃) ₂ PCH ₃	(CF ₃) ₂ AsCH ₃	(CF ₃) ₂ SbCH ₃
r CF [pm]	134,2	133,6	132.6
≮FCF[]	108,5	108,5	108,5
<fce []<="" td=""><td>110,5</td><td>110,5</td><td>110,5</td></fce>	110,5	110,5	110,5
r CE [pm]	193,7	205,3	220,2
$r CE(H_3)$ [pm]	187.0	198.0	218.0
≮am E[]	100	100	100

Tabelle 2. Angenommene Geometrie der Verbindungen $(CF_3)_2ECH_3$ (E = P, As, Sb)

Tabelle 3. Infrarot- und Raman-Spektren der Verbindungen (CF₃)₂ ECH₃

i.r. _{gas}	F ₃) ₂ PCH ₃ Ra _{flussig}	Zuordnung	i.r. _{cas}	F ₃) ₂ AsCH ₃ Ra _{f Nissig}	Zuordnung	(C i.r. _{sav}	F ₃) ₂ SbCH ₃ Ra _{f IU-Nig}	Zuordnung
205 m 251 m 282 w 357 m 445 s 532 w 557 ms	120 <i>ew.dp</i> 199 <i>w.dp</i> 250 <i>w.dp</i> 281 <i>es.p</i> 356 <i>w.p</i> 442 <i>s.p</i> 530 <i>w.dp</i> 555 <i>w.p</i>	V ₁₂ V ₂₃ V ₂₀ , V ₂₁ , V ₁₀ V- V ₈ V ₉ , V ₂₂ V ₁₈ , V ₁₄	228 w 257 w 303 m 316 s 332 s 530 m	105 rw.dp 166 w.dp 231 rw.dp 260 rs.p 300 w.p 317 m.dp 336 s.p 533 w.dp	V ₁₂ V ₂₃ V ₁₀ VV ₂₀ .V ₂₁ V ₈ V ₂₂ V ₉ V ₈ .V ₁₉ V ₅ V ₆	228 w 282 w 255 ms 273 ms 525 s	83 vw.dp 140 w.dp 196 vw.dp 227 s.p 253 m.dp 273 m.p 525 vs.p	v_{12} v_{23} v_{10} v_{-}, v_{20}, v_{21} v_{22} v_{9} $v_{11}, v_{5}, v_{6}, v_{18}, v_{19}$
709 s 747 s PQR 893 ms 912 ms 990 rw 1025 cw 1112 cs PQR? 1153 cs 1170 rs 1286 ms 1310 ms 1432 s 1489 rw 1595 rw 1670 cw 1858 rw 1897 w 1953 rw 2015 w 2236 m	708 (x,p 743 (x,p 910 rw 1110 rw 1145 w 1200 rx 1430 rw	$\begin{cases} v_{11} \\ v_{4}v_{17} \\ 2x v_{0} \\ \rho CH_3 \\ v_7 + v_{11} \\ v_7 + v_4 \\ v_{16} \\ v_3 \\ v_{14}v_{15} \\ v_{14}v_{16} \\ v_{16} + v_{17} \\ v_{16} + v_{18} \\ v_{16} + \rho CH_3 \\ 2x v_{16} \\ v_3 + v_{16} \end{cases}$	590 s 731 s PQR 861 ms 965 rw 987 rw 1065 m 1110 rs PQR? 1125 rs 1160 rs 1180 rs 1270 ms 1290 m 1425 s 1488 m 1835 rw 1858 w 1900 rw 2220 m 2265 m	591 ts.p 730 ts.p 1110 w.dp 1130 tw.p? 1176 tw 1277 tw 1425 tw	$\begin{cases} v_{141} \\ v_{44}v_{15} \\ \rho CH_3 \\ v_{15} + v_{25} \\ v_{4} + v_{7} \\ v_{4} + v_{7} \\ v_{4} + v_{9} \\ v_{16} \\ v_{5} \\ v_{14}v_{15} \\ v_{14}v_{15} \\ v_{15} \\ v_{16} + v_{17} \\ v_{3} + v_{9} \\ v_{16} + v_{17} \\ v_{3} + v_{4} \\ v_{16} + v_{17} \\ z_{5} v_{16} \\ z_{7} v_{3} \\ v_{14} + v_{16} \end{cases}$	718 s PQR 793 m 865 w 975 cw 1090 cs PQR 1108 cs 1135 cs 1237 m 1375 w 1415 w 1740 cw 1808 crw 1808 crw 2170 m 2212 m	717 s.p 1102 cw 1145 cw.p? 1224 cw 1415 cw	$\begin{cases} v_{a}, v_{1}, \\ \rho \ CH_{3} \\ v_{20} + v_{22} \end{cases}$ $v_{16} \\ v_{3} \\ v_{14}, v_{15} \\ v_{1}, v_{2} \\ \rho \ CH_{3} \\ v_{1} + v_{8} \\ v_{16} + v_{1} - v_{9} + v_{4} \\ 2 \times v_{3} \\ 2 \times v_{1} \end{cases}$
2290 m 2300 m.sh 2340 w.b 2370 w.b 2848 m 2945 ms 3000 m 3020 m	2840 cw.p 2939 m.p 3110 cw.b	$\begin{cases} v_{14} + v_{16} \\ 2x v_{q} \\ 2x v_{14} \\ v_{1} + v_{14} \\ v CH_{3} \end{cases}$	2830 m 2940 ms 3007 m	2825 vw.p 2938 m.p 3005 vw.dp	} v CH3	2809 w 2929 s 3010 w 3030 w	2805 vw.p 2928 m.p 3025 vw.dp	} ۲ CH₃

unterschiedlichen Aggregatzustand der Substanzen bei der Untersuchung (i.r. gas, Raman flüssig) zurückzuführen.

CF₃-Schwingungen

In den i.r.-Gasspektren werden bei allen 3 Verbindungen wie erwartet nur 4 CF-Valenzschwingungen gefunden. Ihre Lage entspricht weitgehend den bei $(CF_3)_2EH$ [12, 13] ermittelten Werten (Angaben in cm⁻¹):

Tabelle 4. Vergleich der CF-Valenzschwingungen von $(CF_3)_2ECH_3$ und $(CF_3)_2EH$ (E = P, As, Sb)

(CF ₃) ₂ ECH ₃ :	P/As/Sb	(CF ₃) ₂ EH:	P/As/Sb
$v_{as}CF_3 (v_1, v_2)$ $v_{as}CF_3 (v_{14}, v_{15})$ $v_sCF_3 (v_3)$	1206/1180/1155 1170/1160/1135 1153/1125/1108		1212/1190/1154 1180/1170/1145 1144/1135/1095
$v_s CF_3(v_{16})$	1112/1110/1090		1129/1122/1083

Die CF-Wellenzahlen nehmen mit steigender Masse des E-Atoms ab, d. h. die CF-Valenzkraftkonstanten werden in der Reihe P > As > Sb kleiner (vgl. Normalkoordinatenanalyse). Einen entsprechenden Gang zeigen δ_{s} CF₃ (747 cm⁻¹/731 cm⁻¹/718 cm⁻¹) und weniger deutlich ausgeprägt auch $\delta_{as}CF_3$. Die Entartung der CF₃-Schwingungen ist auch bei den Deformationsschwingungen nicht aufgehoben. Die Zuordnung der pCF3-Schwingung bereitet erfahrungsgemäß Schwierigkeiten, da sie stark mit anderen Schwingungen koppelt und dadurch zum Teil beträchtliche Frequenzverschiebungen erfährt. Neben der Aussage der Normalkoordinatenanalyse ist die meist hohe Raman-Intensität der symmetrischen p-Schwingung ein gutes Zuordnungskriterium. Die nach diesen Gesichtspunkten getroffene Zuordnung (Tabelle 3) zeigt auch für ρCF_3 den erwarteten Gang P > As > Sb.

Abbildung 1. i.r.-Spektrum von (CF₃)₂PCH₃

Abbildung 2. Ramanspektrum von (CF₃)₂PCH₃

EC-Valenz- und Deformationsschwengungen

Für die F₃C-E- und die H₃C-E-Valenzschwingungen wurde in einer ganzen Reihe von Untersuchungen eine erstaunliche Lagekonstanz nachgewiesen (Tabelle 5). v9 und v22 sind darüber hinaus auf Grund ihrer hohen i.r.-Intensität (Raman: mittel bis stark) gut zu erkennen; da die Polarisationszustände eindeutig zu ermitteln waren, ist die Zuordnung zu den Rassen a' und a" eindeutig. Die EC-Valenzschwingungen (Tabelle 5) der CF₃-Verbindungen des Phosphors, Arsens und Antimons eignen sich gut als "Leitfrequenzen" für ähnliche Moleküle, obwohl sie in der symmetrischen Rasse wegen der besonderen Kopplungsmöglichkeiten keine "reinin" vEC-Schwin-gungen darstellen. v_s und v_{as} sind in der Regel nur im Fall der Phosphorverbindung nicht separiert, beim Arsan und Stiban ist v_{as} um etwa 20 cm⁻¹ gegenüber v, zu tieferen Wellenzahlen verschoben.

Ebenso eindeutig wie die E-CF₃-Schwingungen ist auch vE-CH₃ (v_{11}) als im i.r.- und Raman-Spektrum sehr intensive (polarisierte) Bande zu lokalisieren. Ihre Lage fügt sich mit 709/590/525 cm⁻¹ gut in die Reihe vergleichbarer Verbindungen (s. Tabelle 5) ein. In den Spektren aller drei Verbindungen erscheinen als die energieärmsten beobachteten Banden die drei Deformationsschwingungen δEC_2 (v_{10}) und δCEC (v_{12} und v_{23}). Die jeweils energiehöchste der drei Absorptionen wird der δEC_2 -Schwingung zugeordnet. Wie bei den anderen (CF₃)₂E-Verbindungen stützt die Normalkoordinatenanalyse die Zuordnung $v_{23} > v_{12}$, weil nur so physikalisch sinnvolle Kraftkonstantensätze resultieren. Die ermittelten Deformationskraftkonstanten δEC_2 sind mit in die Tabelle 8 aufgenommen; sie stimmen mit bisher errechneten Werten vergleichbarer Verbindungen gut überein.

NORMALKOORDINATENANALYSE

Die Normalkoordinatenanalyse wurde nach der Wilson'schen FG-Matrix-Methode auf der Basis der

	E = P		E = As		E = Sb		
	٧,	V _{as}	vs	v _{as}	v,	V _{as}	
CF3EX2 [14]	~ 4	25	~ 3	15			
CF EH IS	4	19	310		.—		
CF ₃ E(CH ₃), [1]	4	24	3	314		259	
	(679)	(722)	(581)	(592)	(5	22)	
(CF ₃) ₂ EX [16]	~ 442	~ 442	~ 335	~ 320	~ 272	~ 252	
(CF ₃) ₂ EH [12, 13]	440	440	333	320	273	253	
(CF ₃) ₂ EMn(CO) ₅ [17]	445	445	335	312	_	-	
(CF ₃) ₂ ESi(CH ₃) ₂ [18]	443	443	333	329		-	
(CF ₃) ₂ EE(CF ₃) ₂ [19]	451	444	337	313			
(CF ₃),ECH ₃	445	445	332	316	273	255	
	(709)		(590)		(525)		
X ₂ ECH ₃ [8, 20, 21]	(6	(685)		77)			
H ₂ ECH ₃ [22, 23]	(680)		(585)		-		
(CF ₃) ₃ E [24]	450	470	349	337	286	269	
(CH3)3E [6. 7. 25]	(652)	(708)	(572)	(584)	(5	13)	

Tabelle 5. Vergleich von EC-Valenzschwingungen [cm⁻¹]; die Frequenzen der ECH₃-Schwingungen sind in Klammern () angegeben; X = Halogen.

in Tabelle 2 aufgeführten geometrischen Daten durchgeführt. Die G-Matrizen wurden dabei mit einem Rechenprogramm [26], die Kraftkonstanten von HCF₃ [27] und E(CH₃)₃ [5,6] bzw. (CH₃)₂AsX (X = Cl, Br) [7] nach dem Prinzip des LSFF zu einem MVFF zusammengefaßt. Diese Ausgangslösungen der F-Matrix wurden unter Berücksichtigung folgender Kriterien bis zur Frequenzangleichung modifiziert: Die Schwingungskopplung innerhalb der CF₁-Gruppe sollte weitgehend unabhängig sein vom 4. Substituenten am C-Atom; es ist deshalb gerechtgertigt, die Wechselwirkungskraftkonstanten von CF₃H [27] praktisch unverändert in den Kraftkonstantenansatz eines CF₃E-Moleküls einzubringen. Anderungen der Kraftkonstantenansätze werden insbesondere an der "Nahtstelle" C-E-Bindung vorgenommen. Für $G_{ii} = 0$ wurde auch $F_{ii} = 0$ gesetzt; die Zahl der von Null verschiedenen Nebendiagonalglieder wurde möglichst klein gehalten. Kraftkonstanten gleicher Bedeutung wurden in beiden Rassen möglichst gleich gewählt. Die Potentialenergieverteilung für die einzelnen Schwingungen sollte sinnvolle

Tabelle 6. Von Null verschiedene, auf 100 pm abstandsnormierte Symmetriekraftkonstanten [10²N⋅m⁻¹]

$F_{ij}; ij =$	(CF ₃) ₂ PC	(CF ₃) ₂ AsC	(CF ₃) ₂ SbC
11	5,28	5,20	5.05
33	7,50	7,58	7,70
44	1,77	1,65	1.60
55	1,73	1,58	1,50
77	0,75	0,72	0,58
99	2,90	2,70	2,10
1010	0,84	0,75	0,67
1111	2,92	2,55	2.16
1212	0.45	0.40	0.35
1414	5,15	5,05	4,92
1616	7,25	7,47	7,64
1717	1,87	1,78	1,67
1818	1.58	1,55	1.50
2020	0,70	0,78	0,63
2222	2,08	2,00	1,55
2323	0,65	0,45	0,40
79	0,10	0,10	0.05
710	-0,10	- 0,05	. —
910	0,05	0,05	
2022	0,10	_	-

Konstant: $F_{15} = F_{1418} = -0.50$; $F_{17} = F_{1420} = 0.50$; $F_{34} = F_{1617} = 0.65$; $F_{39} = F_{1622} = 0.25$; $F_{49} = F_{1722} = -0.48$; $F_{1012} = -0.10$.

[28] und mit vergleichbaren Verbindungen weitgehend übereinstimmende Werte ergeben.

In Tabelle 6 sind die von Null verschiedenen Symmetriekraftkonstanden, in Tabelle 7 beobachtete und berechnete Schwingungen einschließlich ihrer Potentialenergieverteilung aufgeführt.

DISKUSSION

Tabelle 8 stellt CF- und EC-Kraftkonstanten einiger Verbindungen zusammen; die vorliegenden Daten lassen einige interessante Trends erkennen: (1) Die CF-Valenzkraftkonstante steigt mit steigender Zahl der CF₃-Gruppen (bei Phosphor-, Arsen- und Antimonverbindung völlig gleichartig) an, unabhängig davon, ob Wasserstoff oder CH₁-Gruppen als weitere Substituenten an das E-Atom gebunden sind. Dieser Befund stimmt mit den bei den Stoffklassen CF_3EX_2 (X = Halogen) [14] und (CF_3)₂EX [16] bzw. CF_3GeX_3 (X = Halogen) [29] und (CF_3)₂GeX₂ [30] erzielten Ergebnissen völlig überein. Der Effekt isttrotz seiner geringen Größe-signifikant, da die Berechnungen auf der Grundlage identischer Ausgangskraftfelder erfolgte. Dieses Ergebnis läßt sich mit der Annahme hyperkonjugativer Einflüsse innerhalb der CF₃-Gruppe ("double bond-no bond resonance" [31, 32, 33]) erklären, die mit steigender Zahl der CF₃-Gruppen an Gewicht gewinnen und zu steigenden CF-Kraftkonstanten führen. (2) Bei den C-E-Kraftkonstanten ist zwischen H₃C-E- und F₃C-E-Gruppierungen zu unterscheiden. Generell liegen die F₃C-E-Kraftkonstanten unter den Werten für H₃C-E-Bindungen. Die Substitution eines CH₃- durch einen CF3-Rest verändert den Wert der H3C-E-Kraftkonstanten nicht, läßt jedoch f (F₃C-E) in der Reihe $CF_3EX_2 < (CF_3)_2EX < (CF_3)_3E (X = H, CH_3)$ ziemlich stetig ansteigen. Ein Vergleich der Daten für $(CF_3)_n EH_{3-n}$ und $(CF_3)_n E(CH_3)_{3-n}$ (n = 1-3) erscheint trotz der erheblichen Kopplung der F3C-E-Schwingungen mit anderen Schwingungsformen zulässig, wenn man für beide Verbindungsreihen analoge Weschselwirkungskraftkonstanten verwendet.

Für diesen Befund spricht auch die Frequenzlage der näherungsweise als vE-CF₃ zu bezeichnenden

	Vbeob	Vberechnet	Potentialenergieverteilung
(CF ₁), PCH ₁	1206	1201	98 (1), 22 (5)
	1153	1154	61 (3), 51 (4), 26 (9)
	747	747	40 (4), 35 (3), 13 (9)
	557	554	78 (5)
	282	289	72 (7), 17 (12)
	442	438	56 (9), 15 (4), 14 (10)
	251	252	55 (10), 13 (7), 16 (12)
	709	709	92 (11)
	120	122	66 (12), 32 (10)
	1170	1171	100 (14), 20 (18)
	1112	1119	64 (16), 59 (17), 19 (22)
	743	738	43 (17), 40 (16)
	532	532	81 (18)
	250	249	82 (20). 18 (23)
	445	447	65 (22)
	199	199	72 (23), 14 (22), 17 (20)
(CF ₃) ₂ AsCH ₃	1180	1180	100 (1), 20 (5)
	1125	1127	69 (3), 48 (4), 23 (9)
	731	731	47 (4), 34 (3), 13 (9)
	533	534	81 (5)
	260	263	92 (7)
	332	328	66 (9), 12 (4)
	228	228	54 (10), 27 (12)
	590	590	99 (11)
	105	102	72 (12), 37 (10)
	1160	1159	100 (14), 20 (18)
	1110	1111	71 (16), 54 (17), 17 (22)
	731	732	51 (17), 34 (16)
	530	529	82 (18)
	257	256	91 (20)
	316	317	77 (22)
	166	165	96 (23)
(CF ₃) ₂ SbCH ₃	1155	1154	100 (1), 20 (5)
	1108	1101	78 (3), 46 (4), 17 (9)
	718	718	59 (4), 26 (3), 12 (9)
	525	526	60 (5), 27 (11)
	228	231	86 (7)
	273	273	72 (9)
	196	197	47 (10), 29 (12)
	525	524	72 (11), 23 (5)
	83	83	75 (12), 41 (10)
	1135	1136	100 (14), 20 (18)
	1190	1185	80 (16), 48 (17), 12 (22)
	718	716	65 (17), 24 (16)
	525	524	82 (18)
	228	227	93 (20)
	256	255	81 (22)
	140	140	95 (23)

Tabelle 7. Beobachtete und berechnete Frequenzen $[cm^{-1}]$ und ihre Potentialenergieverteilung $V(k)^*$

* Potentialenergieverteilung der Form: $V(k) = F_{dia} \cdot L_{ik2} \cdot 100 / \Sigma_{ij} F_{ij} \cdot L_{ik} \cdot L_{jk}$ für V(k) > 10.

Tabelle 8. Vergleich von Kraftkonstanten $[10^2 \text{ N} \cdot \text{m}^{-1}]$

	f EC (CF ₃)	f EC/EC' (CF ₃)	f EC (CH3)	f EC/EC' (CH ₃)	δ EC ₂ (CF ₃)	δ EC ₂ (CH ₃)	f CF	f CF/CF'
CE,PH, [15]	2.58			_	_		5,82	0,82
(CF ₃) ₂ PH [12]	2.76	0.26		_	0,23		5,86	0,76
(CF ₃) ₂ P [24]	2,86	0.27	_		0,20	-	6,04	0,85
(CF ₁) ₂ PCH ₃	2,49	0.37	2.92	_	0,21	_	5,93	0,72
CF PICH J [1]	2.30		2.90	-0.05	_	0,21	5,87	0.75
P(CH ₃) ₃ [6, 7]		_	2,91	-0,03		0,26		-
CF3A5H2 [15]	2,25						5,88	0.90
(CF.),AsH [12]	2,50	0,30		_	0,17		5,90	0.82
(CF ₃) ₃ As [24]	2,50	0.45	_	_	0,17		6,03	0.85
(CF ₁) ₂ AsCH ₁	2.35	0.35	2,55	-	0,18		5,93	0,80
CF ₃ As(CH ₃) ₂ [1]	2,10		2,53	0,01		0,21	5,87	0,89
As(CH ₃) ₃ [6, 7, 25]	_		2,56	-0,01		0,19		_
(CF ₃) ₂ SbH [13]	1,84	0,24	_	attention -	0,14		5,84	0,84
(CF ₃) ₃ Sb [24]	2,01	0,23			0,13	_	5,97	0,88
(CF ₃) ₂ SbCH ₃	1,80	0,23	2,16		0,15		5,87	0.89
CF ₃ Sb(CH ₃) ₂ [1]	1,75	_	2,15	0,04	_	0,16	5,79	0,87
Sb(CH ₃) ₃ [6]	_		2,18	0,00		0,17	—	

Schwingungen: Wie Tabelle 5 zeigt, liegt vEC2 praktisch unabhängig vom weiteren Substituenten am E-Atom höher als vEC bei den Monotrifluormethylverbindungen, vEC3 wiederum bei höheren Wellenzahlen als vEC₂. Als Erklärung bietet sich die Annahme hyperkonjugativer Einflüsse an [30], die die EC-Bindungen mit steigender Zahl von CF₃-Gruppen verstärken. Wie auch CNDO-Rechnungen [34] zeigen, tritt die mit steigender Zahl von CF3-Gruppen erwartete Zunahme der positiven Partialladung am P-Atom nicht auf, sondern bleibt in der Reihe CF₃PH₂, (CF₃)₂PH, (CF₃)₃P praktisch konstant. Die bindenden σ P-C-Orbitale sind mit steigender Anzahl von CF₃-Gruppen weniger stark am C-Atom lokalisiert und verstärken dadurch ingsgesamt die PC-Bindung. Die Kraftkonstante der P-CH₃-Gruppierung wird allerdings auch in den Tris(trifluormethyl)-Verbindungen nicht erreicht. Dieser an sich überraschende Befund, daß CF₃-E-Bindungen (E = P, As, Sb) länger und schwächer sind als CH₃-E-Bindungen, ist inzwischen auch theoretisch begründet worden [35, 36].

LITERATUR

- [1] R. DEMUTH, J. APEL und J. GROBE, Spectrochim. Acta 34A, 357 (1978).
- [2] J. APEL, Dissertation, TH Darmstadt (1977).
- [3] J. APEL, R. BACHER und J. GROBE, J. Organometal. Chem. (in Vorbereitung).
- [4] R. N. HASZELDINE und B. O. WEST, J. Chem. Soc. 3631 (1956); J. Chem. Soc. 3880 (1957).
- [5] H. SIEBERT, Z. Anorg. Allg. Chem. 273, 161 (1953).
 [6] G. BOUQUET und M. BIGORGNE, Spectrochim. Acta 22,
- 2103 (1966).
- [7] E. G. CLAEYS und G. P. VAN DER KELEN, Spectrochim. Acta 22, 2103 (1966).
- [8] S. ELBEL, H. TOM DIECK und R. DEMUTH, Z. Naturforsch. 31b, 1472 (1976).
- [9] L. S. BARTELL und L. O. BROCKWAY, J. Chem. Phys. 32, 512 (1960).

- [10] H. D. SPRINGALL und L. O. BROCKWAY, J. Am. Chem. Soc. 60, 996 (1938).
- [11] H. I. M. BOWEN, Trans. Faraday. Soc. 50, 463 (1954).
- [12] H. BÜRGER, J. CICHON, J. GROBE und R. DEMUTH, Spectrochim. Acta 29A, 47 (1973).
- [13] P. DEHNERT, R. DEMUTH und J. GROBE, Spectrochim. Acta (im Druck).
- [14] H. BÜRGER, R. EUJEN und R. DEMUTH, Spectrochim. Acta 31A, 1955 (1975).
- [15] H. BÜRGER, J. CICHON, R. DEMUTH und J. GROBE, Spectrochim. Acta 29A, 943 (1973).
- [16] R. DEMUTH, Z. Anorg. Allg. Chem. 418, 149 (1975).
- [17] R. DEMUTH, J. GROBE und R. RAU, Z. Naturforsch. 30b, 539 (1975).
- [18] H. BÜRGER, J. CICHON, R. DEMUTH, J. GROBE und F. HÖFLER, Spectrochim. Acta **30A**, 1977 (1974).
- [19] H. BÜRGER, J. CICHON, R. DEMUTH, J. GROBE und E. HÖFLER, Z. Anora, Alla, Cham. 206, 100 (1073)
- F. HÖFLER, Z. Anorg. Allg. Chem. **396**, 199 (1973). [20] J. R. DURIG und J. E. SAUNDERS, J. Mol. Struct. **27**, 403 (1975).
- [21] L. MAIER, Helv. Chim. Acta 46, 2026 (1963).
- [22] A. B. HARVEY und M. K. WILSON, J. Chem. Phys. 44, 3535 (1966).
- [23] J. A. LANNON und E. R. NIXON, Spectrochim. Acta 23A, 2713 (1967).
- [24] H. BÜRGER, J. CICHON, J. GROBE und F. HÖFLER, Spectrochim. Acta 28A, 1275 (1972).
- [25] E. G. CLAEYS und G. P. VAN DER KELEN, Spectrochim. Acta 22, 2095 (1966).
- [26] P. PULAY, G. BOROSSAY und F. TÖRÖK, J. Mol. Struct. 2, 336 (1968); P. PULAY und W. SAWODNY, J. Mol. Spectry 26, 150 (1968).
- [27] A. RUOFF, H. BÜRGER und S. BIEDERMANN, Spectrochim. Acta 27A, 1377 (1971).
- [28] H. BECHER, Fortschr. Chem. Forsch. 10, 156 (1968).
- [29] H. BÜRGER und R. EUJEN, Spectrochim. Acta 31A, 1645 (1975).
- [30] H. BÜRGER und R. EUJEN, Spectrochim. Acta 31A, 1655 (1975).
- [31] J. HINE, J. Am. Chem. Soc. 85, 3239 (1963).
- [32] E. A. C. LUCKEN, J. Chem. Soc. 2954 (1959).
- [33] J. F. A. WILLIAMS, Tetrahedron 18, 1477 (1962); Trans. Faraday Soc. 57, 2089 (1961).
- [34] S. ELBEL, Dissertation, Universität Frankfurt/Main (1974).
- [35] H. OBERHAMMER, J. Mol. Struct. 28, 349 (1975).
- [36] C. J. MARSDEN und L. S. BARTELL, Inorg. Chem. 15, 2713 (1976).