ISSN 1070-4280, Russian Journal of Organic Chemistry, 2013, Vol. 49, No. 1, pp. 123–129. © Pleiades Publishing, Ltd., 2013. Original Russian Text © R.I. Vas'kevich, A.I. Vas'kevich, E.B. Rusanov, V.I. Staninets, M.V. Vovk, 2013, published in Zhurnal Organicheskoi Khimii, 2013, Vol. 49, No. 1, pp. 128–134.

Synthesis of 7-Iodo(arylsulfanyl)methyl-7,8-dihydro-[1,3]thiazolo[2,3-*i*]purinium Pentaiodide (Perchlorates) and Their Transformation into 4-Amino-5-(1,3-thiazol-2-yl)imidazole Derivatives

R. I. Vas'kevich, A. I. Vas'kevich, E. B. Rusanov, V. I. Staninets, and M. V. Vovk

Institute of Organic Chemistry, National Academy of Sciences of Ukraine, ul. Murmanskaya 5, Kiev, 02660 Ukraine e-mail: vaskevich@ioch.kiev.ua

Received May 30, 2012

Abstract—Intramolecular electrophilic cyclization of 6-allylsulfanylpurine by the action of iodine and arenesulfenyl chlorides gave 7-iodomethyl-7,8-dihydro[1,3]thiazolo[2,3-*i*]purin-6-ium pentaiodide and 7-arylsulfanylmethyl-7,8-dihydro[1,3]thiazolo[2,3-*i*]purin-6-ium perchlorates, respectively. 7-Iodomethyl-7,8-dihydro-[1,3]thiazolo[2,3-*i*]purin-6-ium iodide reacted with sodium and potassium alkoxides to produce alkyl *N*-[5-(4-methyl-1,3-thiazol-2-yl)-1*H*-imidazol-4-yl]formimidates, and its reaction with secondary cyclic amines afforded 5-(4-methyl-1,3-thiazol-2-yl)-*N*-[morpholin-4-yl(or piperidin-1-yl)methylidene]-1*H*-imidazol-4amines. Successive treatment of 7-arylsulfanylmethyl-7,8-dihydro[1,3]thiazolo[2,3-*i*]purin-6-ium perchlorates with sodium acetate and morpholine led to the formation of 5-(4-arylsulfanylmethyl-4,5-dihydro-1,3-thiazol-2yl)-*N*-(morpholin-4-ylmethylidene)-1*H*-imidazol-4-amines.

DOI: 10.1134/S1070428013010211

Intramolecular electrophilic cyclization of 2-allylsulfanylpirimidines [1, 2] and their fused analogs [3–5] provides a convenient method for the synthesis of [1,3]thiazolo[3,2-*a*]pyrimidine derivatives. On the other hand, analogous transformations of compounds containing an allylsulfanyl group in position 4 of the pyrimidine ring, e.g., 4-allylsulfanylquinazolines [6, 7] or 6-allylsulfanylpurines [8] were not reported. Taking into account pronounced therapeutic effect of 6-sulfanylpurine [9] and its *S*-alkyl derivatives [10–13], their chemical modification seems to be important from the viewpoints of both synthetic and biological applications.

Since the first synthesis of representatives of the 7,8-dihydro[1,3]thiazolo[2,3-*i*]purine heterocyclic sys-

tem by condensation of 6-sulfanylpurine with 1,2-dihaloethanes [12, 13], these compounds permanently attract researchers' attention [14, 15]. Other versions of their synthesis have not found practical application. Therefore, we believed it reasonable to use for this purpose intramolecular electrophilic cyclization of 6-allylsulfanylpurine (I) by the action of iodine and arenesulfenyl chlorides.

Compound I reacted with 3 equiv of iodine in chloroform at room temperature to give 7-iodomethyl-7,8-dihydro[1,3]thiazolo[2,3-*i*]purin-6-ium pentaiodide (II) in quantitative yield as a result of selective intramolecular cyclization. The subsequent treatment of II with sodium iodide in acetone quantitatively afforded the corresponding iodide III (Scheme 1). The structure

123

V, R = Me(a), Et (b); **VI**, $X = CH_2(a)$, O (b).

of **II** and **III** is consistent with the IR and NMR data. The IR spectra of **II** and **III** contained an absorption band in the region 1630–1610 cm⁻¹ due to stretching vibrations of the iminium fragment, and their ¹H NMR spectra displayed multiplet signals from protons in the dihydrothiazole ring (δ 3.83–5.84 ppm) and singlets from 2-H and 5-H at δ 8.97 and 9.47–9.48 ppm, respectively.

Molecule III possesses two electrophilic centers and is a convenient model for studying reactions with nucleophiles. By treatment of III with sodium acetate in ethanol at room temperature we obtained 7-methylidene-7,8-dihydro[1,3]thiazolo[2,3-*i*]purine (IV) (Scheme 2). The reactions of III with sodium methoxide or ethoxide followed a much more complex pattern and unexpectedly resulted in the formation of alkyl N-[5-(4-methyl-1,3-thiazol-2-yl)-1H-imidazol-4-yl]formimidates Va and Vb. Most probably, compound IV was initially formed as intermediate. This assumption was confirmed by the isolation of Vb when 7-methylidene derivative IV was heated to 60°C in ethanol in the presence of potassium hydroxide. The process is most likely to involve opening of the pyrimidine ring in intermediate A by the action of alkoxide ion and simultaneous or subsequent 1,3-prototropic shift in the dihydrothiazole fragment.

The described reaction may be regarded as a new version of fragmentation of pyrimidine ring in the thia-

zolopurine system, which could ensure a novel synthetic approach to 4-amino derivatives of biheterocyclic thiazolylimidazole ensemble. Monthomery et al. [13] previously described cleavage of the thiazole ring in 7,8-dihydro-3*H*-thiazolo[2,3-*i*]purinium bromides in reactions with benzenethiols.

We found that this reaction is more general. Thiazolopurinium iodide **III** reacted with excess cyclic secondary amines (piperidine and morpholine) at room temperature to produce 4-amino-5-thiazolylimidazole derivatives **VIa** and **VIb** in high yield. Compounds **Va**, **Vb**, **VIa**, and **VIb** showed in the ¹H NMR spectra singlets from protons in the thiazole and imidazole rings at δ 6.98–7.18 and 8.40–8.62 ppm, respectively, and a singlet at δ 7.43–7.58 ppm from the formamidine CH proton. The exocyclic amidine fragment gave a singlet at $\delta_{\rm C}$ 151–156 ppm in the ¹³C NMR spectra.

The structure of compound **VIa** was unambiguously proved by X-ray analysis (Figs. 1, 2). The thiazole and imidazole rings in molecule **VIa** are characterized by standard geometric parameters. Both heterorings are planar within 0.005 and 0.0027 Å, respectively, and the dihedral angle between their planes is $11.1(2)^{\circ}$. The N⁴=C⁸ double bond length [1.288(3) Å] does not differ from the corresponding standard value, whereas the formally single N⁴-C⁷ [1.383(3) Å] and N⁵-C⁸ bonds [1.341(3) Å] are appreciably shortened so that they approach those typical of conjugated or

Scheme 3.

 $Ar = Ph(a), 4-MeC_6H_4(b), 4-O_2NC_6H_4(c).$

heteroaromatic systems. The sum of the bond angles at the N⁵ atom is 358.2(2)°, indicating electron density delocalization over the molecule. Molecules **VIa** in crystal (Fig. 2) form infinite chains due to hydrogen bonding N²-H^{2N}...N^{3A} along the *a* crystallographic axis [N²-H^{2N} 0.93(3), N²...N^{3A} 2.840(3) Å, $\angle N^2 H^{2N} N^{3A}$ 170(2)°; here, the superscript "A" refers to a nitrogen atom related to the base atoms through the symmetry operation x - 5, 1.5 - y, -z.

6-Allylsulfanylpurine I was also subjected to intramolecular cyclization by the action of arenesulfenyl chlorides VIIa-VIIc in acetic acid in the presence of an equimolar amount of lithium perchlorate [16, 17] (Scheme 3). As a result, we isolated 85-89% of 7-arylsulfanylmethyl-7,8-dihydro[1,3]thiazolo[2,3-i]purin-6-ium perchlorates VIIIa-VIIIc. Treatment of the latter with sodium acetate in ethanol smoothly afforded free bases IXa-IXc which reacted with excess morpholine under mild conditions to give new imidazoles Xa-Xc containing a formamidine fragment in position 4 and a 4-(arylsulfanylmethyl)dihydrothiazolyl substituent in position 5. The structure of Xa-Xc was confirmed by their ¹H and ¹³C NMR spectra which contained signals at δ 7.46–7.48 ppm and δ_C 152 ppm from the formamidine CH fragment.

EXPERIMENTAL

The IR spectra were recorded in KBr on a UR-20 spectrometer. The ¹H and ¹³C NMR spectra were measured on a Bruker Avance DRX-500 spectrometer at 400 and 125.75 MHz, respectively, using tetramethyl-silane as internal reference. The mass spectra of **VIa**, **VIb**, **IXa–IXc**, and **Xb** were obtained on an Agilent 1100/DAD/HSD/VLG 119562 instrument.

6-Allylsulfanyl-7*H*-purine (I) was synthesized according to the procedure described in [8].

The X-ray diffraction data for compound VIa were acquired at 173 K from a $0.14 \times 0.18 \times 0.35$ -mm single

crystal on a Bruker Smart Apex II diffractometer (λ Mo K_a irradiation, graphite monochromator, $\theta_{max} = 28.36^\circ$, spherical segment $-9 \le h \le 12$, $-14 \le k \le 14$, $-18 \le l \le 19$). C₁₃H₁₇N₅S, *M* 275.38; rhombic crystals, space group *P*2₁2₁2₁; unit cell parameters: *a* = 9.2666(5), *b* = 10.8871(5), *c* = 14.3498(6) Å; *V* =

Fig. 1. Structure of the molecule of 5-(4-methyl-1,3-thiazol-2-yl)-*N*-[(piperidin-1-yl)methylidene]-1*H*-imidazol-4-amine (**VIa**) according to the X-ray diffraction data. Principal bond lengths (Å) and bond angles (deg): S^1-C^1 1.729(2), N^1-C^1 1.316(3), N^1-C^2 1.378(3), C^2-C^3 1.345(4), S^1-C^3 1.711(3), C^1-C^5 1.432(3), N^2-C^5 1.388(3), N^2-C^6 1.333(3), N^3-C^6 1.323(3), N^3-C^7 1.376(3), C^5-C^7 1.381(3); $N^1C^1S^1$ 114.15(18), $C^1N^1C^2$ 110.8(2), $C^3C^2N^1$ 114.9(2), $C^2C^3S^1$ 111.1(2), $C^3S^1C^1$ 89.01(13), $C^6N^2C^5$ 106.8(2), $N^3C^6N^2$ 113.1(2), $C^6N^3C^7$ 104.8(2), $N^3C^7C^5$ 109.9(2), $C^7C^5N^2$ 105.3(2), $C^8N^4C^7$ 117.0(2), $N^4C^8N^5$ 123.5(3).

Fig. 2. Hydrogen bond chains in the crystalline structure of compound VIa along the *a* crystallographic axis.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 49 No. 1 2013

1447.70(12) Å³; Z = 4; $d_{calc} = 1.263$ g/cm³; $\mu =$ 0.218 mm^{-1} ; F(000) = 584. Total of 17399 reflection intensities were measured, 3591 of which were independent (averaging R-factor 0.0734). A correction for absorption was introduced by the multiscan method using SADABS program ($T_{min}/T_{max} = 0.72674$). The structure was solved by the direct method and was refined by the least-squares procedure using Bruker SHELXTL software package [18]. All non-hydrogen atoms were refined in anisotropic approximation. Hydrogen atoms were visualized objectively, and their positions were refined in isotropic approximation. The refinement was performed from 2161 reflections with $I > 2\sigma(I)$ {240 variables, 9.0 reflections per variable; weight scheme $\omega = 1/[\sigma^2(Fo^2) + (0.0373R)^2]$, where $R = (Fo^2 + 2Fc^2)/3$. The final divergence factors were $R_1(F) = 0.0501$, $wR_2(F^2) = 0.0805$ for reflections with $I > 2\sigma(I)$ and $R_1(F) = 0.1082$, $wR_2(F^2) = 0.0968$ for all reflections; goodness of fit 0.993; Flack parameter -0.04(9). The residual electron density from the Fourier difference series after last iteration was 0.19 and $-0.27 \ e/Å^3$. The set of crystallographic data for compound VIa was deposited to the Cambridge Crystallographic Data Centre (entry no. CCDC 880940).

7-Iodomethyl-7,8-dihydro[1,3]thiazolo[2,3-*i*]purin-6-ium pentaiodide (II). A solution of 3.81 g (15 mmol) of iodine in 300 ml of chloroform was added at room temperature to a suspension of 0.96 g (5 mmol) of compound I in 20 ml of chloroform, and the mixture was stirred for 48 h. The black crystalline solid was filtered off, washed with 30 ml of hexane, and dried in air. Yield 4.72 g (99%), mp 158–160°C. IR spectrum, v, cm⁻¹: 1610, 1580, 1490, 1420, 1260, 920. ¹H NMR spectrum, δ , ppm: 3.83–3.87 m (1H, CH), 3.92–3.93 m (2H, CH₂), 4.24–4.31 m (1H, CH), 5.71–5.84 m (1H, CH), 8.97 s (1H, 2-H), 9.47 s (1H, 5-H). Found, %: C 10.02; H 0.83; I 79.56; N 5.81; S 3.31. C₈H₈I₆N₄S. Calculated, %: C 10.08; H 0.85; I 79.84; N 5.87; S 3.36.

7-Iodomethyl-7,8-dihydro[1,3]thiazolo[2,3-*i***]-purin-6-ium iodide (III).** A solution of 0.90 g (6 mmol) of sodium iodide in 20 ml of acetone was added under stirring to a solution of 1.91 g (2 mmol) of compound **II** in 30 ml of acetone. After a time, the yellow crystalline solid was filtered off, washed with acetone, and dried in air. Yield 0.87 g (98%), mp 223–225°C. IR spectrum, v, cm⁻¹: 3030, 1630, 1540, 1500, 1400, 1360, 1250, 1220, 1190, 1120, 1040. ¹H NMR spectrum, δ , ppm: 3.84–3.88 m (1H, CH), 3.93–3.95 m (2H, CH₂), 4.26–4.32 m (1H, CH), 5.78–5.82 m (1H, CH), 8.97 s (1H, 2-H), 9.48 s (1H, 5-H). Found, %: C 21.51; H 1.77; I 56.86; N 12.47; S 7.13. $C_8H_8I_2N_4S$. Calculated, %: C 21.54; H 1.81; I 56.90; N 12.56; S 7.19.

7-Methylidene-7,8-dihydro[1,3]thiazolo[2,3-*i***]-purine (IV).** A mixture of 0.45 g (1 mmol) of compound **III** and 0.16 g (2 mmol) of sodium acetate in 50 ml of ethanol was stirred for 48 h at room temperature. The precipitate was filtered off, washed with water and ethanol, and dried in air. Yield 0.12 g (63%), mp >320°C. IR spectrum, v, cm⁻¹: 1640, 1600, 1500, 1420, 1400, 1360, 1290, 1240, 1150, 1020. ¹H NMR spectrum, δ, ppm: 4.56 m (2H, CH₂), 5.48 m and 6.12 m (1H each, =CH₂), 8.38 s (1H, 2-H), 9.41 s (1H, 5-H). Found, %: C 50.44; H 3.11; N 29.37; S 16.74. C₈H₆N₄S. Calculated, %: C 50.51; H 3.18; N 29.45; S 16.86.

Alkyl *N*-[5-(4-methyl-1,3-thiazol-2-yl)-1*H*-imidazol-4-yl]formimidates Va and Vb (general procedures). *a*. Compound III, 0.45 g (1 mmol), was added to a solution of sodium alkoxide prepared from 0.07 g (3 mmol) of metallic sodium and 30 ml of methanol or ethanol. The mixture was stirred for 6 h and evaporated under reduced pressure, and the residue was treated with diethyl ether. The ether extract was washed with water, dried over MgSO₄, and evaporated under reduced pressure, and the solid residue was filtered off and washed with hexane.

b. A mixture of 0.06 g (1 mmol) of potassium hydroxide and 0.19 g (1 mmol) of compound IV in 30 ml of ethanol was heated for 10 min at 60°C. The solvent was removed under reduced pressure, and the precipitate was filtered off, washed with water, and dried.

Methyl *N*-[5-(4-methyl-1,3-thiazol-2-yl)-1*H*imidazol-4-yl]formimidate (Va). Yield 0.14 g (63%) (*a*), mp 132–134°C. IR spectrum, v, cm⁻¹: 1640, 1590, 1530, 1420, 1350, 1290, 1230, 1180, 1110, 1020, 970, 930. ¹H NMR spectrum, δ, ppm: 2.40 s (3H, CH₃), 3.91 s (3H, OCH₃), 7.18 s (1H, 5'-H), 7.58 s (1H, N=CH), 8.62 s (1H, 2-H), 12.88 s (1H, NH). ¹³C NMR spectrum, δ_{C} , ppm: 16.71 (CH₃), 53.76 (OCH₃), 113.42 (C^{5'}), 116.66 (C⁴), 134.85 (C²), 143.81 (C⁵), 151.13 (C^{4'}), 155.76 (C^{2'}), 156.70 (N=CH). Found, %: C 48.55; H 4.44; N 25.19; S 14.35. C₉H₁₀N₄OS. Calculated, %: C 48.63; H 4.53; N 25.21; S 14.43.

Ethyl *N*-[5-(4-methyl-1,3-thiazol-2-yl)-1*H*-imidazol-4-yl]formimidate (Vb). Yield 0.16 g (66%) (*a*), 0.16 g (67%) (*b*); mp 138–139°C. IR spectrum, v, cm⁻¹: 3130, 3020, 2880, 1630, 1590, 1520, 1440, 1350, 1290, 1220, 1110, 1020. ¹H NMR spectrum, δ , ppm: 1.37 t (3H, CH₃, *J* = 6.8 Hz), 2.39 s (3H, CH₃), 4.38 q (2H, CH₂, J = 6.8 Hz), 7.12 s (1H, 5'-H), 7.57 s (1H, N=CH), 8.58 s (1H, 2-H), 12.85 s (1H, NH). ¹³C NMR spectrum, δ_{C} , ppm: 14.00 (CH₃CH₂), 16.69 (4'-CH₃), 62.36 (OCH₂), 113.40 (C^{5'}), 116.23 (C⁴), 134.93 (C²), 143.72 (C⁵), 151.10 (C^{4'}), 155.71 (C^{2'}), 156.12 (N=CH). Found, %: C 50.76; H 5.04; N 23.61; S 13.42. C₁₀H₁₂N₄OS. Calculated, %: C 50.83; H 5.12; N 23.71; S 13.57.

5-(4-Methyl-1,3-thiazol-2-yl)-*N*-(dialkylaminomethylidene)-1*H*-imidazol-4-amines VIa and VIb (general procedure). A mixture of 0.45 g (1 mmol) of compound III and 15 ml of piperidine or morpholine was stirred for 20 h at room temperature. Excess amine was distilled off, and the solid residue was filtered off, washed with water, dried, and recrystallized from ethanol.

5-(4-Methyl-1,3-thiazol-2-yl)-N-(piperidin-1-ylmethylidene)-1H-imidazol-4-amine (VIa). Yield 0.17 g (63%), mp 194–195°C. IR spectrum, v, cm⁻¹: 2940, 2860, 1620, 1580, 1520, 1420, 1360, 1340, 1290, 1250, 1210, 1100, 1020, 1000. ¹H NMR spectrum, δ, ppm: 1.56 m (4H, CH₂), 1.64 m (2H, CH₂), 2.36 s (3H, CH₃), 3.40 m (2H, CH₂), 3.69 m (2H, CH₂), 6.96 s (1H, 5'-H), 7.43 s (1H, N=CH), 8.40 s (1H, 2-H), 12.41 s (1H, NH). 13 C NMR spectrum, δ_{C} , ppm: 16.78 (CH₃), 24.16 (CH₂), 24.54 (CH₂), 26.29 (CH₂), 42.61 (CH₂), 49.59 (CH₂), 111.62 (C^{5'}), 113.66 (C⁴), 134.10 (C²), 148.15 (C⁵), 150.45 (C⁴'), 152.03 (N=CH), 156.93 ($C^{2'}$). Mass spectrum: m/z 276 $[M + 1]^+$. Found, %: C 56.56; H 6.16; N 25.38; S 11.58. C₁₃H₁₇N₅S. Calculated, %: C 56.70; H 6.22; N 25.43; S 11.64. M 275.37.

5-(4-Methyl-1,3-thiazol-2-yl)-*N*-(morpholin-4-ylmethylidene)-1*H*-imidazol-4-amine (VIb). Yield 0.23 g (84%), mp 111–113°C. IR spectrum, v, cm⁻¹: 3020, 1620, 1580, 1520, 1440, 1350, 1300, 1240, 1190, 1180, 1120, 1030, 920. ¹H NMR spectrum, δ , ppm: 2.36 s (3H, CH₃), 3.48 m (2H, CH₂), 3.67 m (6H, CH₂), 7.02 s (1H, 5'-H), 7.47 s (1H, N=CH), 8.44 s (1H, 2-H), 12.51 s (1H, NH). ¹³C NMR spectrum, δ_{C} , ppm: 16.77 (CH₃), 42.80 (CH₂), 48.44 (CH₂), 65.45 (CH₂), 66.57 (CH₂), 111.91 (C^{5'}), 113.60 (C⁴), 134.43 (C²), 148.27 (C⁵), 150.53 (C^{4'}), 151.86 (N=CH), 156.38 (C^{2'}). Mass spectrum: *m/z* 278 [*M* + 1]⁺. Found, %: C 51.88; H 5.33; N 25.16; S 11.42. C₁₂H₁₅N₅OS. Calculated, %: C 51.97; H 5.45; N 25.25; S 11.56. *M* 277.35.

7-Arylsulfanylmethyl-7,8-dihydro[1,3]thiazolo-[2,3-*i*]purin-6-ium perchlorates VIIIa–VIIIc (general procedure). A solution of 2.1 mmol of arenesulfenyl chloride **VIIa–VIIc** in 10 ml of acetic acid was added at 15–20°C to a suspension of 0.38 g (2 mmol) of compound **I** and 0.22 g (2 mmol) of LiClO₄ in 20 ml of acetic acid. The mixture was stirred for 5–6 h, left to stand for 12 h, and evaporated, and the precipitate was filtered off, washed with diethyl ether on a filter, and dried in air.

7-[(Phenylsulfanyl)methyl]-7,8-dihydro[1,3]thiazolo[2,3-i]purin-6-ium perchlorate (VIIIa). Yield 0.68 g (85%), mp 107-109°C. IR spectrum, v, cm⁻¹: 1620, 1570, 1500, 1410, 1350, 1260, 1120, 1090, 920, 880. ¹H NMR spectrum, δ, ppm: 3.71–3.88 m (2H, CH₂), 3.97–4.00 m (1H, CH), 4.23–4.28 m (1H, CH), 5.77–5.83 m (1H, CH), 7.09 t (1H, H_{arom} , J =7.6 Hz), 7.17 t (2H, H_{arom} , J = 7.6 Hz), 7.35 d (2H, H_{arom} , J = 8.0 Hz), 8.89 s (1H, 2-H), 9.31 s (1H, 5-H). ¹³C NMR spectrum, δ_{C} , ppm: 36.11 (C⁸), 36.14 (CH₂S), 67.82 (C⁷), 126.54 (C_{arom}), 128.88 (2C, C_{arom}), 128.92 (2C, C_{arom}), 133.17 (C_{arom}), 145.70 (C²), 149.32 (C⁵), 151.73 (C^{9b}), 158.55 (C^{3a}), 194.06 (C^{9a}). Found, %: C 41.88; H 3.22; Cl 8.79; N 13.94; S 15.91. C₁₄H₁₃ClN₄O₄S₂. Calculated, %: C 41.95; H 3.27; Cl 8.84; N 13.98; S 16.00.

7-[(4-Methylphenylsulfanyl)methyl]-7,8-dihydro-[1,3]thiazolo[2,3-*i***]purin-6-ium perchlorate (VIIIb).** Yield 0.74 g (89%), mp 104–106°C. IR spectrum, v, cm⁻¹: 3050, 2970, 1620, 1580, 1500, 1410, 1360, 1260, 1120, 920, 890. ¹H NMR spectrum, δ , ppm: 2.16 s (3H, CH₃), 3.62–3.89 m (2H, CH₂), 3.95–4.00 m (1H, CH), 4.21–4.28 m (1H, CH), 5.76–5.84 m (1H, CH), 6.93 d (2H, H_{arom}, *J* = 7.5 Hz), 7.21 d (2H, H_{arom}, *J* = 8.4 Hz), 8.91 s (1H, 2-H), 9.28 s (1H, 5-H). Found, %: C 43.36; H 3.62; C1 8.49; N 13.41; S 15.32. C₁₅H₁₅ClN₄O₄S₂. Calculated, %: C 43.42; H 3.64; Cl 8.55; N 13.50; S 15.46.

7-[(4-Nitrophenylsulfanyl)methyl]-7,8-dihydro-[1,3]thiazolo[2,3-*i*]purin-6-ium perchlorate (VIIIc). Yield 0.76 g (87%), mp 205–207°C. IR spectrum, v, cm⁻¹: 3130, 1630, 1580, 1500, 1410, 1340, 1260, 1110, 1090, 1060. ¹H NMR spectrum, δ , ppm: 3.85–4.02 m (3H, CH, CH₂), 4.25–4.30 m (1H, CH), 5.84–5.89 m (1H, CH), 7.62 d (2H, H_{arom}, J = 8.4 Hz), 8.03 d (2H, H_{arom}, J = 9.2 Hz), 8.92 s (1H, 2-H), 9.39 s (1H, 5-H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 34.52 (C⁸), 36.56 (7-CH₂), 67.33 (C⁷), 123.71 (2C, C_{arom}), 127.85 (2C, C_{arom}), 143.99 (C_{arom}), 145.14 (C_{arom}), 145.91 (C²), 149.50 (C⁵), 151.91 (C^{9b}), 158.58 (C^{3a}), 194.10 (C^{9a}). Found, %: C 37.56; H 2.67; Cl 7.86; N 15.63; S 14.31. C₁₄H₁₂ClN₅O₆S₂. Calculated, %: C 37.71; H 2.71; Cl 7.95; N 15.71; S 14.38.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 49 No. 1 2013

7-Arylsulfanylmethyl-7,8-dihydro[1,3]thiazolo-[2,3-*i*]purines IXa–IXc (general procedure). A mixture of 1 mmol of compound VIIIa–VIIIc and 0.16 g (2 mmol) of sodium acetate in 50 ml of ethanol was stirred for 4 h at room temperature. The solvent was removed under reduced pressure, and the precipitate was filtered off, washed with water, and dried.

7-[(Phenylsulfanyl)methyl]-7,8-dihydro[1,3]thiazolo[2,3-i]purine (IXa). Yield 0.27 g (91%), mp 153– 155°C. IR spectrum, v, cm⁻¹: 1610, 1500, 1450, 1400, 1360, 1250, 1120, 1100, 890. ¹H NMR spectrum, δ , ppm: 3.68–3.81 m (2H, CH₂), 3.87–3.90 m (1H, CH), 4.15–4.20 m (1H, CH), 5.65–5.70 m (1H, CH), 7.13 t (1H, H_{arom}, J = 7.6 Hz), 7.22 t (2H, H_{arom}, J = 7.6 Hz), 7.37 d (2H, H_{arom}, J = 7.6 Hz), 8.61 s (1H, 2-H), 9.10 s (1H, 5-H). ¹³C NMR spectrum, δ_{C} , ppm: 35.48 (C⁸), 35.83 (7-CH₂), 66.87 (C⁷), 126.46 (C_{arom}), 128.74 (2C, C_{arom}), 128.94 (3C, C_{arom}, C^{9b}), 133.42 (C_{arom}), 143.11 (C²), 153.71 (C^{9a}), 156.09 (C⁵), 156.56 (C^{3a}). Mass spectrum: m/z 301 [M + 1]⁺. Found, %: C 55.88; H 3.96; N 18.53; S 21.27. C₁₄H₁₂N₄S₂. Calculated, %: C 55.97; H 4.03; N 18.65; S 21.35. M 300.40.

7-[(4-Methylphenylsulfanyl)methyl]-7,8-dihydro-[1,3]thiazolo[2,3-i]purine (IXb). Yield 0.27 g (86%), mp 119–121°C. IR spectrum, v, cm⁻¹: 1610, 1500, 1440, 1410, 1350, 1260, 1170, 1120, 1100, 1080, 920, 890. ¹H NMR spectrum, δ, ppm: 2.19 s (3H, CH₃), 3.61-3.78 m (2H, CH₂), 3.85-3.89 m (1H, CH), 4.13-4.18 m (1H, CH), 5.61–5.74 m (1H, CH), 7.00 d (2H, H_{arom} , J = 7.6 Hz), 7.25 d (2H, H_{arom} , J = 8.0 Hz), 8.60 s (1H, 2-H), 9.06 s (1H, 5-H). ¹³C NMR spectrum, δ_C , ppm: 20.43 (CH₃), 35.47 (C⁸), 36.57 (7-CH₂), 67.08 (C⁷), 128.18 (C^{9b}), 129.40 (2C, C_{arom}), 129.60 (2C, C_{arom}), 129.61 (C_{arom}), 136.33 (C_{arom}), 143.26 (C²), 154.00 (C^{9a}), 155.74 (C⁵), 156.44 (C^{3a}). Mass spectrum: m/z 315 $[M + 1]^+$. Found, %: C 57.23; H 4.46; N 17.75; S 20.29. C₁₅H₁₄N₄S₂. Calculated, %: C 57.30; H 4.49; N 17.82; S 20.40. M 314.43.

7-[(4-Nitrophenylsulfanyl)methyl]-7,8-dihydro-[1,3]thiazolo[2,3-*i***]purine (IXc).** Yield 0.34 g (97%), mp 241–243°C. IR spectrum, v, cm⁻¹: 1630, 1500, 1450, 1400, 1330, 1260, 1180, 1090, 990. ¹H NMR spectrum, δ , ppm: 3.85–3.93 m (3H, CH, CH₂), 4.17–4.22 m (1H, CH), 5.73–5.77 m (1H, CH), 7.60 d (2H, H_{arom}, J = 8.4 Hz), 8.03 d (2H, H_{arom}, J = 8.4 Hz), 8.56 s (1H, 2-H), 9.12 s (1H, 5-H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 34.49 (C⁸), 35.75 (7-CH₂), 66.42 (C⁷), 123.64 (2C, C_{arom}), 127.56 (2C, C_{arom}), 128.49 (C^{9b}), 143.06 (C²), 144.11 (C_{arom}), 144.99 (C_{arom}), 153.34 (C^{9a}), 156.74 (C⁵), 157.08 (C^{3a}). Mass spectrum: m/z 346 $[M + 1]^+$. Found, %: C 48.57; H 3.18; N 20.14; S 18.53. C₁₄H₁₁N₅O₂S₂. Calculated, %: C 48.68; H 3.21; N 20.28; S 18.57. *M* 345.40.

5-(4-Arylsulfanylmethyl-4,5-dihydro-1,3-thiazol-2-yl)-*N*-(morpholin-4-ylmethylidene)-1*H*-imidazol-4-amines Xa–Xc were synthesized as described above for compound VIb from 1 mmol of IXa–IXc and 15 ml of morpholine.

N-(Morpholin-4-ylmethylidene)-5-(4-phenylsulfanylmethyl-4,5-dihydro-1,3-thiazol-2-yl)-1H-imidazol-4-amine (Xa). Yield 0.29 g (75%), mp 159-161°C. IR spectrum, v, cm⁻¹: 3220, 1620, 1580, 1440, 1370, 1290, 1230, 1180, 1120, 1070, 1020, 980, 930. ¹H NMR spectrum, δ , ppm: 3.07–3.18 m (2H, CH₂), 3.33-3.51 m (4H, CH₂), 3.64 m (6H, CH₂), 4.54-4.69 m (1H, CH), 7.22 t (1H, H_{arom} , J = 7.2 Hz), 7.35 t $(2H, H_{arom}, J = 7.2 \text{ Hz}), 7.42 \text{ d} (2H, H_{arom}, J = 7.8 \text{ Hz}),$ 7.48 s (1H, N=CH), 8.35 s (1H, 2-H), 12.34 s (1H, NH). ¹³C NMR spectrum, δ_{C} , ppm: 36.17 (C^{5'}), 37.53 (4'-CH₂), 43.31 (NCH₂), 49.02 (NCH₂), 66.02 (OCH₂), 67.14 (OCH₂), 74.00 (C⁴), 113.03 (C⁴), 126.31 (C_{arom}), 128.83 (2C, Carom), 129.59 (2C, Carom), 136.43 (Carom), 136.68 (C²), 151.59 (C⁵), 152.48 (N=CH), 156.81 (C^{2'}). Found, %: C 55.67; H 5.42; N 18.03; S 16.42. C₁₈H₂₁N₅OS₂. Calculated, %: C 55.79; H 5.46; N 18.07; S 16.55.

5-[4-(4-Methylphenylsulfanylmethyl)-4,5-dihydro-1,3-thiazol-2-yl]-N-(morpholin-4-ylmethylidene)-1H-imidazol-4-amine (Xb). Yield 0.29 g (73%), mp 168–169°C. IR spectrum, v, cm⁻¹: 3260, 2970, 2930, 1620, 1590, 1430, 1370, 1290, 1240, 1190, 1110, 1070, 1020, 980, 930. ¹H NMR spectrum, δ, ppm: 2.28 s (3H, CH₃), 2.99–3.12 m (2H, CH₂), 3.25-3.44 m (4H, CH₂), 3.63 m (6H, CH₂), 4.52-4.59 m (1H, CH), 7.16 d (2H, H_{arom} , J = 9.2 Hz), 7.31 d (2H, H_{arom}, J = 7.6 Hz), 7.46 s (1H, N=CH), 8.35 s (1H, 2-H), 12.32 s (1H, NH). ¹³C NMR spectrum, δ_C, ppm: 21.03 (CH₃), 36.04 (C^{5'}), 38.21 (4'-CH₂), 43.25 (NCH₂), 49.04 (NCH₂), 66.02 (OCH₂), 67.11 (OCH₂), 74.08 (C⁴), 113.06 (C⁴), 129.61 (2C, Carom), 130.24 (2C, Carom), 132.84 (Carom), 136.03 (C_{arom}) , 136.35 (C^2) , 151.62 (C^5) , 152.42 (N=CH), 156.63 (C^{2'}). Mass spectrum: m/z 402 $[M + 1]^+$. Found, %: C 56.71; H 5.67; N 17.38; S 15.84. C₁₉H₂₃N₅OS₂. Calculated, %: C 56.83; H 5.77; N 17.44; S 15.97. *M* 401.55.

N-(Morpholin-4-ylmethylidene)-5-[4-(4-nitrophenylsulfanylmethyl)-4,5-dihydro-1,3-thiazol-2yl]-1*H*-imidazol-4-amine (Xc). Yield 0.34 g (79%), mp 140–142°C. IR spectrum, v, cm⁻¹: 1620, 1590, 1490, 1440, 1390, 1330, 1290, 1230, 1190, 1110, 1090, 1030, 940. ¹H NMR spectrum, δ , ppm: 3.04–3.18 m (2H, CH₂), 3.31–3.48 m (4H, CH₂), 3.63 m (6H, CH₂), 4.70–4.79 m (1H, CH), 7.46 (1H, N=CH), 7.58 d (2H, H_{arom}, *J* = 8.7 Hz), 8.13 d (2H, H_{arom}, *J* = 8.7 Hz), 8.13 s (1H, 2-H), 12.23 s (1H, NH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 36.07 (C^{5'}), 36.65 (4'-CH₂), 43.25 (NCH₂), 49.03 (NCH₂), 66.01 (OCH₂), 67.13 (OCH₂), 73.61 (C^{4'}), 112.96 (C⁴), 124.35 (2C, C_{arom}), 126.97 (2C, C_{arom}), 136.28 (C²), 144.93 (C_{arom}), 148.07 (C_{arom}), 151.64 (C⁵), 152.52 (N=CH), 157.01 (C^{2'}). Found, %: C 49.83; H 4.61; N 19.36; S 14.75. C₁₈H₂₀N₆O₃S₂. Calculated, %: C 49.99; H 4.66; N 19.43; S 14.83.

REFERENCES

- 1. Kim, D.G. and Shmygarev, V.I., *Khim. Geterotsikl.* Soedin., 1995, p. 211.
- Slivka, N.Yu., Gevaza, Yu.I., and Staninets, V.I., *Khim. Geterotsikl. Soedin.*, 2004, p. 776.
- 3. Wippich, P., Hendreich, C., Gustshow, M., and Leistner, S., *Synthesis*, 1996, p. 741.
- Vas'kevich, R.I., Khripak, S.M., Staninets, V.I., Zborovskii, Yu.L., and Chernega, A.N., *Russ. J. Org. Chem.*, 2000, vol. 36, p. 1061.
- Bentya, A.V., Vas'kevich, R.I., Bol'but, A.V., Vovk, M.V., Staninets, V.I., Turov, A.V., and Rusanov, E.B., *Russ. J. Org. Chem.*, 2008, vol. 44, p. 1362.

- Kunes, J., Bazant, J., Pour, M., Waissel, K., Slosarek, M., and Janota, J., *Farmaco*, 2000, vol. 55, p. 725.
- Xu, G.F., Song, B.A., Bhadury, P.S., Yang, S., Zhang, P.Q., Jin, L.H., Xue, W., Hu, D.Y., and Lu, P., *Bioorg. Med. Chem.*, 2007, vol. 15, p. 3768.
- Koppel, H.C., O'Brien, D.E., and Robins, R.K., J. Org. Chem., 1959, vol. 24, p. 259.
- Coulthard, S. and Hogarth, L., *Invest. New Drugs*, 2005, vol. 23, p. 523.
- Miron, T., Arditti, F., Konstantinovski, L., Rabinkov, A., Milerman, D., Berrebi, A., and Wilchek, M., *Eur. J. Med. Chem.*, 2009, vol. 44, p. 541.
- 11. Gunnarsdottir, S. and Elfarra, A.A., J. Pharmacol. Exp. Ther., 1999, vol. 290, p. 950.
- 12. Balsiger, R.W., Fikes, A.L., Johnston, T.P., and Monthomery, J.A., *J. Org. Chem.*, 1961, vol. 26, p. 3446.
- 13. Monthomery, J.A., Balsiger, R.W., Fikes, A.L., and Johnston, T.P., *J. Org. Chem.*, 1962, vol. 27, p. 195.
- 14. Pree, J.B., McNally, J.J., Hajos, Z.G., and Sawyers, R.A., J. Org. Chem., 1992, vol. 57, p. 6335.
- 15. Kochergin, P.M., Aleksandrova, E.V., and Rusinova, E.V., *Khim. Geterotsikl. Soedin.*, 1993, p. 1434.
- Zefirov, N.S., Smit, V.A., Bodrikov, I.V., and Krimer, M.Z., *Dokl. Akad. Nauk SSSR*, 1978, vol. 240, p. 858.
- 17. Krimer, M.Z., Smit, V.A., and Shamshurin, A.A., *Dokl. Akad. Nauk SSSR*, 1973, vol. 208, p. 864.
- 18. Sheldrick, G.M., *Acta Crystallogr., Sect. A*, 2008, vol. 64, p. 112.