Note

Halogen-metal exchange of 3-substituted 1,2-dibromoarenes: The use of long-range *J*_{CH} coupling constants to determine regiochemistry

Lisa DiMichele,¹* Karsten Menzel,² Paul Mills,² Doug Frantz³ and Todd Nelson²

¹ Merck Research Laboratories, Department of Process Research, Merck & Co. Inc., Post Office 2000, Rahway, New Jersey, USA

² Merck Research Laboratories, Department of Process Research, Merck & Co. Inc., 466 Devon Park Dr., Wayne, Pennsylvania 19087, USA

³ Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9038, USA

Received 14 April 2006; Revised 5 July 2006; Accepted 7 July 2006

Regioselective halogen/metal exchange reactions were carried out on a series of 3-substituted- 1,2dibromoarenes. Product mixtures were quenched with CO₂ to form the corresponding benzoic acid analogs to facilitate HPLC and NMR analysis. Substitution at the 3-position could readily be assigned on the basis of 2D HMBC long-range correlations, while assignment at the 2-position was not as straightforward. The use of three-bond J_{CH} coupling constant measurements, extracted from 1-D ¹H coupled ¹³C experiments, were necessary to render unequivocal regio assignments. Copyright © 2006 John Wiley & Sons, Ltd.

KEYWORDS: tri-substituted arenes; NMR; ¹³C; coupled ¹³C; ¹H; ³J_{CH} coupling constants; ²J_{CH} coupling constants; regiochemistry; HMBC

INTRODUCTION

In the course of our study of halogen/metal exchange reactions of 3-substituted 1,2-dibromoarenes with Grignard reagents, we found that isopropylmagnesiumchloride (iPrMgCl)¹ had a clear advantage over the more commonly used *n*-butyl lithium (nBuLi)^{2,3} in providing high assay yield, thermal stability and site selectivity. A series of 3substituted 1,2-dibromobenzene analogs were prepared to examine the effect of R-group substitution on regioselectivity in the transmetalation.⁴ To simplify the analysis, the metal analogs were quenched with carbon dioxide to provide the more stable benzoic acid analogs for product yield via HPLC analysis. NMR analysis was used to determine the regiochemistry of these analogs, which required the use of the older, more traditional 1-D technique: ¹H coupled ¹³C NMR, whereby long- range three-bond and two-bond JCH coupling constants could be measured.

RESULTS AND DISCUSSION

A series of substituted 1,2-dibromo arenes, 1a-g, were reacted under the conditions presented in Scheme 1 to yield the benzoic acid regioisomers 2a-g and 3a-g; the regioisomeric ratios (2:3) and yields are presented in Table 1.

*Correspondence to: Lisa DiMichele, Merck Research Laboratories, Department of Process Research, Merck & Co. Inc., Post Office Box 2000, Rahway, New Jersey 07065, USA. E-mail: lisa_dimichele@merck.com

Scheme 1. Formation of benzoic acid regioisomers.

For all of the quenched product mixtures, the major regioisomer represented \geq 90% of the product mixture. A combination of ¹H and ¹³C 1D NMR experiments was used to identify the major species in each mixture. The similarity of the aromatic coupling patterns observed in the proton spectra for all products was consistent with a 1,2,3 tri-substituted arene ring where C₃ bore the R-group. Although the literature provides references for proton NMR data⁵ for all but one of the products, the chemical shift differences between the regioisomers are too small to make an unequivocal distinction. Solvent effects lend further uncertainty to the assignment differences. Consequently, assignment of the quench site to C_1 or C_2 on the ring required ¹³C NMR data. While the decoupled ¹³C experiment provided chemical shift information about the aromatic carbons, the coupled ¹³C experiment provided multiplicity and long-range coupling data. In compound 2a, the presence of a fluoro group at the C₃ position on the aromatic ring provided a valuable tool for the positional ¹³C assignments on the ring. Carbon-fluorine (J_{CF}) couplings were fairly diagnostic for aromatic ring assignments. In general, the J_{CF} coupling constant for the *ipso* (C₃) bearing the fluorine was \sim 250 Hz, whereas those

for ortho, meta and para were approximately 20-25, 6-10 and 2-4 Hz, respectively. The substituted and protic carbons were readily distinguished in the ¹H coupled ¹³C spectrum, although the reduced signal intensity of the C_1 - C_3 carbons in the decoupled spectrum presented a reliable indicator for substitution as well. Using this combined information, the assignments for the carbons in compound 2a were made, which appear in Table 3. A significant observation in the ¹H coupled ¹³C data revealed that the acid carbonyl showed no long-range carbon-hydrogen couplings (J_{CH}) , which strongly suggested its substitution at C₂. This applied to all the major regioisomers (2a-2f) with the exception of the methyl analog (3g) where a ${}^{3}J_{CH}$ coupling of 4.5 Hz to the acid carbonyl was observed. The more commonly used 2-D HMBC (heteromultiple bond correlation) experiment would easily have shown this three-bond correlation; however, the absence of these correlations in 2a-2f would not conclusively prove carboxyl substitution at C2. It was necessary to focus on the substituted carbons in the coupled ¹³C spectrum. The positional assignment of the C2 carbon (triplet) was readily distinguished from C_1 and C_3 , the former having two similar ${}^{3}J_{CH}$ couplings. The C₃ carbons were assigned on the basis of one of several strategies: chemical shifts (2b, 2e, 2f), the J_{CF} couplings (2c), the symmetry of the compound (2d) and the $^{2}J_{CH}$ couplings from the C₃-methyl for (**3g**).

With these assignments in place, the focus returned to the regiochemistry of C_1 and C_2 . From the coupled ¹³C data, the three-bond ³J couplings were measured and

Table 1. Regioisomer ratio and yields

	R	2:3	Yield %
2a	F	99:1	84
2b	Cl	95:5	62
2c	CF ₃	94:6	89
2d	Br	90:10	73
2e	OMe	90:10	75
2f	CO ₂ Me	92:8	54
3g	CH ₃	1:99	85

Table 2. Three-bond $({}^{3}J_{CH})$ coupling constants for the major regioisomer

		C_1	C	2	C ₃	
	R	${}^{3}J_{15}$	${}^{3}J_{24}$	${}^{3}J_{26}$	${}^{3}J_{35}$	
2a	F	12.5	4.5	4.5	12.5	
2b	Cl	13.1	5.5	5.5	12.5	
2c	CF ₃	11.8	а	а	8.3	
2d	Br	12.5	6.2	6.2	12.5	
2e	OMe	13.1	5.2	5.2	9.3	
2f	CO ₂ Me	11.4	6.9 ^b	5.5 ^b	9.0	
3g	CH ₃	7.6	9.8 ^c	9.8 ^c	7.6	

^a Owing to overlap, the couplings could not be measured.

^b Using coupled 13 C with selective irradiation of the C₄–H, unequivocal assignments of the couplings were made.

^c A coupled ¹³C with selective irradiation of the C_3 -Me was used to obtain these measurements.

tabulated (Table 2) for C_1 through C_3 . There are three general trends from the literature for mono substituted aromatic systems: (i) ${}^{3}J_{CH}$ couplings are larger (6–12 Hz) than the ${}^{2}J_{CH}$ couplings (0–4 Hz) and easier to discern; (ii) The magnitude of the ³J_{CH} couplings are directly proportional to the increased electronegativity of the substituent. Thus, for halogen substitution the ³J_{CH} couplings are quite large,⁶ \sim 10–13 Hz; (iii) If a substituent is on the coupling pathway, the ³J values decrease with increased electronegativity. For halogenated substituents, the ³J_{CH} values decrease^{6,7} to ~4-6 Hz. Although our system is tri-substituted, these trends were still applicable and were key to making the regioisomer assignments. For the compound 2a, the ${}^{3}J_{CH}$ coupling for C_3 (${}^{3}J_{35}$) and C_1 (${}^{3}J_{15}$) were both 12.5 Hz indicative of halogen substitution, in this case, F and Br, respectively. Subsequently, the C_2 carbon bearing the carboxylic acid group showed the expected smaller couplings (t, ${}^{3}J_{24} = {}^{3}J_{26} = 4.5$) associated with halogen substitution along the coupling pathway. Consequently C2 was assigned to the quench site. Similar ³J_{CH} coupling constants were obtained for 2b and are illustrated⁸ in Fig. 1 (Although the literature⁸ indicates that the relative proximity of proton chemical shifts can produce second-order effects in the coupled carbon-13 depending on the field strength used, these only apply to the protic carbons, whereas, the coupled patterns for the quaternary carbons are first order). The C_2 carbon appears as a triplet where ${}^3J_{24} = {}^3J_{26} = 4.5$. This trend was observed for compounds 2d-2f. Owing to overlap, the values for compound 2c could not be measured. All (2c-2f) had bromine substitution on the C_1 carbon and yielded the large diagnostic ${}^{3}J_{15}$ values (11.4–13.1). There was some expected variation in the ${}^{3}J_{35}$ couplings (9.0-12.5) at C₃ related to the electronegativity of the R group; the least electronegative groups, CH₃ and CF₃, showed the smallest ${}^{3}J_{35}$ coupling of 7.6 and 8.3 Hz, respectively. For the methyl analog, compound 3g, the C1 carbon revealed a small ${}^{3}J_{15}$ coupling of 7.6 Hz relative to the large values observed for the other isomers. This indicated that the carboxylic acid group was now on the C₁ carbon. Additionally, as noted previously, the ³J to the carbonyl was observed.

Figure 1. (a) Aromatic region of ¹³C spectrum of **2b** with labeled quaternary carbons; (b) Corresponding coupled ¹³C spectrum with ${}^{3}J_{CH}$ coupling constants and multiplicities.

Table 3.	¹ H/ ¹³ C assignments ^{a,b}	of 3-R-substituted-	1,2-dibromo benzenes
----------	--	---------------------	----------------------

	2a	2b	2c	2d	2e	2f	3g
	F	Cl	CF ₃	Br	OMe	CO ₂ Me	CH ₃
C ₁	120.48	120.12	121.09	119.95	119.77	120.66	136.56
	d, 4.8	_	_	_	_	_	_
C _{1a}	_	_	_	_	_	_	170.85
C ₂	127.13	138.15	136.49	140.09	128.39	139.42	123.31
	d, 21.5	_	q, 2.1	_	_	_	_
C _{2a}	167.01	168.58	168.94	169.22	169.75	170.70	-
C ₃	160.48	132.10	129.58	119.95	158.36	130.60	140.80
	d, 244.3	_	q, 32.9	_	_	_	-
C _{3a}	_	_	124.93	_	_	166.84	23.90
	_	_	q, 273.3	_	_	_	-
OMe	_	_	-	_	56.84	53.29	_
C_4	116.02	129.65	126.41	132.78	111.53	130.21	134.01
	d, 21.5	_	q, 4.5	_	_	_	-
C_5	133.12	132.36 ^c	131.96	132.62	132.44	131.61	128.24
	d, 9.0	_	_	_	_	_	_
C ₆	129.98	132.42 ^c	137.82	132.78	125.52	138.20	128.72
	d, 3.5	_	_	_	_	_	-
H-4	7.20, td 8.2, 0.8	7.47, dd	7.92, d 8.1	7.63 <i>,</i> d	7.05,br d	7.99, dd	7.41 <i>,</i> m
	_	8.1,1.2	_	8.1	8.4	8.0, 0.9	-
H-5	7.37, td	7.30, t	7.51, tq	7.23, t	7.28, t	7.43, t	7.30, t
	8.2,5.9	8.1	8.1,0.8	8.1	8.2	8.0	7.7
H-6	7.47, d	7.59, dd	7.92 <i>,</i> d	7.63 <i>,</i> d	7.18, dd	7.87, dd	7.46,dd
	8.2	8.1, 1.2	8.1	8.1	8.0, 0.7	8.0, 0.9	7.1,1.2
OMe	-	-	_	_	3.85	3.89	_

^a Coupling constant multiplicities: d = doublet, t = triplet, q = quartet, m = multiplet.

^b The J_{CF} coupling constants for **2a** and **2c** are tabulated with the ¹³C assignments.

^c Assignments may be interchanged.

With this final assignment of regiochemistry for **3g**, all seven benzoic acid analogs were assigned. The full carbon-13 assignments are presented in Table 3.

EXPERIMENTAL

Proton and carbon-13 spectra were recorded at 27 °C in CD₃OD on a Bruker DPX 300 instrument at a frequency of 300.13 and 75.47 MHz, respectively, using a 5 mm QNP probe. The chemical shifts are reported in ppm relative to residual CD₂HOD for proton (δ = 3.31) and CD₃OD for carbon (δ = 49.15). The *J*_{CH} and *J*_{CF} coupling constants are reported in Hz.

REFERENCES

- 1. Boudier A, Bromm LO, Lota M, Knochel P. Angew. Chem., Int. Ed. Engl. 2000; **39**: 4414.
- Halogen/metal exchange of 1,4 dibromobenzene derivatives using alkyl lithium: (a) Dabrowski M, Kubicka J, Lulinski S, Serwatowski J. *Tetrahedron* 2005; 6590; (b) Parham WE, Piccirilli RM. J. Org. Chem. 1977; 257; (c) Voss G, Gerlach H. Chem. Ber. 1989; 1199; (d) Gilman H, Langham W, Moore FW. J. Am. Chem. Soc. 1940; 2327.

- Halogen/metal exchange of 1,3-dibromobenzene derivatives using alkyl lithium: (a) Sunthankar SV, Gilman H. J. Org. Chem. 1951; 16: 8; (b) Barluenga J, Montserrat JM, Florez J. J. Org. Chem. 1993; 58: 5976; (c) Han Y, Walker SD, Young RN. Tetrahedron Lett. 1996; 37: 2703; (d) Hoye TR, Mi L. Tetrahedron Lett. 1996; 37: 3097.
- Menzel K, DiMichele L, Mills P, Frantz DE, Nelson TD, Kress MH. Regioselective Halogen Metal Exchange Reaction of 3-Substituted 2,3 Dibromoarenes: The Synthesis of 2-Substituted-5-Bromo Benzoic Acids. Synlett. 2006; 11: 1948.
- The literature provides proton NMR references for 2a-2e and 3g. Except for 2b, no carbon-13 data is available. There is no NMR data in the literature for 2f. (2a) Mongin F, Schlosser M. *Tetrahedron Lett.* 1996; 37: 6551; (2b) Gohier F, Castanet A-S, Moriter J. *Synth. Commun.* 2005; 35: 799; (2c) Mongin F, Desponds O, Schlosser M. *Tetrahedron Lett.* 1996; 37: 2767; (2d) Heiss C, Marzi E, Schlosser M. *Eur. J. Org. Chem.* 2003; 23: 4625; (2e) Sugaya T, Mimura Y, Kato N, Ikuta M, Mimura T. *Synthesis* 1994; 1: 73; (3g) Miyano S, Fukushima H, Inagawa H, Hashimoto H. *Bull. Chem. Soc. Jpn.* 1986; 59: 3285.
- Ludger E, Wray V, Vyascheslav CA, Sergeyev NM. J. Magn. Reson. 1977; 25: 123.
- Breitmaier E, Voelter W. Carbon-13 NMR Spectroscopy: High Resolution Methods and Applications in Organic Chemistry and Biochemistry. VCH Publishers: New York, 1990; 144.
- 8. Douglas AW, Shapiro M. Org. Magn. Reson. 1980; 14: 38.