

Available online at www.sciencedirect.com

J. Chem. Thermodynamics 35 (2003) 1897-1904

www.elsevier.com/locate/jct

Low-temperature heat capacity and thermodynamic properties of endo-Tricyclo[5.2.1.0^{2,6}]decane

Li-Guo Kong ^{a,b}, Zhi-Cheng Tan ^{a,*}, Jie Xu ^c, Shuang-He Meng ^a, Xin-He Bao ^b

 ^a Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
 ^b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
 ^c Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Received 27 March 2003; accepted 20 August 2003

Abstract

Endo-Tricyclo[5.2.1.0^{2,6}]decane (CAS 6004-38-2) is an important intermediate compound for synthesizing diamantane. The lack of data on the thermodynamic properties of the compound limits its development and application. In this study, endo-Tricyclo[5.2.1.0^{2,6}]decane was synthesized and the low temperature heat capacities were measured with a high-precision adiabatic calorimeter in the temperature nange from (80 to 360) K. Two phase transitions were observed: the solid–solid phase transition in the temperature range from (198.79 to 210.27) K, with peak temperature 204.33 K; the solid–liquid phase transition in the temperature range from 333.76 K to 350.97 K, with peak temperature 345.28 K. The molar enthalpy increments, ΔH_m , and entropy increments, ΔS_m , of these phase transitions are $\Delta H_m = 2.57$ kJ·mol⁻¹ and $\Delta S_m = 12.57$ J·K⁻¹·mol⁻¹ for the solid–solid phase transition at 204.33 K, and, $\Delta_{fus}H_m = 3.07$ kJ·mol⁻¹ and $\Delta_{fus}S_m = 8.89$ J·K⁻¹·mol⁻¹ for the solid–liquid phase transition at 345.28 K. The thermal stability of the compound was investigated by thermogravimetric analysis. TG result shows that endo-Tricyclo[5.2.1.0^{2,6}]decane starts to sublime at 300 K and completely changes into vapor when the temperature reaches 423 K, reaching the maximal rate of weight loss at 408 K.

© 2003 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +86-411-4379215; fax: +86-411-4691570. *E-mail address:* tzc@dicp.ac.cn (Z.-C. Tan).

Keywords: Endo-Tricyclo[5.2.1.0^{2,6}]decane; Heat capacity; Phase transition; Adiabatic calorimetry; Thermodynamic property

1. Introduction

Diamantane has been widely used in medicine, dye and pesticide industries. An important route to synthesize the compound is the isomerization of endo-Tricyclo[5.2.1.0^{2,6}]decane (molecular formula: $C_{10}H_{16}$, CAS 6004-38-2), which is produced through hydrogenation of dicyclopentadiene, the main component of C_5 distillates of oil plants [1]. Endo-Tricyclo[5.2.1.0^{2,6}]decane, as one important intermediate compound of synthesizing diamantine, has been studied recently. But the thermodynamic properties of the compound has not been reported sufficiently. In order to increase understanding of the properties of the compound, we measured some thermodynamic properties of this compound.

In the present study, the low-temperature heat capacities of the compound have been measured in the temperature range from (80 to 360) K. Two phase transitions were observed. The enthalpy and entropy increments of the two phase transitions have been determined. In addition, the thermal behavior of sublimation and evaporation was further investigated through thermogravimetric analysis.

2. Experimental

2.1. Sample preparation and purity analysis

 C_5 distillates of oil plants were separated to obtain dicyclopentadiene. Then dicyclopentadiene reacted with hydrogen in an autoclave for 10 h at the temperature 393 K with the pressure 1.0 MPa using Raney Ni as the catalyst. Then the mixture was filtered to get liquid mixture. Then the liquid mixture was fractionated to produce endo-Tricyclo[5.2.1.0^{2,6}]decane with high purity. The process is

The sample was dissolved in ethanol and analyzed to test the purity and the analysis was conducted on an Agilent 4890D gas chromatograph with FID. No impurity was found in the sample in the present experiment.

2.2. Adiabatic calorimetry

Heat capacity measurements were carried out in a high-precision automatic adiabatic calorimeter described in detail previously [2]. The sample amount used for the heat capacity measurement is 2.5168 g, equivalent to 15.840 mmol, based on a molar mass of 136.236 g \cdot mol⁻¹.

Prior to the heat capacity measurements on the sample, the reliability of the calorimetric apparatus was verified by heat capacity measurements of the reference standard material α -Al₂O₃. The deviations of our calibration results from the recommended values reported by Ditmars *et al.* [3] of the former National Bureau of Standards are within of $\pm 0.2\%$ in the temperature range from (80 to 400) K.

2.3. TG analysis

Thermogravimetric analysis of the sample was carried out by a TG analyzer (Model: TA2950, Du Pont, USA) under high purity nitrogen (99.999%) with the flow rate of 60 ml \cdot min⁻¹. The mass of the sample used for TG analysis was 7.8 mg. The heating rate was 0.17 K \cdot s⁻¹.

3. Results and discussion

3.1. Heat capacity

The experimental molar heat capacities of endo-Tricyclo[5.2.1.0^{2,6}]decane are shown in figure 1. and tabulated in table 1. The molar heat capacities were fitted to the following polynomials in reduced temperature (X), by means of least square fitting.

In the temperature range of (78 to 198) K

FIGURE 1. Experimental molar heat capacities $C_{p,m}$ of endo-Tricyclo[5.2.1.0^{2.6}]decane as a function of temperature *T*.

TABLE 1

The experimental molar heat capacity of endo-Tricyclo[5.2.1.0^{2,6}] decane molar mass $M = 136.236 \text{ g} \cdot \text{mol}^{-1}$

T/K	$C_{p,m}$	T/K	$C_{p,m}$	T/K	$C_{p,m}$
	$\mathbf{I} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}$		$\mathbf{I} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}$		$\mathbf{I} \cdot \mathbf{K}^{-1} \cdot \mathrm{mol}^{-1}$
70.22	52 (04	210.27	156.25	220.92	222.86
70.55	52 057	210.27	150.55	329.83	225.60
80.90	54.590	212.79	159.15	222.76	224.51
04.11	55.001	213.31	160.09	228.65	224.00
87.15	55.981	217.82	162.43	338.03	332.00
90.11	57.800	220.32	103.40	339.71	380.30
92.98	57.809	222.79	104.28	340.09	425.28
95.78	58.990	223.24	164.98	345.28	/00.90
96.32	60.009	227.07	100.96	340.09	250.75
101.19	61.205	230.11	107.48	348.32	330.75
104.03	02.140	252.79	100.20	252.29	239.32
107.03	03.074	233.71	109.08	355.38	242.85
109.97	64.894	238.30	170.38	355.79	244.57
112.80	00.320	241.37	1/1.38	338.21	248.34
115.69	07.849	244.22	172.38		
119.09	08./94	247.08	173.78		
122.90	70.300	249.95	174.49		
120.75	72.724	252.74	170.00		
130.49	75.300	255.51	177.12		
134.13	75.855	256.22	170.04		
137.79	70.980	260.92	1/9.00		
141.38	78.034	203.39	180.79		
144.00	/9.9/0 01 005	200.23	182.03		
146.55	82 561	200.00	185.08		
151.76	84.802	271.30	185.15		
159.50	04.005	274.08	180.78		
130.32	83.430	270.03	100.94		
165.01	87.300	279.20	190.01		
168.01	00.537	201.74	192.76		
108.27	90.313	204.23	195.40		
17466	91.380	280.75	195.54		
177.8	95.200	209.19	197.42		
1/7.0	95.150	291.01	200.00		
182.08	97.558	294.03	200.09		
185.98	99.904 102.01	290.44	202.37		
10/.01	102.01	298.82	204.85		
102.08	107.51	303.51	200.93		
192.98	110.10	305.51	200.01		
195.91	113.74	308.00	209.29		
201.20	308.06	310.35	211.00		
201.29	134.85	312 50	213.42		
202.39	530.79	314.82	214.00		
203.21	609 54	317.02	210.92		
203.09	614.96	310.00	217.07		
207.33	569.67	321 38	219.17		
205.01	497.11	321.30	220.91		
205.00	365.20	325.55	221.72		
207.10	215 39	327.77	223 30		
200.00	=10.07				

L.-G. Kong et al. / J. Chem. Thermodynamics 35 (2003) 1897–1904

$$C_{p,m}(\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathrm{mol}^{-1}) = 77.179 + 24.686X - 2.9365X^2 + 4.9479X^3 + 8.8659X^4,$$
(2)

where X = (T - 138)/60, and T is the absolute temperature. The correlation coefficient of the fitted curve and $R^2 = 0.9998$.

In the temperature range of (211 to 333) K

$$C_{p,m}(\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \text{mol}^{-1}) = 185.61 + 36.593X + 19.319X^2 - 3.0765X^3 - 13.956X^4,$$
(3)

where X = (T - 272)/62 and $R^2 = 0.9996$.

From figure 1, it can be seen that the heat capacities of the sample vary with increasing temperature in a smooth and continuous manner from 78 K to 198 K and from 211 K to 333 K. No thermal anomaly was observed in these temperature ranges. Therefore, the sample is stable in the above temperature ranges. However, thermal anomalies were observed in the temperature range from 199 K to 210 K and from 334 K to 351 K. The peak temperatures at the highest point of the peaks were found to be 204.33 K and 345.28 K, respectively. The two thermal anomalies are ascribed to a solid–solid phase transition and solid–liquid phase transition, respectively.

The molar enthalpy increments, ΔH_m , and the entropy increments, ΔS_m , of the two phase transitions derived by the literature method [4] are for the solid–solid phase transition, $\Delta H_m = 2.57 \text{ kJ} \cdot \text{mol}^{-1}$ and $\Delta S_m = 12.57 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ at 204.33 K, and, for the solid–liquid phase transition, $\Delta_{\text{fus}}H_m = 3.07 \text{ kJ} \cdot \text{mol}^{-1}$ and $\Delta_{\text{fus}}S_m = 8.89$ $\text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ at 345.28 K. The melting point and the molar enthalpy of fusion of exo-Tricyclo[5.2.1.0^{2,6}]decane, stereoisomer of the compound under study, are 182 K and 4.6 kJ · mol⁻¹ [5], respectively. Although the two compounds are structurally similar, the melting point of exo-Tricyclo[5.2.1.0^{2,6}]decane is far below that of endo-Tricyclo[5.2.1.0^{2,6}]decane and the molar enthalpy of fusion of exo-Tricyclo-[5.2.1.0^{2,6}]decane is higher than that of endo-Tricyclo[5.2.1.0^{2,6}]decane.

3.2. Thermodynamic functions

Through the polynomials of heat capacity and the relationship of thermodynamic functions, the thermodynamic function data were calculated in the temperature range from (80 to 330) K with a temperature interval of 5 K, based on the reference temperature 298.15 K. The values of thermodynamic function $H_T - H_{298.15}$, $S_T - S_{298.15}$ are listed in table 2.

3.3. The results of TG and DTG analysis

The TG and DTG curves of endo-Tricyclo[$5.2.1.0^{2.6}$]decane are shown in figure 2. It can be seen that endo-Tricyclo[$5.2.1.0^{2.6}$]decane begins to lose weight at 300 K and reaches the maximal rate of weight loss at 408 K. The sample completely loses its weight when the temperature reaches 413 K. The product collected during the

1901

<i>T</i> /K	C_p	$H_T - H_{298.15}$	$S_T - S_{298.15}$					
	$\overline{\mathbf{J}\cdot\mathbf{K}^{-1}\cdot\mathbf{mol}^{-1}}$	$kJ \cdot mol^{-1}$	$\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}$					
Solid-solid phase transition at 204.33 K								
80	53.844	-29.150	-149.95					
85	55.069	-28.877	-146.65					
90	56.649	-28.598	-143.45					
95	58.497	-28.310	-140.32					
100	60.536	-28.013	-137.27					
105	62.701	-27.705	-134.26					
110	64.937	-27.386	-131.3					
115	67.197	-27.056	-128.37					
120	69.447	-26.714	-125.47					
125	71.662	-26.361	-122.60					
130	73.826	-25.997	-119.75					
135	75.937	-25.623	-116.92					
140	77.999	-25.238	-114.12					
145	80.029	-24.843	-111.35					
150	82.053	-24.438	-108.59					
155	84.107	-24.022	-105.86					
160	86.240	-23.597	-103.15					
165	88.507	-23.160	-100.46					
170	90.978	-22.711	-97.78					
175	93.728	-22.250	-95.11					
180	96.846	-21.773	-92.43					
185	100.43	-21.280	-89.73					
190	104.59	-20.768	-87.01					
195	109.44	-20.233	-84.23					
	Solid–liquid	phase transition at $T = 345.28$	3 K					
210	156.71	-15.718	-62.06					
215	160.16	-14.926	-58.34					
220	162.99	-14.118	-54.62					
225	165.37	-13.297	-50.93					
230	167.44	-12.465	-47.27					
235	169.32	-11.623	-43.64					
240	171.12	-10.772	-40.06					
245	172.93	-9.911	-36.52					
250	174.83	-9.042	-33.01					
255	176.89	-8.163	-29.53					
260	179.16	-7.273	-26.07					
265	181.67	-6.371	-22.64					
270	184.43	-5.456	-19.21					
275	187.46	-4.526	-15.80					
280	190.73	-3.581	-12.39					
285	194.23	-2.618	-8.980					
290	197.91	-1.638	-5.570					
295	201.71	-0.639	-2.155					
298.15	204.13	0.000	0.000					
300	205.56	0.379	1.267					
305	209.38	1.416	4.694					

 Table 2

 Calculated thermodynamic function data of endo-Tricyclo[5.2.1.0^{2,6}]decane

TABLE 2 (continued)						
T/K	C_p	$H_T - H_{298.15}$	$S_T - S_{298.15}$			
	$\overline{\mathbf{J}\cdot\mathbf{K}^{-1}\cdot\mathbf{mol}^{-1}}$	$kJ\cdot mol^{-1}$	$\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}$			
	Solid–solid p	hase transition at 204.33 H	X			
310	213.06	2.473	8.127			
315	216.48	3.546	11.56			
320	219.52	4.637	15.00			
325	222.02	5.741	18.42			
330	223.82	6.856	21.83			

FIGURE 2. Thermogravimetric analysis (TG) and differential thermal analysis (DTG) curve of endo-Tricyclo[5.2.1.0^{2,6}]decane.

heating until 425 K proves to be the same substance as the initial sample judging from its color, melting point and morphology. Considering that endo-Tricyclo[$5.2.1.0^{2.6}$]decane is in solid state at room temperature and melts at 345.236 K, we can deduce that endo-Tricyclo[$5.2.1.0^{2.6}$]decane sublimes before melting at first and then melts with subliming as the temperature increases. When the temperature reaches 423.15 K, endo-Tricyclo[$5.2.1.0^{2.6}$]decane completely changes into vapor under the present experimental conditions.

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China for financial support to this work under Grant No. 20073047.

References

- [1] J. Yang, Z.T. Mi, C. Liu, Petrochem. Technol. 27 (1998) 475-478.
- [2] Z.C. Tan, G.Y. Sun, Y. Sun, A.X. Yin, W.B. Wang, J.C. Ye, L.X. Zhou, J. Therm. Anal. 45 (1995) 59– 67.
- [3] D.A. Ditmars, S. Ishihara, S.S. Chang, G. Bernstein, E.D. West, J. Rev. Natl. Bur. Stands. 87 (1982) 159–163.
- [4] B. Xue, Z.C. Tan, S.W. Lu, S.H. Meng, X.H. Yuan, Acta Chim. Sinica 57 (1999) 881-886.
- [5] C.T. Moynihan, H. Sasabe, D.S. Czaplak, U.E. Schnaus, J. Chem. Eng. Data 23 (1978) 107-111.

JCT 03/040