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Synthesis of (Z)-1,2-Dihalo-1-alkenes by the Reaction of (Z)-(B-Halovinyl)phenyliodonium Salts with n-BugNX
or KX/CuX. Competitions between Nucleophilic Vinylic Substitutions and Aromatic Substitutions1)
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Nucleophilic vinylic substitutions of (Z)-(B-halovinyl)phenyliodonium salts with
tetrabutylammonium halides proceed in a stereoselective manner with retention of
configuration yielding vicinal (Z)-vinyl dihalides. This reaction competes with
nucleophilic aromatic substitutions. Similar competition was observed in the reactions
with potassium halides/cuprous halides.

Vicinal dihaloalkenes are usually prepared by the addition reaction of halogens and interhalogens to
alkynes.2) This reaction gives (E)-1,2-dihalo-1-alkenes predominantly. The method for stereo- and regioselective
synthesis of (Z)-1,2-dihalo-1-alkenes, however, are very limited.3) We report herein nucleophilic vinylic
substitutions of (Z)-(B-halovinyl)phenyliodonium salts 1 with halides, which provide an efficient route for the
stereo- and regioselective synthesis of vicinal (Z)-vinyl dihalides. This reaction competes with nucleophilic
aromatic substitutions.

Because of a superleaving ability of a phenyliodonio group, vinyl(phenyl)iodonium salts serve as the highly
activated species of alkenyl halides toward the substitution reactions with a variety of nuclcophiles.4)
Nucleophilic vinylic substitutions of (E)-(B-alkylvinyl)phenyliodonium tetrafluoroborates with n-BugNX (Cl, Br,
and I) at room temperature proceed with exclusive inversion of configuration yielding alkenyl halides of (Z)
stereochemistry.s) Substitutions of (Z)-(B-(phenylsulfonyl)vinyl)phenyliodonium tetrafluoroborates, however,
lead to exclusive retention of configuration.6) Vinylic SN2 type mechanism for the inversion of configuration and
addition-elimination mechanism for the retention of configuration were proposed.3:6) Both the reactions are
highly chemoselective in the sense that halide anions attack the a-vinylic carbons and not the ipso-aromatic
carbons, while the ipso aromatic substitutions of diaryliodonium salts with halides have been well established.”)
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Reaction of (E)-(B-alkylvinyl)- and (Z)-(B-(phenylsulfonyl)vinyl)phenyliodonium salts with n-BugNX
proceeds smoothly at room temperature.5’6) Introduction of halogens at -olefinic carbons of vinyliodonium
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Table 1. Reaction of (Z)-(B-Halovinyl)iodonium Salts 1 with n-Bu4NXa)
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Reaction Product (yield)?)

Entry 1 X  Solvent time 2 3 4 5

1 1la Cl CHsCN 4h 2a(X=Cl, 91%) 3a(9%)c) 4(82%) 5b(10%)
(91:9)9) (89:11)e)

2 la  Br CH3CN 3h 2a(X=Br, 94%)¢)  3a(6%) 4(88%) 5a(9%)
(94:6)9) (91:9)e)

3 1a I CH3CN  10min 3a(88%) 4(94%)

4 1b Cl CH3CN 8h 2b(X=Cl, 81%) 3b(19%) 4(80%) 5b(15%)
(81:19)9) (84:16)¢)

5 1b Cl hexane 2d 2b(X=Cl, 80%) 3b(12%) 4(82%) 5b(11%)
(87:13)9 (89:11)¢)

6 1b Br CH3CN 4h 2b(X=Br, 85%) 3b(13%) 4(85%) 5a(13%)
(87:13)d (87:13)¢)

7 1b I  CH3CN 0.5h 3b(100%) 4(100%)

8 1c I CH3CN 8h 3¢(80%) 4(83%)

a) Reactions were carried out using 1.2 equiv. of n-BugNX under refluxing under nitrogen. b) Yields
were determined by GC. c) S. Hara, T. Kato, H. Shimizu, and A. Suzuki, Tetrahedron Lett., 26, 1065

(1985). d) Ratio of 2:3. e) Ratio of 4:5.

Table 2. Reaction of (Z)-(B-Halovinyl)iodonium Salts 1 with CuX/KX®

Reaction Product (yield)b)

Entry 1 X Solvent time 2 3 4 5

9 1la Cl CHCIy 2d 2a(X=Cl, 80%) 3a(16%) 4(73%) 5b(18%)
(84:16)2) (80:20)4)

10 1la Br CHCl 2d 2a(X=Br, 73%) 3a(13%) 4(64%) 5a(14%)
(85:15)¢) (81:19)%

11 1la I CHaCl 3d 3a(85%) 4(83%)

12 1b Cl CHCl2 1d 2b(X=Cl, 72%) 3b(24%) 4(74%) 5b(23%)
(75:25)¢) (76:24)4)

13 1b Br CHCl 1d 2b(X=Br, 73%) 3b(23%) 4(74%) 5a(21%)
(76:24)°) (78:22)4)

14 1b I CHCl 1d 3b(98%) 4(99%)

a) Reactions were carried out using CuX(10 equiv.)/KX(10 equiv.) at room temperature under nitrogen in
the dark. b) Yields were determined by GC. c) Ratio of 2:3. d) Ratio of 4:5.

salts, however, makes the reaction very sluggish. Thus, prolonged treatment of (Z)-B-bromo- 1a and (Z)-B-

chlorovinyliodonium tetrafluoroborates 1b8) with n-BugNCl or n-BugNBr in dichloromethane at room

temperature recovered more than 90% of the vinyliodonium salts. The major reaction observed was a ligand
exchange on iodine(III) atom. However, refluxing the reaction mixture in CH3CN led to the formation of
nucleophilic substitution products; treatment of 1b with n-BugNCl (1.2 equiv.) in refluxing CH3CN under



Chemistry Letters, 1994 873

nitrogen for 8 h gave a mixture of the vinylic substitution products, the vicinal (Z)-vinyl dichloride 2b9) (X =Cl;
81%) and iodobenzene (80%), and the aromatic substitution products, the B-chlorovinyl iodide (Z)-3b (19%) and
chlorobenzene (15%) (Table 1, entry 4). Slightly higher ratios of vinylic to aromatic substitutions were obtained
by using hexane as a solvent (entry 5), or by replacing the nucleophile from n-Bu4NClI to n-BugNBr (entry
6).10) These nucleophilic vinylic substitutions were completely stereoselective to the limits of NMR detection at
270 MHz with retention of configuration, and the Z stereochemistry of 2b and 3b was established by the
observation of a nuclear Overhauser effect (NOE) enhancement between the vinylic and allylic protons. Similar
competitions between nucleophilic vinylic substitutions and aromatic substitutions were observed in the reaction
of 1a with n-BuyNX, which gives a mixture of (Z)-p-bromovinyl halides and halobenzenes. Reaction of (Z)-B-
fluorovinyliodonium salt 1c¢ with n-BugNI also gave (Z)-B-fluorovinyl iodide 3c in high yield.

Table 1 shows that the rate of nucleophilic substitutions depends on the halide ions, and decreases in the
order of n-BugNI > n-BugNBr > n-BuyNCl, reflecting the decreasing softness of halide ions. On the other hand,
n-BugNF does not undergo nucleophilic substitutions, and acts as a base for o-proton abstraction from 1. For
instance, the reaction of 1b with n-BugNF generates an (a-chloroalkylidene)carbene via o- and/or B-elimination,
which undergoes intramolecular 1,5-carbon-hydrogen insertions and 1,2-migration of an a-chlorine atom. 11)

Nucleophilic substitutions of (E)-(B-alkylvinyl)phenyliodonium tetrafluoroborates with a combination of
cuprous halides and potassium halides have been shown to proceed chemoselectively at an a-vinylic carbon,
yielding (E)-vinyl halides with retention of configuration;>) however, nucleophilic vinylic substitutions of 1 with
cuprous halides and potassium halides yielding 2 also compete with the nucleophilic aromatic substitutions
yielding 3, as was observed in the reaction with n-BugyNX. These results are summarized in Table 2.
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Scheme 1.

Both an addition-elimination route12) and a ligand coupling mechanism13) (Scheme 1; path a) on the
iodine(11) of the intermediate iodonium halide 6 produced by rapid ligand exchange14) are compatible with the
stereochemical outcome observed in this nucleophilic vinylic substitution using n-BugNX. An alternative ligand
coupling (path b) of the halide 7 generated by pseudorotation (¥) on iodine(III) of 6 leads to the formation of the
nucleophilic aromatic substitution products. Whatever mechanism operates in the reactions of 1 with halides, the
methods developed provide an efficient route for the stereo- and regioselective synthesis of vicinal (Z)-vinyl
dihalides.
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