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Abstract: Starting from L-ascorbic acid, crotonaldehyde,
(trimethylsilyl)acetylene and the stannylated alcohol 15, the title
compound 4 was synthesized for thefirst time. L-Ascorbic acid was
elaborated into phosphonium bromide 19 with a high degree of Z-
stereoselectivity while the other starting materials were combined
for obtaining the unsaturated aldehyde 5. A Wittig reaction between
this aldehyde and the ylide derived from bromide 19 provided xer-
ulin (4) along with a mixture of isomers which was readily separa-
ble.

Key words: butenolides, butyrolactones, C—-C coupling, B-elimina-
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Steglich, Anke, et al. isolated and elucidated structurally
three unique y-alkylidenebutenolides from Xerula melan-
otricha Dorfelt (Scheme 1): xerulin (4), dihydroxerulin
(3), and xerulinic acid (which is xerulin with a COOH in-
stead of the CH; group).! Xerulin (4) and dihydroxerulin
(3) arose as inseparable 90:10 — 65:35 mixtures. They
inhibited the biosynthesis of cholesterol in HeLa S3 cells
(IDs, = 1 ng/g) without being cytotoxic.
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Recently, we described the first synthesis of dihydroxeru-
lin (3).2 It began with stereosel ective preparations of pho-
phorus ylide 1 and lactone aldehyde 2 and ended with a
Wittig reaction between these entities. Irrespective of
whether it was effected in the presence or absence of LiBr,
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Scheme 2 @) CBr, (2.0 equiv), PPh; (4.0 equiv.), CH,Cl, °C—room
temp., 4 h — b) BuLi (1.0 equiv), THF, -78 °C, 5min, 0 °C, 10 min, -
78 °C, |, (1.0 equiv), room temp., 10 min; utilized without work-up
immediately thereafter. — c) MeLi (2.2 equiv), THF, -78 °C, 20 min,
r.t., 10 min, 1, (1.0 equiv), -78 °C — r.t., 1 h — d) Me;SI-C=C-1 (1.1
equiv), Pd(dba), (2 mal-%), AsPh; (8 mol-%), 15 (1.0 equiv), THF,
rt., 3h - e) K,CO; (1.0 equiv), MeOH, r.t., 14 h. — f) Pd(dba), (5
mol-%), Cul (15 mol-%), THF/iPr,NH (5:8, v:v), r.t., 15 min. — g)
Dess-Martin periodinane (1.1 equiv), CH,CI, (not dry), r.t., 5 min.

it delivered up to 30% of the desired trans,Z isomer 3
along with up to 25% of a mixture of at least two stereoi-
somers. This lack of stereocontrol implies that phophorus
ylide 1 is neither "stable” (creating preferentially atrans-
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C=C bond) nor "unstable” (creating preferentialy a cis-
C=C bond) but "semistable” which quality almost ex-
cludes that a high degree of stereocontrol can be exerted.?
As a consequence, when we tried to synthesize the next
representative of Steglich’s and Anke’s Xerula metabo-
lites, namely xerulin (4), and chose to rely again upon a
Wittig reaction for establishing the C8=C” bond, we decid-
ed to switch roles. We introduced the acyclic portion of
the target molecule as an adehyde 5 and the heterocyclic
portion as aphosphorusylide 6 and describe in the follow-
ing how this was accomplished.

The acyclic portion of xerulin was assembled from cro-
tonaldehyde (7), (trimethylsilyl)acetylene (9), and the
stannylated pentadienol 15* (Scheme 2).5 Crotonal dehyde
(7) was C;-elongated to the dibromodiene 8 (81%) which
was subjected to a Fritsch-Buttenberg-Wiechell rear-
rangement under the Corey-Fuchs conditions®. The result-
ing lithioalkyne was quenched with iodine’ furnishing the
iodopentenyne 11 in 67% yield. Commercial (trimethyls-
ilyl)acetylene (9) was oxidized by successive treatment
with BuLi and iodine’ giving a THF solution of the corre-
sponding iodoalkyne 10. It was used as such for a
Pd(dba), catalyzed coupling with the stannylalcohol 15*
providing the unsaturated alcohol 12 in 53% overall
yield.® Desilylation in basic methanol® furnished the
terminal alkyne 13 (82%). It was combined with io-
doakyne 11 in a Pd(dba),/Cul-catalyzed Cadiot-Chodk-
iewicz reaction®® providing the desired diyne 14 and
amost no self-coupling products.!* The sequence of
Scheme 2 was terminated by a Dess-Martin oxidation*?
leading to the desired aldehyde 5% in 81% yield.
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Scheme 3. @) PPh; (2.5 equiv), CBr, (2.5 equiv), CH,Cl,, 0 °C, 30
min. — b) P(OMe); (excess), 80 °C, 2 h — c¢) PPh; (1.0 equiv), MeCN,
r.t., 14 h.

Potential precursors of the heterocyclic moiety of xerulin
were synthesized from the y-(hydroxyethylidene)buteno-
lide 16 (96% Z; Scheme 3) which we had made accessible
from L-isoascorbic acid for synthesizing dihydroxerulin.?
The OH group of compound 16 was replaced by Br'4 giv-
ing the brominated butenolide 17 in 72% yield (97% 2).
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<3% other isomer(s)

Condi- Base 19:Base:5  Solvent T Yield 4 Yield cis-4 +
tions [°C] [%] isomer(s) [%]
1 NEt3 2.0:20:1 CHyCl, -78-20 19 20
2 DBN 2.0:20:1 CHyCl, -78-20 0 0
3 KOtBu 20:20:1 THF -78 - 20 6 5
4 KHMDS 20:20:1 THF -78 - 20 12 12
5 dimsyl-Na 2.0:2.0:1 DMSO 20 0 0
6 BulLi 1.1:11:1 THF -78-20 12 12
7 BuLi 20:20:1 THF 0-20 26 27
8 K,CO3; 1.5:1.4:1 CH,Cl, 20 19 20
9 K,CO3 2.0:20:1 CH,Cl, 50 16 16
10 K,CO3 5.0:55:1 CH,Cl, 50 28 27
11 K,CO3 5.0:5.0:1 CH,Cl, 90 7 7
Scheme 4

Heating this compound in trimethylphosphite led to the
butenolide-containing phosphonate 18 (95% Z) in 95%
yield while an Sy reaction with triphenylphosphine pro-
vided quantitatively the corresponding phosphonium salt
19 (96% Z) at room temperature. Configurational as-
signments of these species are based on the high-field
shifted 300 MHz *H-NM R resonances of protons 3-H (al-
ways) and 5-H (except in 19) in Z- compared with E-iso-
mers (Table 1);®® we had observed similar shift
differencesin y-alkylidenebutenolides earlier.2®

Table 1 Stereochemically relevant 300 MHz 'H-NMR shifts of
v-akylidenebutenolides 16-19

E isomer
5(3-H) 3(5-H)

Z isomer
3(3-H) &(5-H)

16 7.392 5482| 7.832 5912
17 741 555 7.73  6.00

18 7.36 5.28 7.62 5.67

19 7.56 5.86 8.80 5.57
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Table 2 *H NMR shiftsand vicinal coupling constants of natural xerulin (4), synthetic xerulin,
and the synthetic butenolide cis-4 (500 MHz, CDCl)

2H 3-H 5H 6-H 7-H

8-H 9-H 10-H 11-H 16-H 17-H 18-H3

natural 4 * 6.17 735 588 6.81
synthetic 4 6.19 7.38 590 6.83 6.49

6.37 - 6.54 6.76 575 560 6.33 1.83

6.44 6.40 6.78 577 562 635 184

cis-4 6.20 7.42 6.27 6.62 6.34 6.78 6.45 6.77 578 560 6.33 1.83
J23 - Jse Je7 J7 Js,9 Jogo Jioar - Jear Jizas

natural 4 5.5 - 11.8 145 105 155 - 158 6.8

synthetic 4 5.3 - 11.7 142 10.7 14.2 105 153 - 15.8 7.0

cis-4 5.3 - 120 116 119 14.0 11.4 155 - 15.7 6.9

Exploratory Horner-Wadsworth-Emmons reactions be-
tween lithiated phosphonate 18 and aldehyde 5 failed to
provide even traces of xerulin. Gratifyingly, Wittig reac-
tions between aldehyde 5 and the ylide derived from
butenolide 19 gave the desired olefin under various condi-
tions (Scheme 4). A suspension of K,CO; in CH,Cl, gave
up to 55% olefin (entry 10), BuLi in THF 53% (entry 7),
and NEt; in CH,CI, 39% (entry 1). KHMDS as abase was
mediocre (—24% yield; entry 4), KOtBu poor (—11%
yield; entry 3) and DBN aswell as dimsyl-Nadid not lead
to products (entries 2, 5).

Unfortunately, irrespective of the reaction conditions the
Wittig reactions of Scheme 4 were non-stereosel ective.
Each of them furnished almost equal amounts of the de-
sired trans-olefin 4 (= xerulin; up to 28% yield)® and its
isomer cis-4.1” However, thelatter was easily separable by
chromatography on silicagel (petroleum ether / tert-bu-
tylmethylether 7.1 — petroleum ether / tert-butylmethyl-
ether / dichloromethane 4:1:0.2 — 2:1:19; 4 eluted first,
cis-4 second).

The 500 MHz *H-NMR spectrum of synthetic xerulin in
CDCl,; wasinaccordance with the data of the natural prod-
uct (Table 2).! In addition, it allowed a computer analysis
of the previously unresolved multiplet of 7-H, 8-H and 9-
H.1® This analysis revealed a coupling constant Jgo = 14.2
Hz and thereby confirmed the suspected* trans-configura-
tion of the C®=C® bond. In compound cis-4, the cis-config-
uration of the newly formed C®=C’ bond was deduced
from Jg ; = 11.6 Hz and the Z-configuration of the C*=C®
bond from 64, = 7.42; the latter value is smaller than & =
7.9 expected®*® for an E isomer. The Z-configuration of
the C*=C® bond in compound cis-4 is underlined by the
close resemblance of 83y, cis4 = 7.42 With 83 natural xerutin =
7.35and 83—H, synthetic xerulin = 7.38.

In summary, xerulin (4) has been synthesized by aconver-
gent route and was abtained in pure form for thefirst time.
The only reason why this synthesis cannot be called “ste-
reoselective’ isthat the terminating Wittig reaction did not
show more stereocontrol than the Wittig reaction — of op-
posite polarity — used for synthesizing dihydroxerulin (3).
We are currently looking for modified syntheses of these

compounds 4 which allow to construct the C8=C” bond
with stereocontrol.
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