Synthesis of Benzoate-Functionalized Phosphanes as Novel Building Blocks for the Traceless Staudinger Ligation

Constantin Mamat,*a Anke Flemming,^b Martin Köckerling,^b Jörg Steinbach,^a Frank R. Wuest^c

- ^a Institut für Radiopharmazie, Forschungszentrum Dresden-Rossendorf e. V., Postfach: 50 01 19, 01314 Dresden, Germany Fax +49(351)2602915; E-mail: c.mamat@fzd.de
- ^b Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
- ^c Department of Oncologic Imaging, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada

Received 2 March 2009; revised 10 June 2009

Abstract: A new synthetic pathway for the preparation of benzoate-functionalized phosphanes for microwave-mediated traceless Staudinger ligations is described. Novel phosphane derivatives based on 4-substituted iodophenyl benzoates were prepared via palladium(II)-catalyzed P–C cross-coupling reaction strategy in high yields. The application of microwave conditions for the ligation reactions reduced the reaction time considerably. An approach to fast and facile labeling strategies using this ligation was established.

Key words: Staudinger ligation, traceless, click chemistry, P–C cross-coupling, palladium-catalyzed

The Staudinger ligation¹ is widely used in biochemistry and medicinal chemistry for the interconnection of molecular entities like carbohydrates, amino acids, and proteins to give various hybrid-bioconjugates under mild conditions.²⁻⁵ Moreover, the incorporation of molecular probes into biomolecules, as frequently exemplified by fluorescence labels, has gained great interest over the last years to study metabolic pathways in complex biological systems⁶ as pointed out in Scheme 1. Despite the desirable bioorthogonal character of the reaction partners through chemoselective reaction between organic azides and phosphanes, and the mild reaction conditions, the major drawback of the Staudinger ligation lies in its very long reaction time of up to 24 hours upon completion. However, in 2008 Bernardi and co-workers demonstrated the beneficial effect of microwave activation to reduce reaction times to less than one hour by synthesizing glycosyl amides via the Staudinger ligation.⁷

Acylated phosphanes are of great interest as versatile building blocks for the traceless Staudinger ligation. Most of these phosphanes were prepared by reacting aliphatic carboxylic acid chlorides or anhydrides with phosphanophenol leading to the corresponding phosphanefunctionalized esters.³ Recently Xian et al. demonstrated a reductive ligation procedure involving *S*-nitrosothiols based on a benzoate-functionalized phosphanes.⁸

Palladium-catalyzed carbon-carbon and carbon-heteroatom cross-coupling reactions are widely used in synthetic organic chemistry for various arylation and acylation reactions involving a broad variety of organic substrates.⁹ However, only a few reports in the literature deal with the synthesis of phosphanes using metal-catalyzed P^{III}-C cross-coupling reactions, mainly through Stille-type reactions.¹⁰ The synthetic application of P-C coupling reactions was improved by the direct use of secondary phosphanes as shown by the group of Stelzer and coworkers in 1996.¹¹ They described a direct route towards tertiary phosphanes containing polar substituents via a palladium(II)-catalyzed P-C cross-coupling reaction between aryl halides and HPPh2 or H2PPh. Further improvements were implemented by the use of borane-protected phosphanes in ionic liquids as reported by Valette et al.¹² or by the use of triflates as more reactive leaving groups.¹³ The high hydrophilicity of these phosphanes is an advantage for their application in reactions in polar or aqueous solvents and in biological systems.

In this paper, we describe an easy access to novel benzoate-functionalized phosphanes as versatile building blocks for traceless Staudinger reaction and their application in microwave-mediated Staudinger ligation. This approach represents an interesting synthesis route for subsequent incorporation of various molecular probes into bioactive molecules. Moreover, an efficient procedure for the protection of phosphanes via boranephosphane adduct formation is described, which enables subsequent functionalization reactions.

Scheme 1 Labeling strategy via the traceless Staudinger ligation

SYNTHESIS 2009, No. 19, pp 3311–3321 Advanced online publication: 21.08.2009 DOI: 10.1055/s-0029-1216947; Art ID: T05009SS © Georg Thieme Verlag Stuttgart · New York The benzoate residue is an important motif for the incorporation of the short-lived positron emitter fluorine-18 (¹⁸F, $t_{1/2} = 109.8$ min) into biologically active molecules due to the high in vivo stability of the ¹⁸F–C bond in 4-[¹⁸F]fluorobenzoate groups.¹⁴ Incorporation of ¹⁸F into benzoates is usually accomplished via nucleophilic aromatic substitution with [¹⁸F]fluoride on the activated aromatic system bearing 4-nitro, 4-trimethylammonium, or 4-iodo substituents as leaving group.

Conventional esterification of phosphanol 2 with appropriate benzoyl chlorides 3a-c in the presence of a base like Et_3N or *t*-BuOK in THF, or via Steglich esterification (for 4d) was envisaged for the synthesis of substituted phosphanes 4a-d as shown in Scheme 2. However, application of these reaction conditions sometimes led to low chemical yields of the desired phosphanes and the formation of by-products, which made the purification steps difficult. Furthermore, the corresponding phosphane oxides were also formed in small amount (approx. 0.5–0.9%).

Therefore, we developed an alternative strategy based on palladium-catalyzed P–C cross-coupling reactions¹¹ between various 2-iodophenyl benzoates and diphenylphosphane. Two possibilities were applied for the preparation of substrates **6a–h** as intermediates for subsequent crosscouplings (Scheme 3). In the first set of reactions (method A) several 2-iodophenyl benzoates **6a–c** were prepared in excellent yields from 83 to 98% through the reaction of benzoyl chlorides **3a–c** with 2-iodophenol (**1**) in the presence of Et₃N as the base. A second approach (method B) was based on the reaction of benzoic acids **5d–h** with 2iodophenol (**1**) and DCC/DMAP according to Steglich esterification¹⁵ that delivers compounds **6d–h** in good yields of 39 to 81%. The results are summarized in Table 1.

In the next step, synthesis of benzoylated phosphanes **4a,b,e–h** was performed via palladium-catalyzed crosscoupling reaction of 2-iodophenyl benzoates **6a,b,e–h** with diphenylphosphane in the presence of KOAc, and

Table 1 2-Iodophenyl I	Benzoates 6a-h
------------------------	----------------

Substrate	R	Method	Product	Yield (%)
3a	Н	А	6a	89
3b	F	А	6b	98
3c	NO ₂	А	6c	83
5d	Ι	В	6d	74
5e	OCH ₂ CH ₂ OH	В	6e	81
5f	OCH ₂ CH ₂ F	В	6f	67
5g	ОН	В	6g	39
5h	NMe ₂	В	6h	42

Pd(OAc)₂ as the catalyst. The reaction proceeded smoothly, and no protecting group manipulations for the OH groups in compounds **6e** and **6g** were necessary under these reaction conditions. The reactions were accomplished within 4 to 16 hours. After aqueous workup, purification of the crude product was carried out by column chromatography to afford the desired products **4a,b,e-h** in moderate to high chemical yields of 58 to 89% without the formation of by-products or oxidation products. Most of the studied functions seem to be compatible with these reaction conditions. However, no product formation was observed when the nitro-containing compound **6c** was subjected to palladium-catalyzed cross-coupling reaction. Scope and limitation of this formation are pointed out in Scheme 4 and Table 2.

³¹P NMR investigations of phosphanes **4a–h** showed signals in the range of $\delta = -15$ indicative of aromatic organophosphanes in the oxidation state +3 (compared to $\delta = 30^{16}$ for Ph₃PO). The observed singlet indicates that no oxidized species were formed during the reaction.

It was possible to obtain crystals from compound **4a** suitable for a single crystal X-ray structural analysis. Figure 1

Scheme 2 Synthesis of substituted phosphanes 4a-d

Scheme 3 Synthesis of several 2-iodophenyl benzoates 6a-h as synthons for the palladium-catalyzed P-C cross-coupling

Synthesis 2009, No. 19, 3311–3321 © Thieme Stuttgart · New York

Scheme 4 Palladium-catalyzed cross-coupling of 6a,b,e-h with HPPh₂

Table 2 Substituted Phosphanes 4a-h

Substrate	R	Product	Yield (%)
3a	Н	4a ^a	92
6a	Н	4a ^b	79
3b	F	4b ^a	57
6b	F	4b ^b	65
3c	NO ₂	4c ^a	38
6c	NO ₂	4c ^b	n.d. ^c
5d	Ι	4d ^a	76
6e	OCH ₂ CH ₂ OH	4e ^b	89
6f	OCH ₂ CH ₂ F	4f ^b	67
6g	ОН	$4g^{b}$	58
6h	NMe ₂	$4\mathbf{h}^{\mathrm{b}}$	75

^a Preparation via esterification (Scheme 2).

^b Preparation via Pd-catalyzed P-C cross-coupling (Scheme 4).

^c No formation of the desired product was observed by this method.

depicts the molecular structure of **4a**.¹⁷ The central phosphorus atom has a pyramidal configuration, the P–C distances with an average of 1.83 Å are within the range of normal P–C single bonds (1.87 Å¹⁸).

Phosphane-borane adducts¹⁹ are frequently applied to organic chemistry and catalysis. They are used for the synthesis of chiral phoshanes²⁰ and diphosphanes²¹ as well as 'protecting group' for the preparation of key intermediates for the Staudinger ligation.⁴ The main application of phosphane-borane adducts is stabilization of phosphorus at the oxidation state +3 to prevent side reactions. For further reactions involving alkyl halides leading to phosphonium salts or under oxidative conditions leading to phosphane oxides, the phosphorous is blocked with the BH₃ group. Two different synthesis pathways for boranephosphane adducts are described in the literature. McNulty and co-workers reported a strategy based on the conversion of alkylphosphanes with NaBH₄ (or LiBH₄) as the borane source under acidic conditions.²² An alternative approach is based on the transfer of the BH₃ group from a weaker THF·BH₃ or Me₂S·BH₃ adduct to phosphorus.²³

In a first experiment, HPPh₂ (7) was protected with BH₃ according to literature procedures²⁴ resulting in the diphenylphosphane-borane adduct 8 followed by reaction of compound 8 with 2-iodophenol (1) under palladium(II) catalysis. Borane-protected phosphane 9 could not be isolated under these reaction conditions (Scheme 5).

Figure 1 Molecular structure of compound **4a** (ORTEP-Plot, 50% probability level). Selected bond lengths (Å) and angles (°): P1–C1 1.8358(8), P1–C13 1.8339(8), P1–C7 1.8343(9), O2–C19 1.2060(10), O1–C19 1.3618(9), C19–O1–C14 116.01(6), O2–C19–O1 122.88(7), C13–P1–C7 101.65(4), C13–P1–C1 101.11(3).

Scheme 5 Synthesis of phosphane-boranes 8, 9, and 10a–d,h

Direct conversion of 2-(diphenylphosphano)phenol (2) into the phosphane borane adduct 9 was accomplished by the reaction with a 1 M THF·BH₃ solution at -78 °C. Warming up the reaction mixture to room temperature overnight, removal of the solvent, and subsequent purification of the crude product via column chromatography gave compound 9 as colorless crystals in 95% yield. Compound 9 functions as key intermediate for the preparation of all other substituted phosphane-borane compounds. For this purpose, compound 9 was likewise reacted with the benzoyl chloride derivatives **3a**,**b** in the presence of t-BuOK as the base. Products 10a,b were obtained in good yields, respectively. Another possibility consists of the direct treatment of the substituted phosphanophenols 4c,d,h with THF·BH₃ solution to give the corresponding phosphane-boranes 10c,d,h in 67 to 85% yields. Scheme 5 and Table 3 summarize the synthesis and the obtained chemical yields.

Table 3Synthesis of Borane Adducts 10a-d,h by Protection with BH_3

Substrate R		Product	Yield (%) 31 P NMR, δ^{31} P NMR, ^a δ			
3a	Н	10a	60	19.8	-14.8	
3b	F	10b	95	20.8	-14.6	
4c	NO_2	10c	84	20.7	-14.7	
4d	Ι	10d	67	21.0	-14.7	
4h	NMe ₂	10h	85	21.2	-14.8	

^a The ³¹P NMR shifts belong to the unprotected phosphane compounds **4a–d,h**, respectively.

The presence of the BH₃ group was confirmed by the evaluation of ¹H, ¹³C as well as ³¹P NMR analysis. A broad multiplet originating from the borane protons was observed as a new signal between $\delta = 1-2$ in the ¹H NMR spectra. Furthermore, a multiplet appears for the phosphorus atom that is shifted downfield from $\delta = ca. -15$ for phosphanes to $\delta = ca. +20$ for the phosphane-borane adducts in the ³¹P NMR spectra. The multiplet results from complex couplings of the central phosphorus with ¹⁰B, ¹¹B, and the borane protons. In the ¹¹B NMR spectrum a signal in the range of $\delta = -36$ was observed, which is indicative of the BH₃ group.

In addition, it was possible to obtain crystals from compound **10c** suitable for a single crystal X-ray analysis¹⁷ (Figure 2). The central phosphorus atom of this structure adopts a tetracoordinated configuration with the BH₃ group as fourth ligand. The P–B distance with 1.93 Å lies

Figure 2 Molecular structure of compound **10c** (ORTEP-Plot, 50% probability level). Selected bond lengths (Å) and angles (°): P1–B1 1.9324(15), N1–O4 1.2178(24), C1–O1 1.3680(15), C1–O2 1.2002(17), B1–P1–C8 115.27(6), O4–N1–O3 123.67(18), C25–O1–C1 118.26(10), O1–C1–O2 123.97(13), O1–C1–C2 110.65(11).

in the range of the values typically found for Me_3PBH_3 (1.901 Å) or H_3PBH_3 (1.937 Å)²⁵ and an average of 1.81 Å was found for the P–C bonds (1.819 Å for Me_3PBH_3).

A special challenge for the application of Staudinger ligation involving the short-lived positron emitter ¹⁸F is the relatively long time required for the reaction. To overcome this obstacle we have performed various attempts to accelerate the ligation procedure. First, as a test reaction phosphane **4a** was reacted with benzyl azide (**11**) at ambient temperature and at 90 °C (Scheme 6). Increasing the temperature was accompanied with a considerable reduction of reaction time from 6.5 hours to 1 hour to reach comparable chemical yields of compound **14**. In addition, the application of microwave activation at 50 Watt further reduced reaction time to 15 to 20 minutes (Table 4).

The azide functionalized galactose derivative **12** and amide **13** as biologically relevant compounds were reacted successfully within the Staudinger ligation under microwave conditions to give the corresponding fluorobenzoylated amides in 92 and 78% yields, respectively. The results are summarized in Table 4.

In summary, we have developed a straightforward and convenient synthetic route to substituted phosphanes 4a-**h** by the palladium-catalyzed P-C cross-coupling reaction of appropriate 2-iodophenyl esters 6a-**h** with HPPh₂. The synthesis represents an alternative approach to the commonly employed esterification of substituted phenol derivatives. The starting material for the coupling reaction was easily available through the reaction of 2-iodophenol (1) with benzoic acids 5d-**h** under Steglich conditions, or by the reaction with the appropriate benzoyl chlorides 3a-c. The benzoylated phosphane derivatives 4a, b, e-**h** obtained by this method represent as key intermediates for

Scheme 6 Sample Staudinger ligation under different reaction conditions

Substrate		Conditions	Time	Product		Yield
11	N ₃	r.t. 90 °C microwave (50 W)	6.5 h 1 h 15 min	14	F O H	81% 85% 83%
12	YOLN3 YO	microwave (50 W)	20 min	15	H H F F	92%
13	N H N3	microwave (50 W)	20 min	16	N H N O	78%

Table 4 Staudinger Conditions and Substrates

the traceless Staudinger ligation and can be used as starting material for various radiolabeling purposes due to the great variety of introduced functional groups. Treatment of phosphanes with THF·BH₃ solution gave the corresponding phosphane-borane adducts **10a–d,h** in excellent yields. Protection of the phosphorous with the BH₃ group enabled further functionalizations of the carbon scaffold. Moreover, a considerable reduction of reaction time from 6 hours to 20 minutes for the Staudinger ligation was achieved through the application of microwave activation.

NMR spectra of the compounds were recorded on a Varian Inova-400 and chemical shifts of the ¹H, ¹³C, ¹⁹F, and ³¹P spectra were reported in parts per million (ppm) using TMS as internal standard for ¹H and ¹³C, CFCl₃ for ¹⁹F, and H₃PO₄ for ³¹P spectra. ¹¹B NMR spectra were recorded on a Bruker ARX 300 with B(OMe)3 as external standard. Mass spectrometric data were obtained on a Quattro/LC mass spectrometer (MICROMASS) by electron spray ionization or on a Bruker autoflex II TOF/TOF mass spectrometer (Matrix: DHB, reflector mode). Melting points were determined on a Galen III (Cambridge Instruments) melting point apparatus (Leica, Vienna, Austria) and are uncorrected. Microanalyses were carried out with a LECO CHNS 932 elemental analyzer. Anhyd solvents [THF, CH2Cl2, N,N-dimethylacetamide (DMA)] were purchased from Fluka (anhyd, over molecular sieves, 99.7%) and other chemicals used for the syntheses were purchased from Sigma-Aldrich, Fluka, or ABCR and were used as received. Petroleum ether (PE) used refers to the fraction boiling in the range 40-60 °C. Chromatographic separations and TLC detections were carried out with Merck Silica Gel 60 (63–200 μ m) and Merck Silica Gel 60 F₂₅₄ sheets, respectively. TLCs were developed by ninhydrin solution (5% in EtOH) and heating (amine-containing compounds) or visualized under UV light ($\lambda = 254$ nm). All reactions concerning the Pd-catalyzed coupling of HPPh₂ and the borane-phosphane adduct formation were carried out under argon using Schlenk techniques. Phosphanol 2 was synthesized according to a method of Herd and co-workers¹¹ and carbohydrate 12 was synthesized by a method described in the literature.²⁶ Crystallographic data were collected with a Bruker-Nonius Apex-X8 CCD-diffractometer with Mo-Ka radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods using SHELXS-97 and refined against F^2 on all data by full-matrix least-squares with SHELXL-97.27 All non-hydrogen atoms were refined anisotropically; all hydrogen atoms bonded to C atoms were placed on geometrically calculated positions and refined using a riding model. The three H atoms of the BH_3 group in **10c** were refined isotropically.

Substituted Phosphanes 4a-d; General Procedure A

t-BuOK or Et₃N (1–1.2 equiv) was added to a solution of phosphanol **2** (1 equiv) in anhyd THF or CH₂Cl₂ at r.t. and the solution was allowed to stir for 30 min. Afterwards the respective benzoyl chloride **3a–c** (1.2–1.5 equiv) was added at r.t. and the solution was allowed to stir overnight. H₂O (10 mL) was added, the organic layer separated, and the aqueous layer was extracted with Et₂O (3 × 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was purified by column chromatography (PE–EtOAc, 20:1).

2-(Diphenylphosphano)phenyl Benzoate (4a)⁸

Following the general procedure A, phosphanol **2** (150 mg, 0.54 mmol), *t*-BuOK (61 mg, 0.54 mmol), and benzoyl chloride (**3a**; 114 mg, 0.81 mmol) yielded compound **4a** as colorless crystals; yield: 190 mg (92%); mp 101 °C; $R_f = 0.57$ (PE–EtOAc, 10:1).

¹H NMR (400 MHz, C₆D₆): $\delta = 6.84$ (t, ³*J* = 7.4 Hz, 1 H, H_{p'}), 6.93 (t, ³*J* = 7.4 Hz, 2 H, H_p), 6.98–7.08 (m, 9 H, H_m, H_{m'}, 4-H, 5-H, H-6), 7.25 (dd, ³*J*_{H,P} = 4.4 Hz, ³*J* = 8.2 Hz, 1 H, H-3), 7.34–7.40 (m, 4 H, H_o), 8.06 (d, ³*J* = 7.8 Hz, 2 H, H_{o'}).

¹³C NMR (101 MHz, C_6D_6): $\delta = 123.2$ (d, ³ $J_{C,P} = 1.6$ Hz, C-6), 126.3 (C-4), 128.4 ($C_{m'}$), 128.9 (d, ³ $J_{C,P} = 7.1$ Hz, C_m), 129.0 (C_p), 130.0 ($C_{ipso'}$), 130.1 (C-5), 130.4 ($C_{o'}$), 131.5 (d, ¹ $J_{C,P} = 16.0$ Hz, C-2), 133.2 (C_p), 134.0 (d, ² $J_{C,P} = 1.1$ Hz, C-3), 134.4 (d, ² $J_{C,P} = 20.7$ Hz, C_o), 136.4 (d, ¹ $J_{C,P} = 11.4$ Hz, C_{ipso}), 148.7 (d, ¹ $J_{C,P} = 9.6$ Hz, C-1), 164.2 (C=O).

³¹P NMR (162 MHz, C_6D_6): $\delta = -14.8$.

MS (ESI+): m/z (%) = 405 (70, [M⁺ + Na]), 383 (100, [M⁺ + H]).

Anal. Calcd for $C_{25}H_{19}O_2P$: C, 78.52; H, 5.01. Found: C, 78.44; H, 5.01.

2-(Diphenylphosphano)phenyl 4-Fluorobenzoate (4b)

Following the general procedure A, phosphanol **2** (200 mg, 0.93 mmol), Et₃N (109 mg, 0.72 mmol), and 4-fluorobenzoyl chloride (**3b**; 148 mg, 1.08 mmol) yielded compound **4b** as colorless crystals; yield: 255 mg (87%); mp 94 °C; $R_f = 0.37$ (PE–EtOAc, 5:1).

¹H NMR (400 MHz, C₆D₆): $\delta = 6.55$ (t, ³ $J_{o',m'} = {}^{3}J_{\text{H,F}} = 8.6$ Hz, 2 H, H_{m'}), 6.84 (t, ³ $J_{4,5} = 7.8$ Hz, ³ $J_{3,4} = 7.0$ Hz, 1 H, H-4), 6.97–7.09 (m, 8 H, H_m, H_p, H-5, H-6), 7.27 (dd, ⁴ $J_{\text{H,P}} = 3.9$ Hz, ³ $J_{5,6} = 7.8$ Hz, 1 H, H-3), 7.32–7.39 (m, 4 H, H_o), 7.84 (dd, ${}^{3}J_{o',m'} = 8.6$ Hz, ${}^{4}J_{H,F} = 5.4$ Hz, 2 H, H_{o'}).

¹³C NMR (101 MHz, C₆D₆): δ = 115.6 (d, ² $J_{C,F} = 22.1$ Hz, C_m), 123.2 (C-6), 126.1 (d, ⁴ $J_{C,F} = 3.4$ Hz, C_{ipso}), 126.4 (C-4), 128.9 (d, ³ $J_{C,P} = 7.4$ Hz, C_m), 129.2 (C_p), 130.1 (C-5), 131.4 (d, ¹ $J_{C,P} = 14.3$ Hz, C-2), 133.1 (d, ² $J_{C,F} = 8.8$ Hz, C_o), 134.0 (C-3), 134.4 (d, ² $J_{C,P} = 20.6$ Hz, C_o), 136.3 (d, ¹ $J_{C,P} = 11.8$ Hz, C_{ipso}), 153.6 (d, ² $J_{C,P} = 17.8$ Hz, C-1), 163.2 (C=O), 166.2 (d, ¹ $J_{C,F} = 253.3$ Hz, C_p).

¹⁹F NMR (376 MHz, C_6D_6): $\delta = -105.6$.

³¹P NMR (162 MHz, C_6D_6): $\delta = -14.6$.

MS (ESI+): m/z (%) = 423 (21, [M⁺ + Na]), 401 (19, [M⁺ + H]).

Anal. Calcd for $C_{25}H_{18}FO_2P$: C, 75.00; H, 4.53. Found: C, 75.36; H, 5.08.

2-(Diphenylphosphano)phenyl 4-Nitrobenzoate (4c)

Following the general procedure A, phosphanol **2** (200 mg, 0.72 mmol), *t*-BuOK (100 mg, 0.89 mmol), and 4-nitrobenzoyl chloride (**3c**; 200 mg, 1.08 mmol) in CH₂Cl₂ yielded compound **4c** as colorless crystals; yield: 175 mg (38%); mp 95 °C; $R_f = 0.44$ (PE–EtOAc, 10:1).

¹H NMR (400 MHz, C_6D_6): $\delta = 6.83$ (t, ${}^{3}J = 7.0$ Hz, ${}^{3}J = 7.8$ Hz, 1 H, H-4), 6.96–7.02 (m, 7 H, H_m, H_p, H-3), 7.05 (dt, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.6$ Hz, 1 H, H-5), 7.20 (dd, ${}^{3}J = 8.6$ Hz, ${}^{4}J = 3.9$ Hz, 1 H, H-6), 7.30–7.37 (m, 4 H, H_o), 7.58 (d, ${}^{3}J_{o,m} = 8.6$ Hz, 2 H, H_o'), 7.68 (d, ${}^{3}J_{o,m} = 8.6$ Hz, 2 H, H_o'), 7.68 (d, ${}^{3}J_{o,m} = 8.6$ Hz, 2 H, H_m').

¹³C NMR (101 MHz, C_6D_6): $\delta = 122.9$ (C-6), 123.4 ($C_{m'}$), 126.8 (C-4), 129.0 (d, ${}^3J_{C,P} = 7.3$ Hz, C_m), 129.4 (C_p), 130.2 (C-5), 131.1 (C_o), 131.2 (d, ${}^1J_{C,P} = 16.3$ Hz, C-2), 134.2 (d, ${}^2J_{C,P} = 1.1$ Hz, C-3), 134.4 ($C_{ipso'}$), 134.0 (d, ${}^2J_{C,P} = 1.1$ Hz, C-3), 134.4 (d, ${}^2J_{C,P} = 20.7$ Hz, C_o), 135.9 (d, ${}^1J_{C,P} = 10.8$ Hz, C_{ipso}), 153.2 (d, ${}^1J_{C,P} = 17.6$ Hz, C-1), 162.6 (C=O).

³¹P NMR (162 MHz, C_6D_6): $\delta = -14.7$.

MS (ESI+): m/z (%) = 450 (27, [M⁺ + Na]), 428 (71, [M⁺ + H]).

Anal. Calcd for $C_{25}H_{18}NO_4P$: C, 70.26; H, 4.25; N, 3.28. Found: C, 70.15; H, 4.60; N, 3.26.

2-(Diphenylphosphano)phenyl 4-Iodobenzoate (4d)

Phosphanol **2** (300 mg, 1.08 mmol), 4-iodobenzoic acid (**5d**; 267 mg, 1.08 mmol), and DMAP (50 mg) were dissolved in anhyd THF (5 mL). DCC (334 mg, 1.62 mmol) was added slowly at r.t. and the mixture was allowed to stir overnight. Afterwards, the precipitate was filtered off, the solvent was removed under reduced pressure and purification was done by column chromatography (PE–EtOAc, 10:1); yield: 414 mg (76%); mp 133 °C; $R_f = 0.75$ (PE–EtOAc, 4:1).

¹H NMR (400 MHz, C_6D_6): $\delta = 6.83$ (t, ³J = 7.0 Hz, ³J = 7.8 Hz, 1 H, H-4), 6.95–7.09 (m, 8 H, H-5, H-6, H_m, H_p), 7.20 (dd, ³J = 7.8 Hz, ⁴J = 4.7 Hz, 1 H, H-3), 7.28–7.39 (m, 6 H, H_m', H_o), 7.50 (d, ³ $J_{o,m} = 8.4$ Hz, 2 H, H_o').

¹³C NMR (101 MHz, C_6D_6): $\delta = 101.5 (C_{p'})$, 123.1 (C-6), 126.5 (C-4), 128.9 (d, ${}^{3}J_{C,P} = 7.4$ Hz, C_m), 129.2 (C_p), 130.1 (C-5), 131.5 (d, ${}^{1}J_{C,P} = 23.5$ Hz, C-2), 131.7 ($C_{o'}$), 134.0 (C-3), 134.4 (d, ${}^{2}J_{C,P} = 20.6$ Hz, C_o), 136.2 (d, ${}^{1}J_{C,P} = 10.3$ Hz, C_{ipso}), 137.9 ($C_{m'}$), 153.5 (d, ${}^{1}J_{C,P} = 16.3$ Hz, C-1), 163.8 (C=O).

³¹P NMR (162 MHz, C_6D_6): $\delta = -14.7$.

MS (MALDI-TOF): $m/z = 531 [M^+ + Na], 507 [M^+ - H].$

Anal. Calcd for $C_{25}H_{18}IO_2P$: C, 59.07; H, 3.57. Found: C, 59.49; H, 3.72.

2-Iodophenyl Benzoates 6a-c; General Procedure B

2-Iodophenol (1; 1 equiv) and Et_3N (1.5 equiv) were dissolved in THF (30 mL). At 0 °C, the respective benzoyl chloride **3a–c** (1.3

Synthesis 2009, No. 19, 3311–3321 © Thieme Stuttgart · New York

equiv) was added dropwise and the solution was stirred for 30 min at 0 °C and 1 h at r.t. Afterwards, the precipitate was filtered off and the solvent was removed under reduced pressure. Aq 1 M NaOH (30 mL) was added and the aqueous solution was extracted with EtOAc (3×10 mL), the combined organic layers dried (Na₂SO₄), and the solvent removed under reduced pressure. Purification was done by distillation under high vacuum (compounds **6a,b**) or by column chromatography.

2-Iodophenyl Benzoate (6a)

Following the general procedure B, 2-iodophenol (1; 1.00 g, 4.54 mmol), Et₃N (0.95 mL, 6.82 mmol), and benzoyl chloride (**3a**; 0.7 mL, 5.91 mmol) in THF (30 mL) yielded compound **6a** as a colorless liquid after distillation under high vacuum; yield: 1.31 g (89%); bp 155 °C/5·10⁻³ mbar.

¹H NMR (400 MHz, C₆D₆): $\delta = 6.36$ (t, ³ $J_{m,p} = 7.8$ Hz, 1 H, H_p), 6.79 (dt, ⁴J = 1.4 Hz, ³ $J_{3,4} = 7.8$ Hz, ³ $J_{4,5} = 8.0$ Hz, 1 H, H-4), 6.89 (dd, ⁴J = 1.3 Hz, ³ $J_{5,6} = 8.2$ Hz, 1 H, H-6), 6.99 (t, ³ $J_{m,p} = 7.8$ Hz, ³ $J_{o,m} = 8.0$ Hz, 2 H, H_m), 7.07 (dt, ⁴J = 1.3 Hz, ³ $J_{5,6} = 8.2$ Hz, 1 H, H-5), 7.45 (dd, ⁴J = 1.2 Hz, ³ $J_{3,4} = 7.8$ Hz, 1 H, H-3), 8.22 (d, ³ $J_{o,m} = 8.0$ Hz, 2 H, H_o).

¹³C NMR (101 MHz, C_6D_6): $\delta = 91.0$ (C-2), 123.6 (C-6), 127.6 (C-4), 128.8 (C_m), 129.4 (C-5), 129.9 (C_{ipso}), 130.7 (C_o), 133.7 (C_p), 139.6 (C-3), 152.0 (C-1), 164.1 (C=O).

MS (ESI+): m/z (%) = 347 (100, [M⁺ + Na]), 325 (10, [M⁺ + H]).

Anal. Calcd for $C_{13}H_9IO_2$: C, 48.17; H, 2.80. Found: C, 48.33; H, 2.75.

2-Iodophenyl 4-Fluorobenzoate (6b)

Following the general procedure B, 2-iodophenol (1; 1.00 g, 4.54 mmol), Et₃N (0.95 mL, 6.82 mmol), and 4-fluorobenzoyl chloride (**3b**; 0.7 mL, 5.91 mmol) in THF (30 mL) yielded compound **6b** as a colorless liquid after distillation under high vacuum; yield: 1.53 g (98%); bp 150 °C/1·10⁻³ mbar.

¹H NMR (400 MHz, C₆D₆): $\delta = 6.46$ (dt, ³ $J_{4,5} = 7.5$ Hz, ³ $J_{3,4} = 7.9$ Hz, ⁴J = 1.6 Hz, 1 H, H-4), 6.67 (t, ³ $J_{o,m} = {}^{3}J_{H,F} = 8.9$ Hz, 2 H, H_m), 6.89 (dt, ³ $J_{4,5} = 7.5$ Hz, ³ $J_{5,6} = 8.2$ Hz, 1 H, H-5), 6.97 (dd, ³ $J_{5,6} = 8.2$ Hz, ⁴J = 1.6 Hz, 1 H, H-6), 7.53 (dd, ³ $J_{5,6} = 7.9$ Hz, ⁴J = 1.5 Hz, 1 H, H-3), 7.90 (dd, ³ $J_{o,m} = 8.9$ Hz, ⁴ $J_{H,F} = 5.5$ Hz, 2 H, H_o).

¹³C NMR (101 MHz, C₆D₆): δ = 90.9 (C-2), 116.0 (d, ${}^{2}J_{C,F}$ = 22.1 Hz, C_m), 123.6 (C-6), 125.9 (d, ${}^{4}J_{C,F}$ = 3.0 Hz, C_{ipso}), 127.7 (C-4), 129.5 (C-5), 133.3 (d, ${}^{3}J_{C,F}$ = 9.5 Hz, C_o), 139.6 (C-3), 151.8 (C-1), 163.1 (C=O), 166.4 (d, {}^{1}J_{C,F} = 254.6 Hz, C_p).

¹⁹F NMR (376 MHz, C_6D_6): $\delta = -104.7$.

MS (MALDI-TOF): $m/z = 365 [M^+ + Na], 342 [M^+ + H], 341 [M^+].$

Anal. Calcd for $C_{13}H_8FIO_2$: C, 45.64; H, 2.36. Found: C, 45.73; H, 2.41.

2-Iodophenyl 4-Nitrobenzoate (6c)

Following the general procedure B, 2-iodophenol (1; 1.00 g, 4.54 mmol), Et₃N (0.95 mL, 6.82 mmol), and 4-nitrobenzoyl chloride (**3c**; 0.7 mL, 5.91 mmol) in THF (30 mL) yielded compound **6c** as pale yellow crystals after column chromatography (PE–EtOAc, 20:1); yield: 1.40 g (83%); mp 132 °C; R_f = 0.86 (PE–EtOAc, 3:1).

¹H NMR (400 MHz, C₆D₆): $\delta = 6.46$ (dt, ⁴*J* = 1.6 Hz, ³*J*_{4,5} = 7.0 Hz, 1 H, H-4), 6.88 (dt, ⁴*J* = 1.6 Hz, ³*J*_{4,5} = 7.0 Hz, 1 H, H-5), 6.92 (dd, ⁴*J* = 2.3 Hz, ³*J*_{5,6} = 8.6 Hz, 1 H, H-6), 7.51 (d, ³*J*_{3,4} = 7.8 Hz, 1 H, H-3), 7.68 (d, ³*J*_{0,m} = 8.6 Hz, 2 H, H_o), 7.88 (d, ³*J*_{0,m} = 8.6 Hz, 2 H, H_m).

¹³C NMR (101 MHz, C_6D_6): $\delta = 90.5$ (C-2), 123.2 (C-6), 123.8 (C_m), 129.6 (C-5), 131.3 (C_o), 134.2 (C_{ipso}), 139.8 (C-3), 152.0 (C-1), 151.5 (C_p), 162.4 (C=O).

MS (MALDI-TOF): $m/z = 369 [M^+]$, 353 $[M^+ - O]$, 337 $[M^+ - 2O]$.

Anal. Calcd for $C_{13}H_8INO_4$: C, 42.30; H, 2.18; N, 3.79. Found: C, 42.43; H, 2.08; N, 3.78.

2-Iodophenyl Benzoates 6d-h; General Procedure C

2-Iodophenol (1; 1.5 equiv), the respective benzoic acid 5d-h (1 equiv), and DMAP (100 mg) were dissolved in anhyd THF (or anhyd DMF for compound **6g**) and DCC (1.2–2 equiv) was added slowly at r.t. The mixture was allowed to stir overnight at r.t. (at 100 °C for compound **6g**). Afterwards, the precipitate was filtered off, the organic layer was diluted with Et₂O (30 mL) and the combined organic layers were washed with aq 1 M HCl (15 mL) and aq 1 M NaOH (15 mL), and dried (Na₂SO₄). The solvent was removed under reduced pressure and purification of the crude product was done by column chromatography.

2-Iodophenyl 4-Iodobenzoate (6d)

Following the general procedure C, 4-iodobenzoic acid (**5d**; 1.50 g, 6.05 mmol), 2-iodophenol (**1**; 2.00 g, 9.07 mmol), DCC (1.87 g, 9.07 mmol), and DMAP (100 mg) in anhyd THF (15 mL) and anhyd DMF (3 mL) yielded compound **6d** as colorless crystals after column chromatography (PE–EtOAc, 10:1); yield: 2.02 g (74%); mp 126 °C; $R_f = 0.76$ (PE–EtOAc, 4:1).

¹H NMR (400 MHz, C_6D_6): $\delta = 6.43$ (t, ${}^{3}J_{3,4} = 7.03$ Hz, ${}^{3}J_{4,5} = 7.8$ Hz, 1 H, H-4), 6.85 (t, ${}^{3}J_{5,6} = {}^{3}J_{4,5} = 7.8$ Hz, 1 H, H-5), 6.92 (d, ${}^{3}J_{5,6} = 7.8$ Hz, 1 H, H-6), 7.39 (d, ${}^{3}J_{o,m} = 8.8$ Hz, 2 H, H_m), 7.51 (d, ${}^{3}J_{3,4} = 7.03$ Hz, 1 H, H-3), 7.73 (d, ${}^{3}J_{o,m} = 8.8$ Hz, 2 H, H_m).

¹³C NMR (101 MHz, C_6D_6): $\delta = 91.2$ (C-2), 123.5 (C-6), 127.7 (C-4), 129.1 (C_{ipso}), 129.5 (C-5), 131.9 (C_o), 138.2 (C_m), 139.6 (C-3), 151.8 (C-1), 163.7 (C=O).

MS (MALDI-TOF): $m/z = 450 [M^+]$.

Anal. Calcd for $C_{13}H_8I_2O_2$: C, 34.70; H, 1.79. Found: C, 35.27; H, 1.82.

2-Iodophenyl 4-(2-Hydroxyethoxy)benzoate (6e)

Following the general procedure C, 4-(2-hydroxyethoxy)benzoic acid (**5e**;²⁸ 500 mg, 2.72 mmol), 2-iodophenol (**1**; 896 mg, 4.07 mmol), DCC (672 mg, 3.26 mmol), and DMAP (50 mg) in anhyd THF (30 mL) yielded compound **6e** as colorless crystals after column chromatography (PE–EtOAc, 20:1 \rightarrow 10:1); yield: 840 mg (81%); mp 103–104 °C; R_f = 0.49 (PE–EtOAc, 1:2).

¹H NMR (400 MHz, C₆D₆): δ = 3.39–3.46 (m, 5 H, CH₂CH₂OH), 6.45 (t, ³J_{4,5} = 7.7 Hz, 1 H, H-4), 6.65 (d, ³J_{o,m} = 8.8 Hz, 2 H, H_m), 6.89 (t, ³J_{4,5} = 7.8 Hz, 1 H, H-5), 7.04 (d, ³J_{5,6} = 8.6 Hz, 1 H, H-6), 7.55 (d, ³J_{5,6} = 8.9 Hz, 1 H, H-3), 8.31 (d, ³J_{o,m} = 8.8 Hz, 2 H, H_o).

¹³C NMR (101 MHz, C_6D_6): $\delta = 61.0$ (*C*H₂CH₂OH), 69.6 (CH₂CH₂OH), 91.2 (C-2), 114.8 (C_m), 122.4 (C_{ipso}), 123.8 (C-6), 127.5 (C-4), 129.5 (C-5), 133.0 (C_o), 139.6 (C-3), 152.1 (C-1), 163.6 (C_p), 163.9 (C=O).

MS (ESI–): m/z (%) 383 [M⁺ – H], 339 [M⁺ – CH₂CH₂OH].

Anal. Calcd for $C_{15}H_{13}IO_4$: C, 46.90; H, 3.41. Found: C, 46.56; H, 3.52.

2-Iodophenyl 4-(2-Fluoroethoxy)benzoate (6f)

Following the general procedure C, 4-(2-fluoroethoxy)benzoic acid (**5f**;²⁹ 700 mg, 3.80 mmol), 2-iodophenol (**1**; 1.25 g, 5.70 mmol), DCC (1.57 g, 7.60 mmol), and DMAP (50 mg) in anhyd THF (30 mL) yielded compound **6f** as colorless crystals after column chromatography (PE–EtOAc, 20:1 \rightarrow 10:1); yield: 985 mg (67%); mp 128 °C; $R_f = 0.5$ (PE–EtOAc, 1:2).

¹H NMR (400 MHz, C₆D₆): δ = 3.35 (dt, ³*J* = 8.2 Hz, ³*J*_{H,F} = 27.6 Hz, 2 H, CH₂CH₂F), 4.05 (dt, ²*J*_{H,F} = 47.6 Hz, ³*J* = 8.2 Hz, 2 H, CH₂CH₂F), 6.44 (dt, ⁴*J* = 1.5 Hz, ³*J*_{3,4} = 8.0 Hz, 1 H, H-4), 6.61 (d, ³*J*_{o,m} = 9.0 Hz, 2 H, H_m), 6.88 (dt, ⁴*J* = 1.5 Hz, ³*J*_{5,6} = 8.1 Hz, 1 H, H-

5), 7.03 (dd, ${}^{4}J$ = 1.5 Hz, ${}^{3}J_{5,6}$ = 8.1 Hz, 1 H, H-6), 7.55 (dd, ${}^{4}J$ = 1.5 Hz, ${}^{3}J_{5,6}$ = 8.0 Hz, 1 H, H-3), 8.28 (d, ${}^{3}J_{o,m}$ = 9.0 Hz, 2 H, H_o).

¹³C NMR (101 MHz, C₆D₆): $\delta = 67.1$ (d, ² $J_{C,F} = 20.8$ Hz, CH₂CH₂F), 81.2 (d, ¹ $J_{C,F} = 170.9$ Hz, CH₂CH₂F), 91.1 (C-2), 114.7 (C_m), 122.7 (C_{ipso}), 123.8 (C-6), 127.5 (C-4), 129.4 (C-5), 132.9 (C_o), 139.6 (C-3), 152.1 (C-1), 163.1 (C_p), 163.8 (C=O).

¹⁹F NMR (376 MHz, C_6D_6): $\delta = -223.7$.

MS (MALDI-TOF): $m/z = 385 [M^+ - H]$.

Anal. Calcd for $C_{15}H_{12}FIO_3$: C, 46.65; H, 3.13. Found: C, 46.40; H, 3.00.

2-Iodophenyl 4-Hydroxybenzoate (6g)

Following the general procedure C, 4-hydroxybenzoic acid (**5g**; 1.00 g, 7.24 mmol), 2-iodophenol (**1**; 2.33 g, 10.86 mmol), DCC (1.6 g, 7.96 mmol), and DMAP (100 mg) in anhyd DMF (30 mL) yielded compound **6g** as colorless crystals after column chromatography (PE–EtOAc, 10:1); yield: 985 mg (67%); mp 130–134 °C; $R_f = 0.54$ (PE–EtOAc, 3:1).

¹H NMR (400 MHz, C₆D₆): δ = 5.10 (br s, 1 H, OH), 6.42 (dt, ⁴*J* = 1.5 Hz, ³*J*_{3,4} = 7.8 Hz, 1 H, H-4), 6.47 (d, ³*J*_{0,m} = 8.5 Hz, 2 H, H_m), 6.85 (dt, ⁴*J* = 1.5 Hz, ³*J*_{5,6} = 8.0 Hz, 1 H, H-5), 6.98 (dd, ⁴*J* = 1.5 Hz, ³*J*_{5,6} = 8.0 Hz, 1 H, H-6), 7.53 (dd, ⁴*J* = 1.5 Hz, ³*J*_{5,6} = 7.8 Hz, 1 H, H-3), 8.22 (d, ³*J*_{0,m} = 8.5 Hz, 2 H, H_o).

¹³C NMR (101 MHz, C_6D_6): $\delta = 91.2$ (C-2), 115.7 (C_m), 122.0 (C_{ipso}), 123.8 (C-6), 127.5 (C-4), 129.4 (C-5), 133.2 (C_o), 139.6 (C-3), 152.1 (C-1), 161.3 (C_p), 164.0 (C=O).

MS (ESI–): m/z (%) = 339 (100, [M⁺ + H]), 212 (9, [M⁺ – HI]).

Anal. Calcd for $C_{13}H_9IO_3$: C, 45.91; H, 2.67. Found: C, 46.00; H, 2.66.

2-Iodophenyl 4-(Dimethylamino)benzoate (6h)

Following the general procedure C, 4-(dimethylamino)benzoic acid (**5h**; 1.50 g, 9.08 mmol), 2-iodophenol (**1**; 3.00 g, 13.62 mmol), DCC (2.25 g, 10.9 mmol), and DMAP (100 mg) in anhyd THF (30 mL) yielded compound **6h** as colorless crystals after column chromatography (PE–EtOAc, 20:1 \rightarrow 10:1); yield: 1.39 g (42%); mp 126 °C; $R_f = 0.54$ (PE–EtOAc, 3:1).

¹H NMR (400 MHz, C₆D₆): $\delta = 2.31$ [s, 6 H, N(CH₃)₂], 6.36 (d, ³J_{o,m} = 9.0 Hz, 2 H, H_m), 6.45 (t, ³J_{3,4} = ³J_{4,5} 7.8 Hz, 1 H, H-4), 6.89 (t, ³J_{4,5} = ³J_{5,6} = 7.8 Hz, 1 H, H-5), 7.12 (d, ³J_{5,6} = 7.8 Hz, 1 H, H-6), 7.58 (d, ³J_{3,4} = 7.8 Hz, 1 H, H-3), 8.41 (d, ³J_{o,m} = 9.0 Hz, 2 H, H_o).

¹³C NMR (101 MHz, C_6D_6): $\delta = 39.4$ [N(CH₃)₂], 91.5 (C-2), 111.3 (C_m), 116.6 (C_{ipso}), 124.1 (C-6), 127.1 (C-4), 129.3 (C_o), 132.7 (C-5), 139.5 (C-3), 152.6 (C-1), 153.9 (C_p), 164.4 (C=O).

 $\begin{array}{l} MS \; (ESI+): m/z \; (\%) = 390 \; (93, \, [M^+ + Na]), \, 368 \; (11, \, [M^+ + H]), \, 148 \\ (100, \, [M^+ - C_6 H_4 IO]). \end{array}$

Anal. Calcd for $C_{15}H_{14}INO_2$: C, 49.07; H, 3.84; N, 3.81. Found: C, 49.35; H, 3.86; N, 3.78.

Substituted Phosphanes 4a,b,e-h; General Procedure D

KOAc (1.2 equiv), HPPh₂ (1 equiv), and Pd(OAc)₂ in catalytical amount were added to a solution of 2-iodophenyl benzoate **6a–h** (1 equiv) in anhyd DMA (5 mL) at r.t. under argon. The mixture was allowed to stir for 5–8 h at 100 °C (or at 70 °C overnight). Afterwards, H₂O (10 mL) and CH₂Cl₂ (20 mL) were added, the organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was purified by column chromatography (PE–EtOAc, 20:1 \rightarrow 10:1).

Synthesis 2009, No. 19, 3311-3321 © Thieme Stuttgart · New York

2-(Diphenylphosphano)phenyl Benzoate (4a)

Following the general procedure D, 2-iodophenyl benzoate (**6a**; 534 mg, 1.65 mmol), KOAc (194 mg, 1.98 mmol), HPPh₂ (0.29 mL, 1.65 mmol), and Pd(OAc)₂ (5 mg) yielded compound **4a** as colorless crystals (496 mg, 79%). Analytical and spectral data were in accordance with those shown above (vide supra).

2-(Diphenylphosphano)phenyl 4-Fluorobenzoate (4b)

Following the general procedure D, 2-iodophenyl 4-fluorobenzoate (**6b**; 521 mg, 1.53 mmol), KOAc (180 mg, 1.83 mmol), HPPh₂ (0.26 mL, 1.53 mmol), and Pd(OAc)₂ (5 mg) yielded compound **4b** as colorless crystals (396 mg, 65%). Analytical and spectral data were in accordance with those shown above (vide supra).

2-(Diphenylphosphano)phenyl 4-Nitrobenzoate (4c)

It was not possible to synthesize compound **4c**. TLC monitoring showed only decomposition of products.

2-(Diphenylphosphano)phenyl 4-(2-Hydroxyethoxy)benzoate (4e)

Following the general procedure D, 2-iodophenyl 4-(2-hydroxyethoxy)benzoate (**6e**; 830 mg, 2.16 mmol), KOAc (254 mg, 2.59 mmol), HPPh₂ (402 mg, 2.16 mmol), and Pd(OAc)₂ (5 mg) yielded compound **4e** as a colorless syrup; yield: 850 mg (89%); $R_f = 0.5$ (PE–EtOAc, 1:1).

¹H NMR (400 MHz, C₆D₆): δ = 2.39 (br s, 1 H, OH), 3.45–3.56 (m, 4 H, CH₂CH₂OH), 6.58 (d, ³J_{o,m} = 8.4 Hz, 2 H, H_{m'}), 6.85 (t, ³J = 7.8 Hz, 1 H, H-4), 6.97–7.15 (m, 9 H, H_m, H_p, H-3, H-5, H-6), 7.36–7.42 (m, 4 H, H_o), 8.02 (d, ³J_{o,m} = 8.4 Hz, 2 H, H_{o'}).

¹³C NMR (101 MHz, C_6D_6): $\delta = 61.0$ (*C*H₂CH₂OH), 69.6 (CH₂CH₂OH), 114.5 (C_m'), 122.4 (C_{ipso}'), 123.4 (C-6), 126.3 (C-4), 128.9 (d, ³J_{C,P} = 7.3 Hz, C_m), 129.1 (C_p), 130.2 (C-5), 132.2 (d, ¹J_{C,P} = 16.2 Hz, C-2), 132.7 (C_o'), 134.0 (C-3), 134.4 (d, ²J_{C,P} = 20.6 Hz, C_o), 136.5 (d, ¹J_{C,P} = 11.8 Hz, C_{ipso}), 153.9 (d, ²J_{C,P} = 17.6 Hz, C-1), 163.3 (C_o'), 164.1 (C=O).

³¹P NMR (162 MHz, C_6D_6): $\delta = -14.8$.

MS (ESI+): m/z (%) = 426 (58, [M⁺ + H]).

Anal. Calcd for $C_{27}H_{24}NO_2P$: C, 73.30; H, 5.24. Found: C, 73.32; H, 5.51.

2-(Diphenylphosphano)phenyl 4-(2-Fluoroethoxy)benzoate (4f) Following the general procedure D, 2-iodophenyl 4-(2-fluoroethoxy)benzoate (**6f**; 437 mg, 1.13 mmol), KOAc (133 mg, 1.36 mmol), HPPh₂ (211 mg, 1.13 mmol), and Pd(OAc)₂ (5 mg) yielded compound **4f** as a colorless syrup; yield: 337 mg (67%); R_f = 0.24 (PE–EtOAc, 3:1).

¹H NMR (400 MHz, C₆D₆): $\delta = 3.29$ (dt, ³*J* = 8.4 Hz, ³*J*_{H,F} = 27.2 Hz, 2 H, *CH*₂CH₂F), 4.02 (dt, ²*J*_{H,F} = 47.4 Hz, ³*J* = 8.4 Hz, 2H, CH₂CH₂F), 6.50 (dt, ³*J*_{o',m'} = 9.2 Hz, 1 H, H_{m'}), 6.85 (t, ³*J*_{3,4} = 7.8 Hz, 1 H, H-4), 7.01–7.10 (m, 8 H, H-5, H-6, H_p, H_m), 7.31 (dd, ⁴*J* = 1.5 Hz, ³*J*_{3,4} = 7.8 Hz, 1 H, H-3), 7.38–7.44 (m, 4 H, H_o), 8.03 (d, ³*J*_{o',m'} = 9.2 Hz, 2 H, H_{o'}).

¹³C NMR (101 MHz, C₆D₆): $\delta = 67.0$ (d, ² $J_{C,F} = 20.6$ Hz, CH_2CH_2F), 81.2 (d, ¹ $J_{C,F} = 172.1$ Hz, CH_2CH_2F), 114.7 (C_m), 122.7 (C_{ipso}), 123.4 (C-6), 126.3 (C-4), 128.8 (C_p), 129.0 (d, ³ $J_{C,P} = 20.6$ Hz, C_m), 130.1 (C-5), 132.7 (C_o), 134.0 (C-3), 134.5 (d, ² $J_{C,P} = 20.6$ Hz, C_o), 136.6 (d, ¹ $J_{C,P} = 11.8$ Hz, C_{ipso}), 154.0 (d, ² $J_{C,P} = 17.5$ Hz, C-1), 163.9 (C=O).

¹⁹F NMR (376 MHz, C_6D_6): $\delta = -223.9$.

³¹P NMR (162 MHz, $C_6 D_6$): $\delta = -14.6$.

MS (MALDI–TOF): $m/z = 443 [M^+ - H], 428 [M^+ - CH_4].$

Anal. Calcd for $C_{27}H_{22}FO_3P$: C, 72.97; H, 4.99. Found: C, 72.89; H, 5.50.

2-(Diphenylphosphano)phenyl 4-Hydroxybenzoate (4g)

Following the general procedure D, 2-iodophenyl 4-hydroxybenzoate (**6g**; 830 mg, 2.16 mmol), KOAc (254 mg, 2.59 mmol), HPPh₂ (402 mg, 2.16 mmol), and Pd(OAc)₂ (5 mg) yielded compound **4g** as colorless syrup; yield: 340 mg (58%); $R_f = 0.41$ (PE–EtOAc, 3:1).

¹H NMR (400 MHz, C_6D_6): $\delta = 6.27$ (d, ³ $J_{o,m} = 8.6$ Hz, 2 H, $H_{m'}$), 6.78 (t, ³J = 7.8 Hz, 1 H, H-4), 6.91–7.03 (m, 8 H, H_m , H_p , H-5, H-6), 7.17–7.24 (m, 4 H, H-3), 7.28–7.37 (m, 4 H, H_o), 7.89 (d, ³ $J_{o,m} = 8.6$ Hz, 2 H, $H_{o'}$).

¹³C NMR (101 MHz, C_6D_6): $\delta = 115.5 (C_{m'})$, 123.4 (C-6), 126.2 (C-4), 128.8 (d, ${}^{3}J_{C,P} = 7.1 \text{ Hz}$, C_m), 129.0 (C_p), 130.1 (C-5), 132.9 (C_o), 133.9 (C-3), 134.5 (d, ${}^{2}J_{C,P} = 20.6 \text{ Hz}$, C_o), 136.6 (d, ${}^{1}J_{C,P} = 11.7 \text{ Hz}$, C_{ipso}), 154.0 (d, ${}^{2}J_{C,P} = 17.8 \text{ Hz}$, C-1), 161.3 ($C_{p'}$), 164.1 (C=O).

³¹P NMR (162 MHz, C_6D_6): $\delta = -14.7$.

MS (ESI+): m/z (%) = 421 (94, [M⁺ + Na]), 399 (52, [M⁺ + H]).

Anal. Calcd for $C_{25}H_{19}O_3P$: C, 75.37; H, 4.81. Found: C, 75.25; H, 5.15.

2-(Diphenylphosphano)phenyl 4-(Dimethylamino)benzoate (4h)

Following the general procedure D, 2-iodophenyl 4-(dimethylamino)benzoate (**6h**; 924 mg, 2.52 mmol), KOAc (296 mg, 3.02 mmol), HPPh₂ (469 mg, 2.52 mmol), and Pd(OAc)₂ (5 mg) yielded compound **4h** as colorless crystals; yield: 807 mg (75%); mp 145 °C; $R_f = 0.5$ (PE–EtOAc, 4:1).

¹H NMR (400 MHz, C₆D₆): δ = 2.25 [s, 6 H, N(CH₃)₂], 6.25 (d, ${}^{3}J_{o,m}$ = 8.4 Hz, 2 H, H_m), 6.85 (t, ${}^{3}J$ = 7.4 Hz, 1 H, H-6), 7.01–7.11 (m, 8 H, H_m, H_p, H-4, H-5), 7.37 (m, 5 H, H_o, H-3), 8.17 (d, ${}^{3}J_{o,m}$ = 8.4 Hz, 2H, H_o).

¹³C NMR (101 MHz, C₆D₆): δ = 111.1 (C_{m'}), 116.9 (C_{ipso'}), 123.7 (C-6), 125.9 (C-4), 128.8 (d, ${}^{3}J_{C,P} = 6.1$ Hz, C_m), 128.9 (C_p), 130.0 (C-5), 131.4 (d, ${}^{1}J_{C,P} = 16.4$ Hz, C-2), 132.3 (C_{o'}), 133.9 (C-3), 134.5 (d, ${}^{2}J_{C,P} = 19.2$ Hz, C_o), 137.0 (d, ${}^{1}J_{C,P} = 11.7$ Hz, C_{ipso}), 153.6 (C_{p'}), 154.5 (d, ${}^{2}J_{C,P} = 17.7$ Hz, C-1), 164.6 (C=O).

³¹P NMR (162 MHz, C_6D_6): $\delta = -14.8$.

MS (ESI+): m/z (%) = 426 (58, [M⁺ + H]).

Anal. Calcd for $C_{27}H_{24}NO_2P$: C, 76.22; H, 5.69. Found: C, 76.12; H, 6.11.

2-(Diphenylphosphano)phenol-Borane Complex (9)

2-(Diphenylphosphano)phenol (**2**; 1.00 g, 3.60 mmol) was dissolved in anhyd THF (7 mL) under argon. The solution was cooled down to -78 °C and a 1 M THF·BH₃ complex solution (4.0 mL, 3.96 mmol) was added slowly. The temperature of the reaction mixture was allowed to raise to r.t. overnight. Afterwards, the solvent was removed under reduced pressure and the crude product was purified via column chromatography (PE–EtOAc, 10:1) to yield colorless crystals; yield: 1.0 g (95%); mp 155 °C; $R_f = 0.37$ (PE–EtOAc, 5:1).

¹H NMR (400 MHz, C_6D_6): $\delta = 1.80-2.70$ (m, 3 H, BH₃), 6.52 (t, ³*J* = 6.9 Hz, 1 H, H-4), 6.87-7.01 (m, 9 H, H_m, H_p, H-3, H-5, H-6), 7.49-7.56 (m, 4 H, H_o), 8.10 (s, 1 H, OH).

¹³C NMR (101 MHz, C₆D₆): δ = 118.9 (d, ³*J*_{C,P} = 6.1 Hz, C-6), 120.6 (d, ³*J*_{C,P} = 7.7 Hz, C-4), 128.5 (C_{*p*}), 129.1 (d, ²*J*_{C,P} = 10.4 Hz, C_{*o*}), 131.4 (C-5), 131.5 (d, ¹*J*_{C,P} = 10.3 Hz, C-2), 133.3 (d, ³*J*_{C,P} = 10.3 Hz, C_{*m*}), 134.2 (C-3), 134.7 (d, ¹*J*_{C,P} = 4.5 Hz, C_{*ipso*}), 161.6 (d, ²*J*_{C,P} = 10.2 Hz, C-1).

³¹P NMR (162 MHz, C_6D_6): $\delta = 14.8$ (m).

¹¹B NMR (96 MHz, C_6D_6): $\delta = -35.5$ (m).

MS (ESI–): $m/z = 291 (100\%, [M^+ – H]).$

Anal. Calcd for $C_{18}H_{18}BO_2P$: C, 74.01; H, 6.21. Found: C, 74.24; H, 6.46.

2-(Diphenylphosphano)phenyl Benzoate-Borane Complex (10a)

t-BuOK (74 mg, 0.66 mmol) was added to a solution of 2-(diphenylphosphano)phenol-borane complex (**9**; 160 mg, 0.55 mmol) in anhyd THF (10 mL) and the mixture was stirred for 30 min. Subsequently, benzoyl chloride (**3a**; 115 mg, 0.82 mmol) was added slowly and the mixture was stirred overnight. The precipitate was filtered off, the solvent removed under reduced pressure, and the resulting crude product was purified by column chromatography (PE–EtOAc, 20:1 \rightarrow 10:1) to yield colorless crystals; yield: 130 mg (60%); mp 137 °C; $R_f = 0.25$ (PE–EtOAc, 5:1).

¹H NMR (400 MHz, CDCl₃): δ = 0.79–1.73 (m, 3H, BH₃), 7.23–7.70 (m, 19 H, H_{arom}).

¹³C NMR (101 MHz, CDCl₃): $\delta = 124.3$ (d, ³ $J_{C,P} = 5.9$ Hz, C-6), 126.1 (d, ³ $J_{C,P} = 8.9$ Hz, C-4), 128.1 (C_{*p*}), 128.5 (C_{*ipso'*}), 128.9 (d, ³ $J_{C,P} = 10.3$ Hz, C_{*m*}), 130.4 (C_{*m'*}), 131.3, 131.4 (C_{*o'*}, C-5), 131.6 (d, ¹ $J_{C,P} = 20.3$ Hz, C-2), 132.9 (C-3), 133.2 (d, ² $J_{C,P} = 10.3$ Hz, C_{*o*}), 133.6 (C_{*p'*}), 134.9 (d, ¹ $J_{C,P} = 7.1$ Hz, C_{*ipso*}), 152.7 (C-1), 163.9 (C=O).

³¹P NMR (162 MHz, CDCl₃): δ = 19.8 (m).

¹¹B NMR (96 MHz, C_6D_6): $\delta = -36.7$ (m).

MS (MALDI–TOF): $m/z = 396 [M^+]$, $382 [M^+ – BH_3]$.

Anal. Calcd for $C_{25}H_{22}BO_2P$: C, 75.78; H, 5.60. Found: C, 75.85; H, 5.69.

2-(Diphenylphosphano)phenyl 4-Fluorobenzoate-Borane Complex (10b)

t-BuOK (192 mg, 1.72 mmol) was added to a solution of 2-(diphenylphosphano)phenol-borane complex (**9**; 334 mg, 1.14 mmol) in anhyd THF (15 mL) and the mixture was stirred for 30 min. Subsequently, 4-fluorobenzoyl chloride (**3b**; 272 mg, 1.72 mmol) was added slowly and the mixture was stirred overnight. The precipitate was filtered off, the solvent removed under reduced pressure and the resulting crude product was purified by column chromatography (PE–EtOAc, 20:1 \rightarrow 10:1) to yield colorless crystals; yield: 450 mg (95%); mp 130 °C; $R_f = 0.53$ (PE–EtOAc, 5:1).

¹H NMR (400 MHz, C₆D₆): δ = 1.39–2.55 (m, 3 H, BH₃), 6.51 ('t', ${}^{3}J_{\text{H,F}} = {}^{3}J_{o,m} = 8.6 \text{ Hz}, 2 \text{ H}, \text{H}_{m'}$), 6.73 ('t', ${}^{3}J_{3,4} = 7.0 \text{ Hz}, {}^{3}J_{4,5} = 7.8 \text{ Hz}, 1 \text{ H}, \text{H-4}$), 6.84–6.93 (m, 6 H, H_m, H_p), 7.03 ('t', ${}^{3}J_{4,5} = 7.8 \text{ Hz}, 1 \text{ H}, \text{H-5}$), 7.15 (m, 1 H, H-6), 7.25 (ddd, ${}^{3}J_{\text{H,P}} = 11.7 \text{ Hz}, {}^{3}J = 7.8 \text{ Hz}, 4 J = 1.4 \text{ Hz}, 1 \text{ H}, \text{H-3}$), 7.67–7.75 (m, 6 H, H_o, H_o).

¹³C NMR (101 MHz, C_6D_6): $\delta = 115.4$ (d, ${}^3J_{C,F} = 22.1$ Hz, C_m), 124.7 (d, ${}^3J_{C,P} = 4.4$ Hz, C-6), 125.3 (d, ${}^4J_{C,F} = 2.9$ Hz, $C_{ipso'}$), 126.0 (d, ${}^3J_{C,P} = 8.9$ Hz, C-4), 128.8 (C_p), 128.9 (d, ${}^3J_{C,P} = 10.3$ Hz, C_m), 129.4 (C-5), 131.6 (d, ${}^1J_{C,P} = 10.3$ Hz, C-2), 133.3 (d, ${}^2J_{C,F} = 8.8$ Hz, $C_{o'}$), 132.6 (C-3), 133.5 (d, ${}^2J_{C,P} = 8.8$ Hz, C_o), 134.8 (d, ${}^1J_{C,P} = 7.3$ Hz, C_{ipso}), 153.0 (d, ${}^2J_{C,P} = 3.1$ Hz, C-1), 162.7 (C=O), 166.2 (d, ${}^1J_{C,F} = 254.4$ Hz, $C_{p'}$).

¹⁹F NMR (376 MHz, C_6D_6): $\delta = -105.2$.

³¹P NMR (162 MHz, C_6D_6): $\delta = 20.8$ (m).

¹¹B NMR (96 MHz, C_6D_6): $\delta = -36.9$ (m).

MS (MALDI–TOF): $m/z = 415 [M^+ + H], 414 [M^+].$

Anal. Calcd for $C_{25}H_{21}BFO_2P$: C, 72.49; H, 5.11. Found: C, 72.69; H, 5.37.

2-(Diphenylphosphano)phenyl 4-Nitrobenzoate-Borane Complex (10c)

Phosphane **4c** (340 mg, 0.80 mmol) was dissolved in anhyd THF (5 mL) under argon. The solution was cooled down to -78 °C and a 1

M THF·BH₃ complex solution (0.79 mL, 0.80 mmol) was added slowly. The temperature of the reaction mixture was allowed to raise to r.t. overnight. Afterwards, the solvent was removed under reduced pressure and the crude product was purified by column chromatography (PE–EtOAc, 20:1 \rightarrow 5:1) to yield pale yellow crystals; yield: 520 mg (84%); mp 175 °C; $R_f = 0.22$ (PE–EtOAc, 5:1).

¹H NMR (400 MHz, C₆D₆): δ = 1.53–2.57 (m, 3 H, BH₃), 6.71 (dt, ³J = 7.8 Hz, ⁴J = 1.5 Hz, 1 H, H-4), 6.83–6.91 (m, 6 H, H_m, H_p), 7.03 (dt, ³J = 8.4 Hz, ⁴J = 1.6 Hz, 1 H, H-5), 7.09–7.16 (m, 2 H, H-3, H-6), 7.59 ('t', ³J_{o',m'} = 8.8 Hz, 3 H, H_{o'}, H_{m'}), 7.62–7.70 (m, 4 H, H_o).

¹³C NMR (101 MHz, C₆D₆): $\delta = 123.2 (C_{ipso'})$, 124.4 (d, ³ $J_{C,P} = 6.0$ Hz, C-6), 126.4 (d, ³ $J_{C,P} = 8.8$ Hz, C-4), 129.0 (d, ³ $J_{C,P} = 10.3$ Hz, C_m), 129.1 (C_p), 131.3 (C_{o'}), 131.4 (C-5), 132.6 (C-3), 133.5 (d, ² $J_{C,P} = 10.3$ Hz, C_o), 133.8 (C_{ipso'}), 134.7 (d, ¹ $J_{C,P} = 5.9$ Hz, C_{ipso}), 150.8 (C_{p'}), 152.6 (d, ² $J_{C,P} = 3.8$ Hz, C-1), 162.1 (C=O).

³¹P NMR (162 MHz, C_6D_6): $\delta = 20.7$ (m).

¹¹B NMR (96 MHz, C_6D_6): $\delta = -36.4$ (m).

MS (MALDI–TOF): $m/z = 440 [M^+], 426 [M^+ – BH_3].$

Anal. Calcd for $C_{25}H_{21}BFO_4P$: C, 68.05; H, 4.80; N, 3.17. Found: C, 68.00; H, 4.86; N, 3.10.

2-(Diphenylphosphano)phenyl 4-Iodobenzoate-Borane Complex (10d)

Phosphane **4d** (355 mg, 0.66 mmol) was dissolved in anhyd THF (6 mL) under argon. The solution was cooled down to -78 °C and a 1 M THF·BH₃ complex solution (0.66 mL, 0.66 mmol) was added slowly. The temperature of the reaction mixture was allowed to raise to r.t. overnight. Afterwards, the solvent was removed under reduced pressure and the crude product was purified by column chromatography (PE–EtOAc, 10:1) to yield colorless crystals; yield: 244 mg (67%); mp 186 °C; $R_f = 0.72$ (PE–EtOAc 3:1).

¹H NMR (400 MHz, C₆D₆): $\delta = 1.47-2.63$ (m, 3 H, BH₃), 6.73 (t, ³ $J_{3,4} = 7.0$ Hz, ³ $J_{4,5} = 7.8$ Hz, 1 H, H-4), 6.83–6.93 (m, 6 H, H_m, H_p), 7.02 (t, ³ $J_{4,5} = 7.8$ Hz, 1 H, H-5), 7.12 (dd, ³ $J_{5,6} = 7.8$ Hz, ⁴J = 4.0Hz, 1 H, H-6), 7.25 (dd, ³ $J_{3,4} = 7.0$ Hz, 1 H, H-3), 7.27 (d, ³ $J_{o',m'} = 8.6$ Hz, 1 H, $H_{m'}$), 7.37 (d, ³ $J_{o',m'} = 8.6$ Hz, 2 H, H_{o'}), 7.64– 7.73 (m, 4 H, H_o).

¹³C NMR (101 MHz, C₆D₆): δ = 101.7 (C_{*p*'}), 124.6 (d, ${}^{3}J_{C,P} = 5.8$ Hz, C-6), 126.1 (d, ${}^{3}J_{C,P} = 8.9$ Hz, C-4), 128.8 (C_{*ipso'*}),128.9 (d, ${}^{3}J_{C,P} = 10.3$ Hz, C_{*m*}), 129.1 (C-5),131.2 (C_{*o'*}), 131.9 (C_{*p*}), 132.6 (C-3), 133.5 (d, ${}^{2}J_{C,P} = 10.3$ Hz, C_{*o*}), 134.8 (d, ${}^{1}J_{C,P} = 5.8$ Hz, C_{*ipso*}), 137.7 (C_{*m'*}), 152.9 (C-1), 163.3 (C=O).

³¹P NMR (162 MHz, C_6D_6): $\delta = 21.0$ (m).

¹¹B NMR (96 MHz, C_6D_6): $\delta = -37.1$ (m).

MS (MALDI–TOF): $m/z = 521 [M^+ - H]$.

Anal. Calcd for $C_{25}H_{21}BIO_2P$: C, 57.51; H, 4.05. Found: C, 57.54; H, 4.21.

2-(Diphenylphosphano)phenyl 4-(Dimethylamino)benzoate-Borane Complex (10h)

Phosphane **4h** (250 mg, 0.59 mmol) was dissolved in anhyd THF (5 mL) under argon. The solution was cooled down to -78 °C and a 1 M THF·BH₃ complex solution (0.59 mL, 0.59 mmol) was added slowly. The temperature of the reaction mixture was allowed to raise to r.t. during 14 h. Afterwards, the solvent was removed under reduced pressure and the crude product was purified by column chromatography (PE–EtOAc 5:1) to yield colorless crystals; yield: 220 mg (85%); mp 173 °C; $R_f = 0.33$ (PE–EtOAc, 3:1).

¹H NMR (400 MHz, C₆D₆): $\delta = 6.22$ (d, ³ $J_{o',m'} = 8.6$ Hz, 2 H, H_{m'}), 6.77 (t, ³ $J_{3,4} = 7.7$ Hz, 1 H, H-3), 6.88–7.01 (m, 6 H, H_m, H_p), 7.05 (t, ³ $J_{5,6} = 8.6$ Hz, 1 H, H-5), 7.28 (dd, ⁴J = 4.1 Hz, ³ $J_{3,4} = 7.7$ Hz, 1

H, H-4), 7.45 (dd, ${}^{3}J_{5,6} = 8.6$ Hz, 1 H, H-6), 7.77–7.88 (m, 4 H, H_o), 7.99 (d, ${}^{3}J_{o',m'} = 8.6$ Hz, 1 H, H_o).

¹³C NMR (101 MHz, C₆D₆): δ = 39.3 (NMe₂), 110.8 (C_m'), 116.0 (C_{ipso'}), 125.0 (d, ³J_{C,P} = 4.4 Hz, C-6), 125.4 (d, ³J_{C,P} = 10.3 Hz, C-4), 128.8 (d, ³J_{C,P} = 10.3 Hz, C_m), 129.4 (C-5), 129.9 (C-3), 131.0 (C_p), 132.6 (C_{o'}), 133.8 (d, ²J_{C,P} = 10.3 Hz, C_o), 135.0 (d, ¹J_{C,P} = 8.8 Hz, C_{ipso}), 153.6 (C_p'), 154.2 (C-1), 164.0 (C=O).

³¹P NMR (162 MHz, C_6D_6): $\delta = 21.2$ (m).

¹¹B NMR (96 MHz, C_6D_6): $\delta = -36.3$ (m).

MS (MALDI–TOF): $m/z = 439 [M^+], 438 [M^+ – H].$

Anal. Calcd for C₂₇H₂₇BNO₂P: C, 73.82; H, 6.20; N, 3.19. Found: C, 73.80; H, 6.15; N, 3.26.

CAUTION! Hazard warning for organic azides: risk of explosion by shock, friction, fire upon heating. Store azides in a cool location.

N-Benzyl-4-fluorobenzamide (14)³⁰

Benzyl azide (11;³¹ 60 mg, 0.45 mmol) and phosphane **4b** (150 mg, 0.37 mmol) were dissolved in a DMF–H₂O mixture (0.5 mL:0.05 mL) and heated under microwave conditions (50 Watt) for 20 min. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography (PE–EtOAc, 20:1); yield: 71 mg (83%); colorless crystals; mp 143–144 °C; $R_f = 0.41$ (PE–EtOAc, 1:1).

¹H NMR (400 MHz, C₆D₆): δ = 4.40 (d, ²*J* = 5.6 Hz, 2 H, CH₂), 5.71 (br s, 1 H, NH), 6.64 (t, ³*J*_{o,m} = ³*J*_{H,F} = 8.6 Hz, 1 H, H_m), 7.02–7.13 (m, 5 H, C₆H₅), 7.37 (dd, ³*J*_{o,m} = 8.6 Hz, ⁴*J*_{H,F} = 5.5 Hz, 1 H, H_o).

¹³C NMR (101 MHz, C_6D_6): $\delta = 44.0$ (CH₂N), 115.4 (d, ${}^2J_{C,F} = 22.1$ Hz, C-3/C-5), 127.6 (C_p), 128.1 (C_m), 128.8 (C-1), 129.7 (d, ${}^3J_{C,F} = 8.8$ Hz, C-2/C-6), 139.2 (C_{ipso}), 165.5 (C=O), 167.4 (d, ${}^1J_{C,F} = 250.5$ Hz, C-4).

¹⁹F NMR (376 MHz, C_6D_6): $\delta = -109.5$.

MS (ESI+): m/z (%) = 230 (12, [M⁺ + H]), 252 (100, [M⁺ + Na]).

Anal. Calcd for $C_{14}H_{12}FNO$: C, 73.35; H, 5.28; N, 6.11. Found: C, 73.61; H, 5.45; N, 6.14.

6-(4-Fluoro)benzamino-6-deoxy-1,2:3,4-di-*O*-isopropylidene-α-D-galactopyranose (15)

6-Azido-6-deoxy-1,2:3,4-di-*O*-isopropylidene-α-D-galactopyranose (**12**;²⁶ 100 mg, 0.35 mmol) and phosphane **4b** (117 mg, 0.29 mmol) were dissolved in a DMF–H₂O mixture (0.5 mL:0.05 mL) and heated under microwave conditions (50 Watt) for 20 min. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography (PE–EtOAc, 20:1); yield: 190 mg (92%); colorless syrup; $R_f = 0.57$ (PE–EtOAc, 4:1).

¹H NMR (400 MHz, C₆D₆): $\delta = 1.01$, 1.13, 1.39, 1.46 [4 s, 3 H each, 2 × C(CH₃)₂], 3.44–3.52 (m, 1 H, H-6a), 3.81 (dd, ³J_{3,4} = 7.8 Hz, 1 H, H-4), 4.02–4.07 (m, 1 H, H-6b), 4.15 (dd, ³J_{1,2} = 4.7 Hz, ³J_{2,3} = 2.3 Hz, 1 H, H-2), 4.12–4.16 (m, 1 H, H-5), 4.42 (dd, ³J_{2,3} = 2.3 Hz, ³J_{3,4} = 7.8 Hz, 1 H, H-3), 5.45 (d, ³J_{1,2} = 4.7 Hz, 1 H, H-1), 6.33 (br s, 1 H, NH), 6.64 ('t', ³J_{o,m} = ³J_{H,F} = 8.6 Hz, 2 H, H_m), 7.55 (dd, ³J_{o,m} = 8.6 Hz, ⁴J_{H,F} = 5.5 Hz, 2 H, H_o).

¹³C NMR (101 MHz, C_6D_6): $\delta = 24.3$, 25.0, 26.1, 26.3 [4 × CH₃ of C(CH₃)₂)], 41.2 (C-6), 66.9 (C-5), 71.2 (C-2), 71.4 (C-3), 72.0 (C-4), 96.8 (C-1), 108.8, 109.3 [2 × C of C(CH₃)₂], 115.3 (d, ² $J_{C,F} = 22.1$ Hz, C_m), 128.7 (C_{ipso}), 129.7 (d, ³ $J_{C,F} = 8.8$ Hz, C_o), 164.8 (d, ¹ $J_{C,F} = 250.4$ Hz, C_p), 166.2 (C=O).

¹⁹F NMR (376 MHz, C_6D_6): $\delta = -109.5$.

MS (MALDI–TOF): $m/z = 380 [M^+ - H]$.

Anal. Calcd for $C_{19}H_{24}FNO_6$: C, 59.83; H, 6.34; N, 3.67. Found: C, 59.78; H, 6.30; N, 3.78.

N-(2-(Benzamino)-2-oxoethyl)-4-fluorobenzamide (16)

2-Azido-*N*-benzylacetamide (13;³² 67 mg, 0.35 mmol) and phosphane **4b** (118 mg, 0.29 mmol) were dissolved in a DMF–H₂O mixture (0.5 mL:0.05 mL) and heated under microwave conditions (50 Watt) for 20 min. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography (PE–EtOAc, 20:1); yield: 66 mg (78%); colorless crystals; mp 194 °C; R_f = 0.13 (PE–EtOAc, 1:1).

¹H NMR (400 MHz, CD₃OD): δ = 4.06 (s, 2 H, CH₂CO), 4.42 (s, 2 H, PhCH₂), 7.20 ('t', ${}^{3}J_{o,m} = {}^{3}J_{H,F} = 8.6$ Hz, 2 H, H-3/H-5), 7.26–7.35 (m, 5 H, C₆H₅), 7.83 (dd, ${}^{3}J_{o,m} = 8.6$ Hz, ${}^{4}J_{H,F} = 4.7$ Hz, H-2/H-6).

¹³C NMR (101 MHz, CD₃OD): δ = 44.0, 44.1 (2 × CH₂N), 116.4 (d, ²*J*_{C,F} = 22.1 Hz, C-3/C-5), 128.1 (C_{*p*}), 128.5 (C_{*o*}), 129.5 (C_{*m*}), 131.1 (d, ³*J*_{C,F} = 9.1 Hz, C-2/C-6), 139.8 (C_{*ipso*}), 166.3 (d, ¹*J*_{C,F} = 250.4 Hz, C-4), 169.4, 171.7 (2 × C=O).

¹⁹F NMR (376 MHz, CD₃OD): $\delta = -110.8$.

MS (MALDI-TOF): $m/z = 287 [M^+ + H]$.

Anal. Calcd for $C_{16}H_{15}FN_2O_2$: C, 67.12; H, 5.28; N, 9.78. Found: C, 67.01; H, 5.23; N, 9.70.

References

- (a) Köhn, M.; Breinbauer, R. Angew. Chem. Int. Ed. 2004, 43, 3106; Angew. Chem. 2004, 116, 3168. (b) Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353.
- (2) (a) Lin, F. L.; Hoyt, H. M.; van Halbeek, H.; Bergman, R. G.; Bertozzi, C. R. *J. Am. Chem. Soc.* 2005, *127*, 2686.
 (b) Soellner, M. B.; Nilsson, B. L.; Raines, R. T. *J. Am. Chem. Soc.* 2006, *128*, 8820.
- (3) (a) Bianchi, A.; Russo, A.; Bernardi, A. *Tetrahedron: Asymmetry* 2005, *16*, 381. (b) Bianchi, A.; Bernardi, A. *J. Org. Chem.* 2006, *71*, 4565. (c) Saxon, E.; Luchansky, S. J.; Hang, H. C.; Yu, C.; Lee, S. C.; Bertozzi, C. R. *J. Am. Chem. Soc.* 2002, *124*, 14893.
- (4) Grandjean, C.; Boutonnier, A.; Guerreiro, C.; Fournier, J.-M.; Mulard, L. A. J. Org. Chem. 2005, 70, 7123.
- (5) (a) Kleineweischede, R.; Hackenberger, C. P. R. Angew. Chem. Int. Ed. 2008, 47, 5984; Angew. Chem. 2008, 120, 6073. (b) David, O.; Meester, W. J. N.; Bieräugel, H.; Schoemaker, H. E.; Hiemstra, H.; van Maarseveen, J. H. Angew. Chem. Int. Ed. 2003, 42, 4373; Angew. Chem. 2003, 115, 4509. (c) Merkx, R.; Rijkers, D. T. S.; Kemmink, J.; Liskamp, R. M. J. Tetrahedron Lett. 2003, 44, 4515. (d) Tam, A.; Soellner, M. B.; Raines, R. T. Org. Biomol. Chem. 2008, 1173. (e) Masson, G.; den Hartog, T.; Schoemaker, H. E.; Hiemstra, H.; van Maarseveen, J. H. Synlett 2006, 865.
- (6) (a) Wang, C. C.; Seo, T. S.; Li, Z.; Ruparel, H.; Ju, J. *Bioconjugate Chem.* 2003, *14*, 697. (b) Chang, P. V.;
 Prescher, J. A.; Hangauer, M. J.; Bertozzi, C. R. *J. Am. Chem. Soc.* 2007, *129*, 8400. (c) Hangauer, M. J.; Bertozzi, C. R. Angew. Chem. Int. Ed. 2008, *47*, 2394; Angew. Chem. 2008, *120*, 2428.
- (7) Nisic, F.; Bernardi, A. Carbohydr. Res. 2008, 343, 1636.
- (8) Zhang, J.; Wang, H.; Xian, M. Org. Lett. 2009, 11, 477.
- (9) Reviews: (a) Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: London, 1985. (b) de Meijere, A.; Meier, F. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379; Angew. Chem. 1994, 106, 2473. (c) Heck, R. F. In Comprehensive Organic Synthesis, Vol. 4; Trost, B. M.; Fleming, I.; Semmelhack, M. F., Eds.; Pergamon: Oxford, 1991, 833. (d) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2.

- (10) (a) Tunney, S. E.; Stille, J. K. J. Org. Chem. 1987, 52, 748.
 (b) Beletskaya, I. P.; Veits, Y. A.; Lekunkin, V. A.; Voss, V. L. Izv. Akad. Nauk, Ser. Khim. 1992, 1645; Chem. Abstr. 1993, 118, 102064.
- (11) (a) Herd, O.; Heßler, A.; Hingst, M.; Tepper, M.; Stelzer, O. *J. Organomet. Chem.* **1996**, *522*, 69. (b) Herd, O.; Heßler, A.; Hingst, M.; Machnitzki, P.; Tepper, M.; Stelzer, O. *Catal. Today* **1998**, *42*, 413.
- (12) Vallette, H.; Pican, S.; Boudou, C.; Levillain, J.; Plaquevent, J.-C.; Gaumont, A.-C. *Tetrahedron Lett.* **2006**, *47*, 5191.
- (13) Lipshutz, B. H.; Buzard, D. J.; Yun, C. S. *Tetrahedron Lett.* 1999, 40, 201.
- (14) Mäding, P.; Füchtner, F.; Wüst, F. *Appl. Radiat. Isot.* **2005**, 63, 329.
- (15) Neises, B.; Steglich, S. Angew. Chem., Int. Ed. Engl. 1978, 17, 522; Angew. Chem. 1978, 90, 556.
- (16) Pautard-Cooper, A.; Evans, S. A. Jr. J. Org. Chem. 1989, 54, 2485.
- (17) CCDC 708661 (compound 4a), and 708662 (compound 10c) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- (18) CRC Handbook of Chemistry and Physics; Weast, R. C.; Astle, M. J., Eds.; CRC Press Inc.: Boca Raton, **1980**, F-215.
- (19) (a) Schmidbaur, H. J. Organomet. Chem. 1980, 200, 287.
 (b) Brunel, J. M.; Faure, B.; Maffei, M. Coord. Chem. Rev. 1998, 178-180, 665.
- (20) (a) Oshiki, T.; Imamoto, T. J. Am. Chem. Soc. 1992, 114, 3975. (b) Imamoto, T.; Oshiki, T.; Onozawa, T.; Matsuo, M.; Hikosaka, T.; Yanagawa, M. Heteroat. Chem. 1992, 3, 563. (c) Moulin, D.; Bago, S.; Bauduin, C.; Darcel, C.; Jugé, S. Tetrahedron: Asymmetry 2000, 11, 3939.

- (21) Pellon, P.; Le Goaster, C.; Marchand, G.; Martin, B.; Toupet, L. *Heteroat. Chem.* **1997**, *8*, 123.
- (22) (a) Imamoto, T.; Oshiki, T.; Onozawa, T.; Kusumoto, T.; Sato, K. J. Am. Chem. Soc. 1990, 112, 5244. (b) McNulty, J.; Zhou, Y. Tetrahedron Lett. 2004, 45, 407.
- (23) Review: Carboni, B.; Monnier, L. *Tetrahedron* **1999**, *55*, 1197.
- (24) Dornhaus, F.; Bolte, M.; Lerner, H.-W.; Wagner, M. Eur. J. Inorg. Chem. 2006, 1777.
- (25) Corbridge, D. E. C. Phosphorus, an Outline of its Chemistry, Biochemistry and Technology, 4th ed.; Elsevier: Amsterdam, 1990, 680–681.
- (26) Joosten, J. A. F.; Evers, B.; van Summeren, R. P.; Kamerling, J. P.; Vliegenthart, J. F. G. *Eur. J. Org. Chem.* 2003, 3569.
- (27) Sheldrick, G. M. SHELXS-97 and SHELXL-97, Programs for the Solution and Refinement of Crystal Structures; University of Göttingen: Göttingen, 1997.
- (28) Lacoudre, N.; Le Borgne, A.; Spassky, N.; Vairon, J.-P.; Le Barny, P.; Dubois, J.-C.; Esselin, S.; Friedrich, C.; Noël, C. *Mol. Cryst. Liq. Cryst.* **1988**, *115*, 113.
- (29) Compound 5f was prepared according to the procedure given in reference 28 with 1-bromo-2-fluoroethane instead of 2-bromoethanol.
- (30) Spratt, M. P.; Dorn, H. C. Anal. Chem. 1984, 56, 2038.
- (31) Theocharis, A. B.; Alexandrou, N. E.; Terzis, A. *J. Heterocycl. Chem.* **1990**, *27*, 1741.
- (32) Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2000, 2, 1939.