March 1991 SYNTHESIS 207

4-Ethoxy-1,1,1-trifluoro-3-buten-2-one as a New Protecting Reagent in Peptide Synthesis

M.G. Gorbunova, I.I. Gerus,* S.V. Galushko, V.P. Kukhar Institute of Bioorganic and Oil Chemistry Ukrainian SSR, Academy of Sciences, Kharkoyskoe sh., 50, SU-252160 Kiev, USSR

The 4,4,4-trifluoro-3-oxo-1-butenyl group is proposed as a suitable protecting group for the protection of the N-H terminal of amino acids in peptide synthesis. Amino acids react with 4-ethoxy-1,1,1-trifluoro-3-buten-2-one to give the N-protected amino acids, the protecting group can be removed by acidic hydrolysis. The formation of peptide bonds using on N-4,4,4-trifluoro-3-oxo-1-butenyl protected amino acids occurs without racemization.

During the investigation of 4-alkoxy-1,1,1-trifluoro-3buten-2-ones, in particular 4-ethoxy-1,1,1-trifluoro-3buten-2-one (1), which readily available fluorine containing 1,3-dicarbonyl compound derivatives formed during the vinyl ether trifluoroacylation reaction,1 we found that these ketones react with primary and secondary amines to give 4-amino-1,1,1-trifluoro-3-alken-2ones in good yield.2 We have now extended our investigations to the suitability of the 4,4,4-trifluoro-3-oxo-1butenyl group as an N-terminal protecting group in peptide synthesis. Although the 3-oxoalkenyl and related groups have been used for N-terminal protection³ in amino acids, they have significant disadvantages. For example, introduction of this protecting group is achieved by the reaction of amino acids with 1,3-dicarbonyl compounds with heating.⁴ Fluorine-containing 1,3-dicarbonyl compounds have not previously been used for the N-protection of amino acids however we expect them to possess improved properties.

N-4,4,4-Trifluoro-3-oxo-1-butenyl protected amino acids $3\mathbf{a}-\mathbf{e}$ are easily prepared by the reaction of 1 with an Lamino acid in aqueous sodium hydroxide (containing one equivalent of base). The reaction is complete after 0.5-3 h

F₃C
$$O$$

1. NaOH/H₂O

2. 6N HCI (pH 3)

1. NaOH/H₂O

2. 6N HCI (pH 3)

1. NaOH/H₂O

2. 6N HCI (pH 3)

2. 6N HCI (pH 3)

3. NaOH/H₂O

3. NaO

2–5	R ¹	R ²	R ³
а	Me	H	
b	<i>i</i> -Pr	H	Et
c	CH ₂ CH ₂ CO ₂ Bu-t	<i>i</i> -Pr	t-Bu
d	CH ₂ CH ₂ CO ₂ Me	_	_
e	Bn	Bn	Me

at room temperature. Compounds **3a-e** are isolated in high yield after acidification of the reaction mixture (Table).

The protected amino acids $3\mathbf{a} - \mathbf{e}$ are colorless or slightly yellow crystalline compounds, which can be stored at 0° C for a long time. Previously, we reported the reaction between 1 and primary amines to give products with in the cis-configuration, which are held by hydrogen bonding, while the reaction of 1 with secondary amines affords trans- β -amino α,β -unsaturated ketones.² The 4,4,4-trifluoro-3-oxo-1-butenyl protecting group in the compounds $3\mathbf{a} - \mathbf{e}$ in possesses a cis configuration in non-polar solvents. This was confirmed by the ¹H-NMR spectra which showed a cis coupling constant (J = 7 Hz) for the olefin protons. The chemical shifts of the olefin protons of the protecting group are uninfluenced by the nature of the amino acid fragment \mathbf{R}^1 and appear at $\delta = 5.4$ (d, α -H) and at $\delta = 7.3$ (dd, β -H).

The reaction of 1 with L-proline (2f) gave the protected amino acid 3f, in high yield. In the ¹H-NMR spectrum of 3f are two doublets for the olefin protons at -78 °C $\delta = 5.3$ (α -H) and at $\delta = 8.2$ (β -H) with a coupling constant of J = 12.5 Hz, which is characteristic for trans-4-amino-1,1,1-trifluoro-3-buten-2-ones² (Table).

The 4,4,4-trifluoro-3-oxo-butenyl group was easily removed from the amino acid derivatives 3a, b, f by a dioxane/hydrochloric acid mixture (1:1) at room temperature. Starting concentration of the acid can be varied from 1 N to 6 N. Increasing the acid concentration (from 1 N to 6 N) shortens the reaction time from 12 to 4 hours.

The amino acid derivatives 3a-c, e, f were used in peptide synthesis with various amino acid esters and 1,3-dicyclohexylcarbodiimide (DCC) as an activator according to the known method.⁵ The corresponding N-4,4,4-trifluro-3-oxo-1-butenyl derivatives of the dipeptides,

Table. N-4.4.4-Triffuoro-3-oxo-1-butenyl Derivatives of Amino Acids 3a-f and Dipeptides 4a-c, e, f

Prod- uct	Yield (%)	$[\alpha]_{578}^{20}$ (c = 1, MeOH)	mp (°C)	Molecular Formula ^a	IR (KBr) v (cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz)
3a	88	-17.6	102	C ₇ H ₈ F ₃ NO ₃ (211.1)	1740, 1652, 1555	1.62 (d, 3H, $J = 7.5$), 4.18 (dq, 1H, $J \cong 7.5$), 5.5 (d, 1H, $J = 7.2$), 7.15 (dd, 1H, $J = 7.2$, 13.5), 9.45 (br s, 1H), 10.4 (br s, 1H)
3b	89	-87.7	89	$C_9H_{12}F_3NO_3$ (239.2)	1738, 1657, 1558	-
3c	75	-89.9	114	$C_{13}H_{18}F_3NO_5$ (325.3)	1752, 1740, 1653, 1556	-
3d	70	-105.0	101	C ₁₀ H ₁₂ F ₃ NO ₅ (283.2)	1755, 1745, 1655, 1555	2.15 (m, 2H), 2.4 (m, 2H), 3.6 (s, 3H), 4.25 (t, 1H, $J = 7$), 5.4 (d, 1H, $J = 7.5$), 7.3 (dd, 1H, $J = 7.5$, 13), 8.9 (br s, 1H), 10.4 (br s, 1H)
3e	72	-249.2	152	C ₁₃ H ₁₂ F ₃ NO ₃ (287.2)	1752, 1653, 1564	3.0 (dd, 1H, $J = 15.5$, 9.3), 3.35 (dd, 1H, $J = 15.5$, 4.5), 4.12 ("td", 1H, $J = 9.3$, 4.5), 5.21 (d, 1H, $J = 7.5$), 6.56 (dd, 1H, $J = 7.5$), 13.1), 7.0–7.4 (m, 5H), 10.3 (br s, 1H)
3f ^b	88	-215.5	103	$C_9H_{10}F_3NO_3$ (237.2)	1770, 1650, 1560	2.05 (m, 2H), 2.3 (m, 2H), 3.3–3.5 (m, 2H), 4.4 (t, 1H, <i>J</i> = 7), 5.34 (d, 1H, <i>J</i> = 12.5), 8.15 (d, 1H, <i>J</i> = 12.5), 10.4 (br s, 1H)
4a	89	+0.8	124	$C_{11}H_{15}F_3N_2O_4$ (296.2)	1766, 1700, 1665, 1595, 1568	1.2 (t, 3H, $J = 7$), 1.5 (d, 3H, $J = 7.8$), 4.0 (m, 2H), 4.2 (q, 2H, $J = 7$), 4.3 (m, 1H), 5.4 (d, 1H, $J = 7$), 6.3 (br s, 1H), 7.1 (dd, 1H $J = 13$, 7), 10.1 (br s, 1H)
4b	80	-44.5	120	$C_{13}H_{19}F_3N_2O_4$ (324.3)	1750, 1685, 1657, 1580, 1562	
4c	94	- 22.6	152	$C_{22}H_{35}F_3N_2O_6$ (480.5)	1730, 1715, 1673, 1652, 1580, 1562	_
4e	82	-116.5	123	$C_{23}H_{23}F_3N_2O_4$ (448.4)	1730, 1690, 1655, 1570, 1553	
4f	91	+15.7	162	$C_{18}H_{27}F_3N_2O_4$ (392.4)	1760, 1685, 1650, 1580, 1560	-

^a Satisfactory microanalyses obtained: C \pm 0.30, H \pm 0.17, F \pm 0.32.

4a-c, e, f, were isolated in high yield. They are stable, colorless crystalline compounds. There are various attributes that it is necessary for a protecting group in peptide synthesis to posess; in particular, easy and selectivity of the deprotection step is of great importance. The removal of the N-4,4,4-trifluoro-3-oxo-butenyl protecting group from dipeptides occurs under the same conditions as that of the deprotection of protected amino acids 3a-f. Yields of the dipeptides ester hydrochlorides exceed 90 %. The 4,4,4-trifluoro-3-oxo-1-butenyl group is the vinylog of the known trifluoroacetyl protecting group. N-Trifluoroacetyl amino acid derivatives have been shown to have a tendency towards racemization. A variation on the Weygand's test for determination of the extent of racemization using gas chromatography, consists in recognition of D-phenylalanine containing peptide formation in accordance with the reaction:

Z-Leu-Phe + Val-OBu-t \rightarrow Z-Leu-Phe-Val-OBu-t, various activators can be used. To clarify whether racemization of N-4,4,4-trifluoro-3-oxo-1-butenyl derivatives has occurred during peptide synthesis, we have synthesized dipeptide rac-4e starting from racemic N-4,4,4-trifluoro-3-oxo-1-butenylphenylalanine (3e) and peptide L,L-4e starting from L-2e. The ¹⁹F-NMR spec-

trum of 4e has a singlet at $\delta=77.5$ from by the trifluoromethyl group. In the spectrum of the rac-4e there are two singlets with close chemical shift values ($\Delta\delta=0.01$), belonging to the trifluoromethyl groups of the diastereoisomeric dipeptides. After removal of the 4,4,4-trifluoro-3-oxo-1-butenyl group dipeptides L,L-5e and rac-5e were examined by HPLC. It was shown that the dipeptide L,L-5e (L-Phe-L-Phe-OMe) contains not more than 0.5% of the D-isomer (D-Phe-L-Phe-OMe) as admixture. Therefore, we can claim that 4,4,4-trifluoro-3-oxo-1-butenyl) group does not promote racemization during peptide bond formation process in the presence of DCC even if no nucleophilic additions are used. 6

In conclusion we consider 4-ethoxy-1,1,1-trifluoro-3-buten-2-one (1) to be a suitable reagent for the N-terminal protection of amino acids in peptide synthesis. The advantages of 1 are that it is readily available, the protection and deprotection steps are simple, and free from racemization, stability of the crystalline N-4,4,4-trifluoro-3-oxo-1-butenyl derivatives.

All the amino acids and hydrochlorides of amino acid esters used in the synthesis are from "Reanal", DCC is from "Fluka". 4-Ethoxy-1,1,1-trifluoro-ethoxyvinyl-3-buten-2-one (1) was prepared accord-

Satisfactory finite of analyses obtained. C \pm 0.30, H \pm 0.11, H \pm 0.32. b 13C-NMR (50.327 MHz, CDCl₃/TMS): δ = 23.3 (β -CH₂), 29.4 (γ -CH₂), 48.5 (δ -CH₂), 64.8 (α -CH), 90.0 (α -CH=), 117.7 (q, J = 289 Hz, CF₃), 155.3 (β -CH=), 172.9 (CO₂H), 177.5 (q, J = 33 Hz, COCF₃).

March 1991 SYNTHESIS 209

ing to literature procedure. The hydrochlorides of the ester dipeptides 5b, e and of the amino acids 2a, b, f after removal of the 4,4,4-trifluoro-3-oxo-1-butenyl group are hydroscopic solids homogeneous under HPLC conditions. The isomeric composition of dipeptide 5e was determined by reversed phase HPLC (LKB, column 150×3.3 mm Separon SGX.C₁₈, 5 mm, mobil phase MeOH/0.1% v/v TFA (7:3) flow 0.3 mL/min, k = 1.3 for L,L 5e and k = 2.2 for D,L 5e, detection at 220 nm). Observed rotations at 578 nm were obtained at $20\,^{\circ}$ C using a Polamat-A polarimeter and IR spectra were obtained using a Specord M-80 spectrophotometer. NMR spectra were obtained using a Bruker WP 200 MHz spectrometer.

N-4,4,4-Trifluoro-3-oxo-1-butenyl Amino Acids 3a-f; General Procedure:

To a solution of 2 (14 mmol) in 1 N NaOH (14 mL) is added 1 (2.35 g, 14 mmol) and the mixture is stirred 1-3 h at r.t. (22 °C) until the solution is homogeneous. The solution is acidified using 6 N aq HCl to pH 3.0, is extracted with Et_2O (3×15 mL). The etheral layer is dried (MgSO₄), hexane (5 mL) is added and the solvent is removed by evaporation. The solid is crystallized from hexane/ Et_2O (5:1) (Table).

Dipeptides 4a-c, e, f; General Procedure:

Hydrochloride of the amino acid ester (5.2 mmol) and $\rm Et_3N$ (0.72 mL, 5.1 mmol) are added with stirring to the solution of Tfav amino acid (3a-c, e, f; 5 mmol) in $\rm CH_2Cl_2$ (17 mL). To the cooled (-10 °C) mixture DCC (1.35 g, 6.5 mmol) is added. After 1 h at 0 °C, the mixture is allowed to warm to r.t., filtered and the solvent is evaporated. The residue is dissolved in $\rm Et_2O/EtOAc$ (1:1)

(30 mL). The solution is washed with 1 N HCl (2×20 mL), H₂O (2×40 mL), 1 N NaHCO₃ (2×20 mL), 25 % NaCl (2×30 mL) and dried (MgSO₄). The solvent is evaporated and crude product is crystallized from Et₂O/hexane (1:1) (Table).

Removal of the 4,4,4-Trifluoro-3-oxo-1-butenyl Protecting Group; General Procedure:

The Tfav amino acids 3a, b, f and dipeptides 4b, e (0.5 mmol) are dissolved in dioxane/3 N HCl (2:5, 10 mL). The mixture is allowed to stand for 10 h at r.t., then extracted with Et₂O (2×50 mL), the H₂O layer evaporated. The hygroscopic, solid hydrochlorides amino acids 2a, b, f and esters of dipeptides 5b, e are obtained.

Received: 21 August 1990

- (1) Hojo, M.; Masuda, R.; Kokuryo, Y.; Shioda, H.; Matsuo, S. Chem. Lett. 1976, 499.
- (2) Gerus, I.I.; Gorbunova, M.G.; Vdovenko, S.I.; Yagupol'skii, Yu.L.; Kukhar, V.P. Zh. Org. Khim. 1990, 26, 1877.
- (3) Greene, T.W. Protective Groups in Organic Chemistry, John Wiley & Sons, New York, 1981, p. 278.
- (4) Hiskey, R.G.; Southard, G.L. J. Org. Chem. 1966, 31, 3582.
- (5) Boisonnas, R.A.; Guttmann, St.; Jaquenoud, P.-A. Helv. Chim. Acta 1960, 43, 1349.
- (6) König, W.; Geiger, R. Chem. Ber. 1970, 103, 788.