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Abstract: Starting from L-ascorbic acid, crotonaldehyde,
(trimethylsilyl)acetylene and the stannylated alcohol 15, the title
compound 4 was synthesized for the first time. L-Ascorbic acid was
elaborated into phosphonium bromide 19 with a high degree of Z-
stereoselectivity while the other starting materials were combined
for obtaining the unsaturated aldehyde 5. A Wittig reaction between
this aldehyde and the ylide derived from bromide 19 provided xer-
ulin (4) along with a mixture of isomers which was readily separa-
ble.

Key words: butenolides, butyrolactones, C-C coupling, b-elimina-
tion, Wittig reaction

Steglich, Anke, et al. isolated and elucidated structurally
three unique g-alkylidenebutenolides from Xerula melan-
otricha Dörfelt (Scheme 1): xerulin (4), dihydroxerulin
(3), and xerulinic acid (which is xerulin with a COOH in-
stead of the CH3 group).1 Xerulin (4) and dihydroxerulin
(3) arose as inseparable 90:10 - 65:35 mixtures. They
inhibited the biosynthesis of cholesterol in HeLa S3 cells
(ID50 = 1 mg/g) without being cytotoxic.

Scheme 1

Recently, we described the first synthesis of dihydroxeru-
lin (3).2 It began with stereoselective preparations of pho-
phorus ylide 1 and lactone aldehyde 2 and ended with a
Wittig reaction between these entities. Irrespective of
whether it was effected in the presence or absence of LiBr,

it delivered up to 30% of the desired trans,Z isomer 3
along with up to 25% of a mixture of at least two stereoi-
somers. This lack of stereocontrol implies that phophorus
ylide 1 is neither ”stable” (creating preferentially a trans-
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Scheme 2  a) CBr4 (2.0 equiv), PPh3 (4.0 equiv.), CH2Cl2 °CÆroom
temp., 4 h - b) BuLi (1.0 equiv), THF, -78 °C, 5 min, 0 °C, 10 min, -
78 °C, I2 (1.0 equiv), room temp., 10 min; utilized without work-up
immediately thereafter. - c) MeLi (2.2 equiv), THF, -78 °C, 20 min,
r.t., 10 min, I2 (1.0 equiv), -78 °C Æ r.t., 1 h - d) Me3Si-C∫C-I (1.1
equiv), Pd(dba)2 (2 mol-%), AsPh3 (8 mol-%), 15 (1.0 equiv), THF,
r.t., 3 h - e) K2CO3 (1.0 equiv), MeOH, r.t., 14 h. - f) Pd(dba)2 (5
mol-%), CuI (15 mol-%), THF/iPr2NH (5:8, v:v), r.t., 15 min. - g)
Dess-Martin periodinane (1.1 equiv), CH2Cl2 (not dry), r.t., 5 min.
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C=C bond) nor ”unstable” (creating preferentially a cis-
C=C bond) but ”semistable” which quality almost ex-
cludes that a high degree of stereocontrol can be exerted.3

As a consequence, when we tried to synthesize the next
representative of Steglich´s and Anke´s Xerula metabo-
lites, namely xerulin (4), and chose to rely again upon a
Wittig reaction for establishing the C6=C7 bond, we decid-
ed to switch roles. We introduced the acyclic portion of
the target molecule as an aldehyde 5 and the heterocyclic
portion as a phosphorus ylide 6 and describe in the follow-
ing how this was accomplished.

The acyclic portion of xerulin was assembled from cro-
tonaldehyde (7), (trimethylsilyl)acetylene (9), and the
stannylated pentadienol 154 (Scheme 2).5 Crotonaldehyde
(7) was C1-elongated to the dibromodiene 8 (81%) which
was subjected to a Fritsch-Buttenberg-Wiechell rear-
rangement under the Corey-Fuchs conditions6. The result-
ing lithioalkyne was quenched with iodine7 furnishing the
iodopentenyne 11 in 67% yield. Commercial (trimethyls-
ilyl)acetylene (9) was oxidized by successive treatment
with BuLi and iodine7 giving a THF solution of the corre-
sponding iodoalkyne 10. It was used as such for a
Pd(dba)2 catalyzed coupling with the stannylalcohol 154

providing the unsaturated alcohol 12 in 53% overall
yield.8 Desilylation in basic methanol9 furnished the
terminal alkyne 13 (82%). It was combined with io-
doalkyne 11 in a Pd(dba)2/CuI-catalyzed Cadiot-Chodk-
iewicz reaction10 providing the desired diyne 14 and
almost no self-coupling products.11 The sequence of
Scheme 2 was terminated by a Dess-Martin oxidation12

leading to the desired aldehyde 513 in 81% yield.

Scheme 3. a) PPh3 (2.5 equiv), CBr4 (2.5 equiv), CH2Cl2, 0 °C, 30
min. - b) P(OMe)3 (excess), 80 °C, 2 h - c) PPh3 (1.0 equiv), MeCN,
r.t., 14 h.

Potential precursors of the heterocyclic moiety of xerulin
were synthesized from the g-(hydroxyethylidene)buteno-
lide 16 (96% Z; Scheme 3) which we had made accessible
from L-isoascorbic acid for synthesizing dihydroxerulin.2

The OH group of compound 16 was replaced by Br14 giv-
ing the brominated butenolide 17 in 72% yield (97% Z).

Heating this compound in trimethylphosphite led to the
butenolide-containing phosphonate 18 (95% Z) in 95%
yield while an SN reaction with triphenylphosphine pro-
vided quantitatively the corresponding phosphonium salt
19 (96% Z) at room temperature. Configurational as-
signments of these species are based on the high-field
shifted 300 MHz 1H-NMR resonances of protons 3-H (al-
ways) and 5-H (except in 19) in Z- compared with E-iso-
mers (Table 1);15 we had observed similar shift
differences in g-alkylidenebutenolides earlier.2,15

Table 1  Stereochemically relevant 300 MHz 1H-NMR shifts of
g-alkylidenebutenolides 16-19
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Exploratory Horner-Wadsworth-Emmons reactions be-
tween lithiated phosphonate 18 and aldehyde 5 failed to
provide even traces of xerulin. Gratifyingly, Wittig reac-
tions between aldehyde 5 and the ylide derived from
butenolide 19 gave the desired olefin under various condi-
tions (Scheme 4). A suspension of K2CO3 in CH2Cl2 gave
up to 55% olefin (entry 10), BuLi in THF 53% (entry 7),
and NEt3 in CH2Cl2 39% (entry 1). KHMDS as a base was
mediocre (Æ24% yield; entry 4), KOtBu poor (Æ11%
yield; entry 3) and DBN as well as dimsyl-Na did not lead
to products (entries 2, 5).

Unfortunately, irrespective of the reaction conditions the
Wittig reactions of Scheme 4 were non-stereoselective.
Each of them furnished almost equal amounts of the de-
sired trans-olefin 4 (∫ xerulin; up to 28% yield)16 and its
isomer cis-4.17 However, the latter was easily separable by
chromatography on silicagel (petroleum ether / tert-bu-
tylmethylether 7:1 Æ petroleum ether / tert-butylmethyl-
ether / dichloromethane 4:1:0.2 Æ 2:1:19; 4 eluted first,
cis-4 second).

The 500 MHz 1H-NMR spectrum of synthetic xerulin in
CDCl3 was inaccordance with the data of the natural prod-
uct (Table 2).1 In addition, it allowed a computer analysis
of the previously unresolved multiplet of 7-H, 8-H and 9-
H.16 This analysis revealed a coupling constant J8,9 = 14.2
Hz and thereby confirmed the suspected1 trans-configura-
tion of the C8=C9 bond. In compound cis-4, the cis-config-
uration of the newly formed C6=C7 bond was deduced
from J6,7 = 11.6 Hz and the Z-configuration of the C4=C5

bond from d3-H = 7.42; the latter value is smaller than d ª
7.9 expected2,15 for an E isomer. The Z-configuration of
the C4=C5 bond in compound cis-4 is underlined by the
close resemblance of d3-H,cis-4 = 7.42 with d3-H, natural xerulin =
7.35 and d3-H, synthetic xerulin = 7.38. 

In summary, xerulin (4) has been synthesized by a conver-
gent route and was obtained in pure form for the first time.
The only reason why this synthesis cannot be called ´ste-
reoselective´ is that the terminating Wittig reaction did not
show more stereocontrol than the Wittig reaction - of op-
posite polarity - used for synthesizing dihydroxerulin (3).
We are currently looking for modified syntheses of these

compounds 4 which allow to construct the C6=C7 bond
with stereocontrol.
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