Organocatalytic Sequential Michael Reactions: Stereoselective Synthesis of Multifunctionalized Tetrahydroindan Derivatives

Peng He, Xiaohua Liu,* Jian Shi, Lili Lin, Xiaoming Feng*

[†]Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.

E-mail: xmfeng@scu.edu.cn

1. General information	S2
2. Typical procedure for catalysts preparation	S2
3. Typical procedure for racemic samples preparation	
4. Typical procedure for catalytic sequential Michael reactions	S3
5. Typical procedure for gram-scale synthesis and transformations of the p	productS3
6. Crystal data and structure refinement for product 3i	S4
7. Proposed transition state	
8. Analytical and spectral characterization data for the products	S5-25
9. Copies of NMR spectra for the products	S26-48
10. References	S48

1. General information

¹H NMR spectra were recorded on commercial instruments (400 or 600 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, $\delta = 7.26$). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and assignment. ¹³C NMR spectra were collected on commercial instruments (100 or 150 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.0$). Enantiomeric excesses (*ee*) were determined by HPLC analysis using the corresponding commercial chiralpak column as stated in the experimental procedures at 23 °C. Optical rotations were reported as follows: [*a*]_D²⁰ (*c*: g/100 mL, in solvent). HRMS was recorded on a commercial apparatus (ESI Source). All catalytic reactions were run in dried glassware, THF, toluene and diethyl ether (Et₂O) were distilled from sodium benzophenone ketyl. CH₂Cl₂ was distilled over CaH₂. The cyclic-γ,δ-unstaturated-β-ketoesters **1**¹ and nitroolefins² were prepared according to the literature procedures.

2. Typical procedure for catalysts preparation (4c, 4d, 4e)

Preparation of 4d³ (4e was prepared from quinidine in the same procedure):

To a solution of quinine (4.0 g, 12.4 mmol) in DMF (40 mL) under nitrogen atmosphere, NaH (1.36 g, 57% suspension in mineral oil, 32.3 mmol) was added in small portions and the resulting mixture was stirred at room temperature for 2 h. Then BnCl (1.56 mL, 13.6 mmol) was added dropwise via a syringe in 10 min. The mixture was stirred at room temperature overnight. After the starting material was completely consumed, brine (40 mL) was added carefully and the resulting mixture was extracted with ethyl acetate (300 mL). The organic phase was washed with H₂O (3×100 mL), brine (100 mL) and dried over Na₂SO₄. The solvent was removed in *vacuo* to afford a light yellow oil (5.1 g, 99%). This crude product (Q-Bn) was used without further purification. Under N₂ atmosphere, a suspension of Q-Bn (5.1 g, 12.3 mmol) and NaSEt (4.2 g, 50.0 mmol) in dry DMF (60 mL) was stirred at 110 °C for 8-12 hours. The reaction mixture was cooled to room temperature, and the reaction was quenched with H_2O (60 mL). The solution was acidified to pH =2 by conc. HCl. This aqueous solution was washed by ethyl acetate (2×100 mL) and its pH value was adjusted to 8 by conc. ammonium hydroxide. The resulting mixture was extracted with ethyl acetate (2×150 mL). The combined organic phase was dried over Na₂SO₄, and concentrated in vacuo to afford a yellowish solid. This solid was washed by CH₂Cl₂ (2×30 mL) and then dissolved in aqueous HCl (2 N, 150 mL). The resulting solution was washed by ethyl acetate (50 mL) and adjusted to pH = 7 by conc. ammonium hydroxide. The aqueous phase was extracted by ethyl acetate (3×80 mL). The organic phase was dried with Na₂SO₄. After concentration, 4d was obtained as a white powder (3.97g, 80%).

3. Typical procedure for racemic samples preparation

To a test tube, the nitroolefin **2** (0.1 mmol), cyclic- γ , δ -unstaturated- β -ketoester **1** (0.15 mmol, 1.5 equiv) and TMG (1.0 equiv, 12 μ L) in CH₂Cl₂(1.0 mL) was stirred at room temperature for 20 h. Racemic product **3** was isolated via column chromatography (1/2, CH₂Cl₂/petroleum ether).

4. Typical procedure for catalytic sequential Michael reactions

To a test tube, the nitroolefin **2** (0.1 mmol) and catalyst **4d** (1 mol %, 0.4 mg) in CH₂Cl₂(0.5 mL) was stirred at 30 °C for 30 min, then cyclic- γ , δ -unstaturated- β -ketoester **1** (0.15 mmol, 1.5 equiv) was added and the mixture were stirred for the stated reaction time (20-84 h) at 0 °C. If the catalyst loading was 0.5 mol % (**Table 2**, entries 1, 3, 6, 7, 8 and 15), the solution of catalyst in CH₂Cl₂ was used. After the nitroolefin was completely consumed (monitored by TLC), TMG (1.0 equiv, 12 µL) was added under 0 °C, and the reaction mixture was stirred for further 20 h. Product **3** was isolated via column chromatography (1/2, CH₂Cl₂/petroleum ether). Unreacted nitroolefin should be separated by column chromatography (EtOAc/petroleum ether) to avoid the byproduct in the second Michael reaction (**Table 2**, entries 2, 12, 13, 18 and 19). Then CH₂Cl₂ (1.5 mL), TMG (1.0 equiv, 12 µL) was added under 0 °C and the reaction was stirred for further 20 h. Product **3** was isolated via column chromatography (1/2, CH₂Cl₂/petroleum ether).

5. Typical procedure for gram-scale synthesis and transformations of the product

To a round bottom flasks, the nitroolefin **2a** (8 mmol, 1.19g) and catalyst **4e** (1 mol %, 32 mg) in CH₂Cl₂ (5 mL) was stirred at 30 °C for 30 min, then cyclic- γ , δ -unstaturated- β -ketoester **1** (12 mmol, 1.5 equiv) was added. The mixture was stirred for 66 h at 0 °C. Then TMG (300 µL) was added in small portions under 0 °C, and the reaction mixture was stirred for further 20 h. Product **3a** was isolated in 85% yield (2.25 g) with 97% ee. After a simple recrystallization (CH₂Cl₂/petroleum ether = 1:10) the product could be isolated in 65% yield with 99% ee.

To a solution of the product **3a** (0.5 mmol, 165.5 mg) in EtOH (3 mL) was added zinc powder (15 equiv, 0.49g), the reaction was heated to 60 °C and HCl (12M, 54 equiv) was added. 15 Minutes later, the reaction mixture was cooled to room temperature and the solution was made weakly basic (pH = 8) with NaOH (2M) and the aqueous layer was extracted with CH_2Cl_2 (3×15 mL). The combined organic layer was washed once with brine, dried (Mg₂SO₄) and evaporated to give yellow oil. Flash silica gel column chromatography (EtOAc/petroleum ether = 1:3) to afford the product **3aa** (138.5 mg, 92% yield) as colorless oil.

6. Crystal data and structure refinement for product 3i

 $\mathbf{J}_{A} = \mathbf{J}_{A} = \mathbf{J}_{A}$

Identification code	3i
Empirical formula	$C_{18}H_{20}BrNO_5$
Formula weight	410.26
Temperature / K	293.0
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
Unit cell dimensions	a = 6.4249(4) A alpha = 90.00
	b = 13.8112(5) A beta = 90.00
	c = 20.5311(8) A gamma = 90.00
Volume / A ³	1821.85(15)
Z	4
Caluculated density / mg mm ⁻³	1.496
μ / mm^{-1}	2.284
F(000)	840
Crystal size / mm ³	$0.35 \times 0.32 \times 0.30$
Theta range for data collection	2.95 to 26.37°
Index ranges	-5<=h<=8, -17<=k<=16, -25<=l<=15
Reflections collected	7595
Independent reflections	3708 [R(int) = 0.0247]

Data / restraints / parameters	3708 / 0 / 235
Goodness-of-fit on F ²	1.018
Final R indexes [I>2 sigma (I)]	$R_1 = 0.0473, wR_2 = 0.0806$
Final R indexes [all data]	$R_1 = 0.0825, wR_2 = 0.0938$
Largest diff. peak/hole / e A ⁻³	0.302/-0.389
CCDC	803725

7. Proposed transition state

We think that the transition **A** should be more reasonable which gave the (6*S*)-product as the major. In transition state **B**, although the *Si* face attackment would result in (6*S*)-product, there was steric repulsion between the cyclopentene and substituent on nitroolefin. Similarly, transition state **C** should also be disfavorable which generated minor (6*R*)-product for the steric hindrance between the Ar group of nitroolefin and quinuclidine moiety of the catalysts.

8. Analytical and spectral characterization data for the products

Ethyl 4-hydroxy-7-nitro-6-phenyl-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3a:

white solid; 32.8 mg, 97% yield; $[a]_D^{20} = -286.3$ (c = 0.40 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 97% ee, determined by HPLC analysis [Daicel chiralpak IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.13 min, t (major) = 5.56 min]; ¹H NMR (400 MHz, CDCl₃) $\delta = 12.55$ (s, 1H), 7.30–7.25 (m, 3H), 7.05–7.01 (m, 2H), 4.62 (dd, J = 12.3, 5.3 Hz, 1H), 4.54 (d, J = 5.3 Hz, 1H), 4.11 (m, 1H), 4.02 (m, 1H), 3.07 (dd, J = 18.3, 9.1 Hz, 1H), 2.88 (m, 1H), 2.41–2.31 (m, 1H), 2.11–2.01 (m, 1H), 1.87–1.77 (m, 1H), 1.64 (m, 2H), 1.42–1.32 (m, 1H), 1.08 (t, J = 7.1 Hz, 3H) pm; ¹³C NMR (101MHz, CDCl₃) $\delta = 173.87, 171.07, 136.89, 128.37, 128.28, 127.87, 97.85,$ 89.54, 60.91, 44.25, 43.57, 34.49, 31.59, 30.92, 24.76, 13.87 ppm; ESI-HRMS: calcd for(C₁₈H₂₁NO₅+Na⁺): 354.1312, found: 354.1327.

Ethyl 4-hydroxy-7-nitro-6-(o-tolyl)-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3b:

white solid; 22.1 mg, 64% yield; $[a]_D^{20} = -305.6$ (c = 0.25 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 98% ee, determined by HPLC analysis [Daicel chiralcel ADH, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 6.88 min, t (major) = 5.93 min]; ¹H NMR (400 MHz, CDCl₃) $\delta = 12.47$ (s, 1H), 7.16–7.09 (m, 3H), 7.00 (m, 1H), 4.98 (d, J = 5.3, 1H), 4.69 (dd, J = 11.8, 5.3,

1H), 4.18–3.96 (m, 2H), 3.15–3.04 (m, 2H), 2.40–2.32 (m, 1H), 2.29 (s, 3H), 2.06–1.97 (m, 1H), 1.84 (m, 1H), 1.66 (m, 2H), 1.35 (m, 1H), 1.12 (t, J = 7.1, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 173.49, 171.06, 137.46, 135.47, 130.69, 128.22, 127.38, 125.51, 99.13, 88.87, 60.98, 43.57, 38.64, 35.13, 31.66, 30.45, 24.68, 19.13, 13.85 ppm; ESI-HRMS: calcd for (C₁₉H₂₃NO₅+Na⁺): 368.1468, found: 368.1473.$

	Retention Time	Area	% Area
1	5.838	435884	50.07
2	6.752	434692	49.93

	Retention Time	Area	% Area
1	5.931	39880012	99.14
2	6.877	347195	0.86

Ethyl 4-hydroxy-7-nitro-6-(p-tolyl)-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3c:

white solid; 33.8 mg, 98% yield; $[a]_D^{20} = -328.1$ (c = 0.33 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 95% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 4.74 min, t (major) = 5.85 min]; ¹H NMR (600 MHz, CDCl₃) $\delta =$

12.54 (s, 1H), 7.07 (d, J = 7.9, 2H), 6.91 (d, J = 8.0, 2H), 4.59 (dd, J = 12.4, 5.2, 1H), 4.51 (d, J = 5.2, 1H), 4.13 (m, 1H), 4.00 (m, 1H), 3.05 (dd, J = 18.5, 9.1, 1H), 2.89–2.83 (m, 1H), 2.34 (m, 1H), 2.30 (s, 3H), 2.08–2.02 (m, 1H), 1.81 (m, 1H), 1.67–1.59 (m, 2H), 1.36 (m, 1H), 1.10 (t, J = 7.1, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 173.74$, 171.12, 137.51, 133.78, 129.09, 128.12, 97.96, 89.64, 60.91, 43.89, 43.55, 34.48, 31.58, 30.92, 24.77, 21.08, 13.90 ppm; ESI-HRMS: calcd for (C₁₉H₂₃NO₅+Na⁺): 368.1468, found: 368.1486.

	Retention Time	Area	% Area
1	4.712	18295905	49.57
2	5.801	18613477	50.43

	Retention Time	Area	% Area
1	4.740	1103771	2.31
2	5.845	46612431	97.69

Ethyl 4-hydroxy-6-(2-methoxyphenyl)-7-nitro-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3d:

white solid; 28.9 mg, 80% yield; $[a]_D^{20} = -321.7$ (c = 0.16 in CH₂Cl₂); >99:1 dr, determined by NMR analysis ; 96% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 6.86 min, t (major) = 7.42 min]; ¹H NMR (600 MHz, CDCl₃) $\delta = 12.52$ (s, 1H), 7.23 (t, J = 7.7, 1H), 6.97 (d, J = 7.3, 1H), 6.89 (t, J = 7.4, 1H), 6.82 (d, J = 8.2, 1H),

5.16 (d, J = 4.8, 1H), 4.65 (m, 1H), 4.09 (m, 1H), 4.01 (dq, J = 10.8, 7.1, 1H), 3.71 (s, 3H), 3.02 (dd, J = 18.1, 9.0, 1H), 2.84–2.78 (m, 1H), 2.35–2.29 (m, 1H), 1.91 (m, 1H), 1.85–1.77 (m, 1H), 1.66–1.60 (m, 2H), 1.33 (m, 1H), 1.06 (t, J = 7.1, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 174.07, 171.12, 158.27, 128.95, 128.72, 125.68, 119.95, 110.50, 98.12, 88.94, 60.76, 55.38, 43.55, 35.83, 31.24, 29.85, 24.57, 13.81 ppm; ESI-HRMS: calcd for (C₁₉H₂₃NO₆+Na⁺): 384.1418, found: 384.1429.$

	Retention Time	Area	% Area
1	6.829	13980076	49.06
2	7.384	14514890	50.94

	Retention Time	Area	% Area
1	6.861	70856	1.75
2	7.418	3974772	98.25

Ethyl 4-hydroxy-6-(3-methoxyphenyl)-7-nitro-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3e:

	ОН	~~ -
\bigwedge	\triangleleft	.CO ₂ Et
\searrow	\checkmark	\searrow
3e	NO ₂	
		 OMe

white solid; 28.9 mg, 80% yield; $[a]_D^{20} = -346.2$ (c = 0.24 in CH₂Cl₂); 98:2 dr, determined by HPLC analysis; 96% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 6.76 min, t (major) = 7.37 min]; ¹H NMR (600 MHz, CDCl₃) $\delta = 12.54$ (s, 1H), 7.19 (t, J = 7.9, 1H), 6.79 (dd, J = 8.2, 2.2, 1H), 6.62 (d, J = 7.7, 1H), 6.57 (s,

1H), 4.59 (dd, J = 12.4, 5.3, 1H), 4.52 (d, J = 5.3, 1H), 4.13 (m, 1H), 4.05–3.99 (m, 1H), 3.77 (s, 3H), 3.06 (dd, J = 18.4, 9.1, 1H), 2.92–2.86 (m, 1H), 2.34 (m, 1H), 2.09–2.03 (m, 1H), 1.84–1.78 (m, 1H), 1.67–1.59 (m, 2H), 1.36 (m, 1H), 1.10 (t, J = 7.1, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 173.87$, 171.04, 159.43, 138.54, 129.32, 120.81, 114.58, 112.54, 97.82, 89.49, 60.92, 55.16,

44.21, 43.54, 34.52, 31.57, 30.98, 24.78, 13.91 ppm; ESI-HRMS: calcd for $(C_{19}H_{23}NO_6+Na^+)$: 384.1418, found: 384.1419.

Ethyl 6-([1,1'-biphenyl]-4-yl)-4-hydroxy-7-nitro-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3f:

White solid; 36.5 mg, 95% yield; $[a]_D^{20} = -231.2$ (*c* = 0.52 in CH₂Cl₂); >99:1 dr; 96% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 6.26 min, t (major) = 7.66 min]; ¹H NMR (600 MHz, CDCl₃) $\delta = 12.57$ (s, 1H), 7.56 (d, J = 7.4, 2H), 7.50 (d, J = 8.1, 2H), 7.42 (t, J = 7.6, 2H), 7.33 (t, J = 7.4, 1H), 7.09 (d, J = 8.1, 2H), 4.64 (dd, J = 12.3, 5.2, 1H), 4.59 (d, J = 5.2, 1H), 4.14 (m, 1H), 4.03 (m, 1H), 3.09 (dd, J = 18.2,9.1, 1H), 2.95–2.89 (m, 1H), 2.40–2.33 (m, 1H), 2.11–2.04 (m, 1H), 1.82 (m, 1H), 1.68–1.60 (m, 2H), 1.43–1.35 (m, 1H), 1.10 (t, J = 7.1, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 173.92,$ 171.08, 140.60, 140.48, 135.95, 128.76, 128.73, 127.36, 127.04, 127.02, 97.87, 89.56, 60.99, 43.96, 43.61, 34.56, 31.61, 30.99, 24.79, 13.92 ppm; ESI-HRMS: calcd for (C₂₄H₂₅NO₅+Na⁺): 430.1625, found: 430.1642.

Ethyl 6-(4-fluorophenyl)-4-hydroxy-7-nitro-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3g:

white solid; 33.3 mg, 95% yield; $[a]_D^{20} = -214.4$ (c = 0.36 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 97% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.29 min, t (major) = 6.36 min]; ¹H NMR (600 MHz, CDCl₃) $\delta = 12.53$ (s, 1H), 6.98 (m, 4H), 4.60 (dd, J = 12.4, 5.3, 1H), 4.53 (d, J = 5.3, 1H), 4.15–4.01 (m, 2H), 3.05 (dd, J = 18.4, 9.1, 1H), 2.87–2.81 (m, 1H), 2.34 (m, 1H), 2.06 (m, 1H), 1.86–1.79 (m, 1H), 1.69–1.59 (m, 2H), 1.41–1.34 (m, 1H), 1.08 (t, J = 7.1, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 173.87, 170.93, 132.73, 132.70, 129.85, 129.77, 115.44, 115.22, 97.76, 89.36, 60.97, 43.52, 43.50, 34.39, 31.56, 30.86, 24.67, 13.87 ppm; ESI-HRMS: calcd for (C₁₈H₂₀FNO₅+Na⁺): 372.1218, found: 372.1229.$

	Retention Time	Area	% Area
1	5.272	11303651	51.03
2	6.356	10846650	48.97

	Retention Time	Area	% Area
1	5.294	495562	1.53
2	6.356	31914258	98.47

Ethyl 6-(4-chorophenyl)-4-hydroxy-7-nitro-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3h:

yellow oil; 35.0 mg, 96% yield; $[a]_D^{20} = -209.5$ (c = 0.43 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 96% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.40 min, t (major) = 6.91 min]; ¹H NMR (600 MHz, CDCl₃) $\delta =$ 12.54 (s, 1H), 7.25 (d, J = 8.4, 2H), 6.97 (d, J = 8.4, 2H), 4.61 (dd, J = 12.5, 5.3, 1H), 4.51 (d, J =5.3, 1H), 4.15–4.00 (m, 2H), 3.05 (dd, J = 18.5, 9.0, 1H), 2.86–2.79 (m, 1H), 2.34 (m, 1H), 2.06 (m, 1H), 1.85–1.79 (m, 1H), 1.64 (m, 2H), 1.41–1.34 (m, 1H), 1.09 (t, J = 7.1, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 174.02$, 170.87, 135.55, 133.82, 129.58, 128.61, 97.57, 89.26, 61.03, 43.64, 43.51, 34.42, 31.55, 30.87, 24.68, 13.89 ppm; ESI-HRMS: calcd for (C₁₈H₂₀ClNO₅+Na⁺): 388.0922, found: 388.0934.

1	5.40Z	1030321	2.00
2	6.910	48807252	97.92

(3aS,6R,7S,7aR)-ethyl

6-(4-bromophenyl)-4-hydroxy-7-nitro-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3i:

yellow oil; 34.8 mg, 85% yield; $[a]_D^{20} = -197.1$ (c = 0.63 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 96% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.25 min, t (major) = 6.86 min]; ¹H NMR (400 MHz, CDCl₃) $\delta =$ 12.54 (s, 1H), 7.40 (d, J = 8.3, 2H), 6.91 (d, J = 8.3, 2H), 4.61 (dd, J = 12.4, 5.3, 1H), 4.50 (d, J =5.3, 1H), 4.17–3.98 (m, 2H), 3.05 (dd, J = 18.4, 9.0, 1H), 2.87–2.77 (m, 1H), 2.34 (m, 1H), 2.11–2.05 (m, 1H), 1.82 (m, 1H), 1.67–1.51 (m, 2H), 1.37 (m, 1H), 1.09 (t, J = 7.1, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 174.05$, 170.85, 136.08, 131.57, 129.93, 122.02, 97.46, 89.20, 61.05, 43.71, 43.52, 34.43, 31.56, 30.88, 24.69, 13.90 ppm; ESI-HRMS: calcd for (C₁₈H₂₀BrNO₅+Na⁺): 432.0417, found: 432.0433.

	Retention Time	Area	% Area
1	5.283	20247158	50.70
2	6.942	19687684	49.30

	Retention Time	Area	% Area
1	5.250	1016285	1.79
2	6.858	55632413	98.21

Ethyl 6-(4-cyanophenyl)-4-hydroxy-7-nitro-2,3,3a,6,7,7a-hexahydro-1H-indene-5-carboxylate 3j:

white solid; 24.9 mg, 70% yield; $[a]_D^{20} = -236.5$ (c = 0.40 in CH₂Cl₂); 89:11 dr, determined by NMR analysis; 97% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 8.94 min, t (major) = 15.10 min]; ¹H NMR (400 MHz, CDCl₃) δ = 12.56 (s, 1H), 7.58 (d, J = 8.2, 2H), 7.16 (d, J = 8.2, 2H), 4.66 (dd, J = 12.4, 5.4, 1H), 4.58 (d, J= 5.4, 1H), 4.15–3.99 (m, 2H), 3.07 (dd, J = 18.5, 8.9, 1H), 2.85–2.76 (m, 1H), 2.36 (m, 1H), 2.12–2.02 (m, 1H), 1.88–1.80 (m, 1H), 1.72–1.60 (m, 2H), 1.42–1.34 (m, 1H), 1.07 (t, J = 7.1, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 174.49, 170.59, 142.70, 132.59, 132.23, 129.11, 118.49, 111.97, 96.87, 88.99, 61.16, 44.19, 43.54, 34.53, 31.54, 30.82, 24.61, 13.88 ppm; ESI-HRMS:

calcd for (C₁₉H₂₀N₂O₅+Na⁺): 379.1264, found: 379.1263.

Ethyl6-(4-fluoro-3-phenoxyphenyl)-4-hydroxy-7-nitro-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3k:

	ŅН		
\sim	\downarrow	CO ₂ Et	
$\langle \downarrow$	\checkmark	\sim	OPh
3k	I NO ₂		F

yellow oil; 37.9 mg, 86% yield; $[a]_D^{20} = -185.0$ (c = 0.4 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 97% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.41 min, t (major) = 6.94 min]; ¹H NMR (600 MHz, CDCl₃) $\delta =$

12.50 (s, 1H), 7.33 (t, J = 8.0, 2H), 7.09 (m, 2H), 6.92 (d, J = 8.0, 2H), 6.83–6.78 (m, 1H), 6.76 (m, 1H), 4.57 (dd, J = 12.4, 5.3, 1H), 4.46 (d, J = 5.3, 1H), 4.15–4.05 (m, 2H), 2.95 (dd, J = 18.4, 9.1, 1H), 2.87–2.79 (m, 1H), 2.32 (m, 1H), 2.06 (m, 1H), 1.85–1.78 (m, 1H), 1.66–1.56 (m, 2H), 1.42–1.34 (m, 1H), 1.11 (t, J = 7.1, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 173.97, 170.82, 157.35, 155.17, 152.69, 143.21, 143.09, 133.98, 129.70, 124.55, 123.11, 122.15, 117.06, 116.83, 97.41, 89.17, 61.01, 43.56, 43.37, 34.44, 31.51, 30.84, 24.61, 13.93 ppm; ESI-HRMS: calcd for (C₂₄H₂₄FNO₆+Na⁺): 464.1480, found: 464.1488.$

	Retention Time	Area	% Area
1	5.424	3169603	50.38
2	6.957	3122215	49.62

	Retention Time	Area	% Area
1	5.415	489316	1.78
2	6.943	26970571	98.22

(E)-ethyl 4-hydroxy-7-nitro-6-styryl-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 31:

Veltow oil; 21.4 mg, 60% yield; $[a]_D^{20} = -365.8$ (*c* = 0.26 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 97% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 5.37 min, t (major) = 6.06 min]; ¹H NMR (600 MHz, CDCl₃) δ = 12.55 (s, 1H), 7.32–7.27 (m, 4H), 7.24–7.20 (m, 1H), 6.37 (d, *J* = 15.6, 1H), 5.94 (dd, *J* = 15.6, 8.1, 1H), 4.49 (dd, *J* = 12.3, 4.9, 1H), 4.25–4.19 (m, 2H), 4.09 (dd, *J* = 8.0, 4.9, 1H), 3.10–3.04 (m, 1H), 2.96 (dd, *J* = 18.2, 9.5, 1H), 2.32–2.26 (m, 1H), 2.13 (m, 1H), 1.84–1.78 (m, 1H), 1.68–1.54 (m, 2H), 1.44 (m, 1H), 1.27 (t, *J* = 7.1, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ = 173.80, 171.22, 136.52, 133.88, 128.54, 127.82, 126.54, 124.50, 96.80, 89.17, 60.99, 43.19, 41.64, 35.33, 31.38, 31.07, 24.66, 14.18 ppm; ESI-HRMS: calcd for (C₂₀H₂₃NO₅+Na⁺): 380.1468, found: 380.1462.

	Retention Time	Area	% Area
1	5.401	35561245	48.48
2	6.092	37788729	51.52

	Retention Time	Area	% Area
1	5.371	733165	1.61
2	6.063	44823018	98.39

Ethyl 6-(benzo[d][1,3]dioxol-5-yl)-4-hydroxy-7-nitro-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3m:

OH CO₂Et 3m NO₂ white solid; 24.8 mg, 66% yield; $[a]_D^{20} = -310.5$ (c = 0.36 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 98% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 6.91 min, t (major) = 8.28 min]; ¹H NMR (600 MHz,

CDCl₃) $\delta = 12.52$ (s, 1H), 6.70 (d, J = 7.9, 1H), 6.50 (m, 2H), 5.95–5.93 (m, 2H), 4.56 (dd, J = 12.4, 5.2, 1H), 4.46 (d, J = 5.2, 1H), 4.17–4.12 (m, 1H), 4.04 (m, 1H), 3.04 (dd, J = 18.8, 8.9, 1H), 2.92–2.86 (m, 1H), 2.37–2.31 (m, 1H), 2.07 (m, 1H), 1.85–1.78 (m, 1H), 1.66–1.56 (m, 2H), 1.41–1.34 (m, 1H), 1.12 (t, J = 7.1, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 173.69, 171.02, 147.65, 147.23, 130.68, 121.81, 108.45, 108.13, 101.13, 98.00, 89.57, 60.92, 43.98, 43.48, 34.46, 31.57, 30.95, 24.71, 13.93 ppm; ESI-HRMS: calcd for (C₁₉H₂₁NO₇+Na⁺): 398.1210, found: 398.1217.$

Ethyl 4-hydroxy-6-(naphthalen-1-yl)- 7-nitro-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3n:

8.283

46094698

98.91

white solid; 27.8 mg, 73% yield; $[a]_D^{20} = -332.0$ (c = 0.24 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 95% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 7.89 min, t (major) = 7.07 min]; ¹H NMR (400 MHz, CDCl₃) $\delta = 12.47$ (s, 1H), 8.10 (d, J = 8.3, 1H), 7.82 (d, J = 7.6, 1H), 7.76 (d, J = 8.2, 1H), 7.45 (m, 3H), 7.23 (d,

J = 7.2, 1H), 5.64 (d, J = 5.3, 1H), 4.82 (dd, J = 12.2, 5.3, 1H), 4.00 (m, 1H), 3.81 (m, 1H), 3.18 (dd, J = 18.0, 8.4, 1H), 3.12–3.04 (m, 1H), 2.45–2.34 (m, 1H), 2.07–1.96 (m, 1H), 1.91–1.80 (m, 1H), 1.68 (m, 2H), 1.35 (m, 1H), 0.79 (t, J = 7.1, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 173.59, 171.00, 133.70, 133.55, 132.55, 128.70, 128.42, 126.31, 126.14, 125.73, 124.53, 122.12, 99.31, 88.73, 60.83, 43.59, 37.33, 35.28, 31.58, 30.40, 24.71, 13.56 ppm; ESI-HRMS: calcd for$

 $(C_{22}H_{23}NO_5+Na^+)$: 404.1468, found: 404.1474.

Ethyl 4-hydroxy-6-(naphthalen-2-yl)- 7-nitro-2,3,3a,6,7,7a-hexahydro-1H-indene-5-carboxylate 3o:

white solid; 37.7 mg, 99% yield; $[a]_D^{20} = -284.9$ (c = 0.47 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 95% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.62 min, t (major) = 7.55 min]; ¹H NMR (600 MHz, CDCl₃) $\delta = 12.62$ (s, 1H), 7.79 (m, 2H), 7.75 (d, J = 8.5, 1H), 7.50 – 7.43 (m, 3H), 7.15 (d, J = 8.4, 1H), 4.73 (d, J = 5.2, 1H), 4.68 (dd, J = 12.3, 5.3, 1H), 4.12 (m, 1H), 3.98–3.91 (m, 1H), 3.15 (dd, J = 18.1, 9.2, 1H), 2.97–2.90 (m, 1H), 2.38 (m, 1H), 2.05 (m, 1H), 1.87–1.79 (m, 1H), 1.69–1.60 (m, 2H), 1.37 (m, 1H), 1.04 (t, J = 7.1, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 174.02$, 171.12, 134.53, 133.14, 132.98, 128.13, 128.01, 127.64, 127.40, 126.25, 126.18, 126.06, 97.95, 89.58, 60.98, 44.34, 43.68, 34.63, 31.63, 30.96, 24.79, 13.88 ppm; ESI-HRMS: calcd for (C₂₂H₂₃NO₅+Na⁺): 404.1468, found: 404.1478.

	Retention Time	Area	% Area
1	5.585	34101810	48.81
2	7.511	35759883	51.19

	Retention Time	Area	% Area
1	5.625	1170484	2.52
2	7.551	45250162	97.48

Ethyl 6-(furan-2-yl)-4-hydroxy-7-nitro-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3p:

yellow oil; 25.7 mg, 80% yield; $[a]_D^{20} = -204.8$ (c = 0.40 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 96% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.49 min, t (major) = 6.05 min]; ¹H NMR (600 MHz, CDCl₃) $\delta = 12.53$ (s, 1H),

7.31 (s, 1H), 6.27 (s, 1H), 6.05 (d, J = 3.1, 1H), 4.68 (d, J = 4.8, 1H), 4.50 (dd, J = 11.9, 4.8, 1H), 4.21–4.11 (m, 2H), 3.06 (dd, J = 18.0, 9.6, 1H), 3.02–2.98 (m, 1H), 2.30 (m, 1H), 2.10 (m, 1H), 1.84–1.76 (m, 1H), 1.68–1.55 (m, 2H), 1.39 (m, 1H), 1.20 (t, J = 7.1, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 174.56$, 170.86, 150.75, 142.77, 110.32, 108.76, 95.77, 88.47, 61.02, 43.24, 38.33, 35.65, 31.30, 31.16, 24.88, 14.03 ppm; ESI-HRMS: calcd for (C₁₆H₁₉NO₆+Na⁺): 344.1105, found: 344.1113.

	Retention Time	Area	% Area
1	5.486	200571	1.11
2	6.051	17830577	98.89

Ethyl 4-hydroxy-7-nitro-6-(thiophen-2-yl)-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3q:

colorless oil; 24.3 mg, 72% yield; $[a]_D^{20} = -277.6$ (c = 0.33 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 97% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.31 min, t (major) = 6.09 min]; ¹H NMR (400 MHz, CDCl₃) $\delta = 12.53$ (s, 1H),

7.18 (d, J = 5.1, 1H), 6.95–6.91 (m, 1H), 6.73 (d, J = 3.4, 1H), 4.87 (d, J = 4.9, 1H), 4.56 (dd, J = 11.8, 5.0, 1H), 4.21–4.06 (m, 2H), 3.11–2.95 (m, 2H), 2.37–2.27 (m, 1H), 2.13 (m, 1H), 1.85 (m, 1H), 1.70–1.51 (m, 2H), 1.43–1.33 (m, 1H), 1.15 (t, J = 7.1, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 173.78$, 170.88, 140.99, 127.32, 126.20, 125.10, 99.02, 89.45, 61.07, 43.21, 39.67, 34.75, 31.49, 31.31, 24.94, 13.96 ppm; ESI-HRMS: calcd for (C₁₆H₁₉NO₅S+Na⁺): 360.0876, found: 360.0885.

Ethyl 6-cyclohexyl-4-hydroxy-7-nitro-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3r:

OH CO₂Et 3r NO₂ white soild; 20.9 mg, 62% yield; $[a]_D^{20} = 51.7$ (c = 0.41 in CH₂Cl₂); 99:1 dr, determined by HPLC analysis; 99% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) =

3r NO₂ 5.78 min, t (major) = 7.29 min]; ¹H NMR (600 MHz, CDCl₃) δ = 12.77 (s, 1H), 5.04 (dd, J = 7.2, 4.2, 1H), 4.30–4.21 (m, 1H), 4.16–4.08 (m, 1H), 3.16 (dd, J = 13.2, 4.2, 1H), 2.82–2.67 (m, 2H), 2.15 (dt, J = 13.1, 6.6, 1H), 2.00–1.84 (m, 4H), 1.77–1.73 (m, 4H), 1.67 (m, 2H), 1.51–1.45 (m, 2H), 1.28 (t, J = 7.1, 3H), 1.20–1.00 (m, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 175.48, 172.35, 95.45, 84.90, 60.53, 44.71, 42.19, 40.92, 36.52, 31.08, 30.70, 29.91, 27.91, 26.53, 26.28, 26.22, 25.87, 14.18 ppm; ESI-HRMS: calcd for (C₁₈H₂₇NO₅+Na⁺): 360.1781, found: 360.1789.

	Retention Time	Area	% Area
1	4.379	451719	0.94
2	4.778	4683	0.01
3	5.778	240981	0.50
4	7.285	47275366	98.55

Ethyl 4-hydroxy-6-isopropyl-7-nitro-2,3,3a,6,7,7a-hexahydro-1*H*-indene-5-carboxylate 3s:

	ŎН	
\sim	\triangleleft	.CO ₂ Et
$\langle \downarrow$	\checkmark	
2-	Ϋ́ ΝΟο	T
- 35		

white solid; 14.8 mg, 50% yield; $[a]_D^{20} = 71.5$ (c = 0.13 in CH₂Cl₂); 97:3 dr, determined by HPLC analysis; 99% ee, determined by HPLC analysis [Daicel chiralcel ADH, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.97 min, t (major) = 5.18 min]; ¹H NMR (600 MHz, CDCl₃) $\delta = 12.78$ (s, 1H),

5.02 (dd, J = 5.3, 3.0, 1H), 4.29–4.24 (m, 1H), 4.12 (m, 1H), 3.12 (dd, J = 8.9, 2.9, 1H), 2.78 (m, 1H), 2.74–2.68 (m, 1H), 2.14 (m, 1H), 2.01–1.94 (m, 2H), 1.89–1.84 (m,1H), 1.66 (m, 1H), 1.55–1.44 (m, 2H), 1.28 (t, J = 7.1, 3H), 1.00 (d, J = 6.7, 3H), 0.94 (d, J = 6.8, 3H) ppm; ¹³C NMR (150 MHz, CDCl3): $\delta = 175.40$, 172.30, 95.82, 85.09, 60.54, 45.54, 40.99, 36.70, 32.45, 29.89, 27.87, 25.71, 20.88, 20.17, 14.15 ppm; ESI-HRMS: calcd for (C₁₅H₂₃NO₅+Na⁺): 320.1468, found: 320.1474.

Ethyl 7-amino-4-oxo-6-phenyloctahydro-1*H*-indene-5-carboxylate 3aa:

colorless oil; 25.7 mg, 92% yield; $[a]_D^{20} = -141.7$ (c = 1.5 in CH₂Cl₂); >99:1 dr, determined by NMR analysis; 99% ee, determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 6.08 min, t (major) = 6.82 min]; ¹H NMR (600 MHz, CDCl₃) $\delta = 12.49$ (s, 1H), 7.29 (t, J = 7.2, 2H), 7.22 (t, J = 7.2, 1H), 7.16 (d, J = 7.2, 2H), 4.10–4.05 (m,

1H), 4.01–3.95 (m, 1H), 3.87 (d, J = 4.8, 1H), 2.89 (dd, J = 8.0, 2.4, 1H), 2.77 (dd, J = 8.0, 5.4, 1H), 2.29–2.26 (m, 1H), 1.95–1.90 (m, 1H), 1.87–1.83 (m, 1H), 1.84–1.77 (m, 1H), 1.63–1.51 (m, 3H), 1.17–1.35 (br, 2H), 1.08 (t, J = 7.2, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 174.75$, 172.01, 139.81, 129.64, 128.73, 127.83, 127.64, 126.61, 100.29, 60.29, 53.27, 46.96, 44.28, 40.39, 31.29, 30.08, 24.96, 13.92. ESI-HRMS: calcd for (C₁₈H₂₃NO₃+H⁺): 302.1751, found: 302.1754.

Ethyl 2-(cyclopent-1-enecarbonyl)-4-nitro-3-phenylbutanoate 5a:

white solid; 32.8 mg, 99% yield; 81:19 dr, determined by NMR analysis; 98% ee (minor 92% ee), determined by HPLC analysis [Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, major diastereomer: t (minor) = 16.28 min, t (major) = 14.47 min; minor diastereomer: t (minor) = 21.41 min, t (major) = 8.67 min]; ¹H NMR (600 MHz, CDCl₃) δ = 7.32–7.16

(m, 5H), 6.85–6.78 (m, 1H), 4.89 (m, 2H), 4.51 (d, J = 9.5, 1H), 4.32–4.26 (td, J = 9.4, 4.7, 1H), 4.19 (q, J = 7.1, 2H), 2.64–2.56 (m, 1H), 2.56–2.46 (m, 1H), 2.45–2.37 (m, 1H), 2.33–2.26 (m, 1H), 1.88–1.76 (m, 2H), 1.24 (t, J = 7.1, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = (190.40, 190.33, 1C)$, (167.93, 167.32, 1C), (147.90, 1C), (146.70, 1C), (145.15, 145.11, 2C), (136.82, 136.45, 2C), (128.88, 128.82, 2C), (128.21, 128.04, 1C), (77.91, 77.86, 1C), (62.02, 61.75, 1C), (57.66, 57.26, 1C), (43.14, 42.85, 1C), (34.39, 34.16, 1C), (30.74, 30.57, 1C), 22.54, (13.98, 13.65, 1C) ppm; ESI-HRMS: calcd for (C₁₈H₂₁NO₅+Na⁺): 354.1312, found: 354.1310.

	Retention Time	Area	% Area
1	8.668	3758571	10.60
2	14.469	31454265	88.73
3	16.283	20492	0.06
4	21.406	217669	0.61

HPLC spectra of **5a** catalyzed by **4e** (Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm):

	Retention Time	Area	% Area
1	8.891	464867	2.11
2	15.106	509709	2.32
3	16.199	18467603	83.98
4	22.446	2547953	11.59

6.604

2

24695633

50.71

HPLC spectra of racemic **3a** catalyzed by TMG (Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, λ =254nm):

HPLC spectra of 3a catalyzed by **4e** (Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, S22

λ=254nm):

	Retention Time	Area	% Area
1	5.947	23365394	97.26
2	6.612	657571	2.74

HPLC spectra of **3a** catalyzed by **4d** (Daicel chiralcel IA, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, λ =254nm):

	Retention Time	Area	% Area
1	5.964	649942	1.85
2	6.598	34558793	98.15

Ethyl 2-hydroxy-5-nitro-4,6-diphenylcyclohex-1-enecarboxylate 3ta:⁴

	ŌН	
	\checkmark	∠CO ₂ Et
ſ	Ĩ	-
Ph	\checkmark	`Ph
•		
3ta	1102	

yellow oil; 29.7 mg, 75% yield; 68:32 dr, determined by HPLC analysis; 92% ee (minor 92% ee), determined by HPLC analysis [Daicel chiralcel ODH, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, major diastereomer: t (minor) = 13.14 min, t (major) = 15.70 min; minor diastereomer: t (minor) = 9.13 min, t (major) = 6.15 min]; major diastereomer: ¹H NMR (400 MHz,

CDCl₃) $\delta = 12.48$ (s, 1H), 7.36–7.10 (m, 10H), 5.30 (dd, J = 12.4, 5.6, 1H), 4.64 (d, J = 5.6, 1H), 4.12–3.99 (m, 2H), 3.68–3.58 (m, 1H), 2.98 (dd, J = 19.6, 7.2, 1H), 2.64 (dd, J = 19.2, 11.2, 1H), 1.04 (t, J = 7.2, 3H) ppm; minor diastereomer: ¹H NMR (400 MHz, CDCl₃) $\delta = 12.71$ (s, 1H), 7.35–7.23 (m, 8H), 7.05 (d, J = 6.8, 2H), 4.95–4.92 (m, 1H), 4.55 (s, 1H), 4.10–3.97 (m, 2H), 3.43 (m, 1H), 3.32 (dd, J = 18.4, 12.0, 1H), 2.78 (dd, J = 18.4, 6.4, 1H), 0.97 (t, J = 7.2, 3H) ppm.

1	6.191	10665536	17.01
2	8.791	10563902	16.85
3	12.695	20742785	33.09
4	15.736	20712773	33.04

	Retention Time	Area	% Area
1	6.151	24710737	30.89
2	9.130	1053897	1.32
3	13.140	2532009	3.17
4	15.704	51697343	64.63

Ethyl 3-hydroxy-5-methyl-6-nitro-1,4,5,6-tetrahydro-[1, 1'-biphenyl]-2-carboxylate 3tb:⁴

yellow oil; 18.4 mg, 60% yield; 64:36 dr, determined by HPLC analysis; 99% ee (minor 98% ee), determined by HPLC analysis [Daicel chiralcel ODH, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, λ = 254 nm, major diastereomer: t (minor) = 6.71 min, t (major) = 7.04 min; minor diastereomer: t (minor) = 5.82 min, t

(major) = 6.31 min]; ¹H NMR (400 MHz, CDCl₃) δ = 12.58 (s, 1H), 7.33 (t, *J* = 7.3 Hz, 2H), 7.28 (s, 1H), 7.22 (d, *J* = 7.2 Hz, 2H), 4.65 (t, *J* = 2.9 Hz, 1H), 4.46 (d, *J* = 2.2 Hz, 1H), 4.06 – 3.94 (m, 2H), 2.57 (dd, *J* = 18.6, 6.9 Hz, 1H), 2.47 (dd, *J* = 18.6, 10.1 Hz, 1H), 2.32 (m, 1H), 1.07 (d, *J* = 6.8 Hz, 3H), 0.93 (t, *J* = 7.1 Hz, 3H).

	Retention Time	Area	% Area
1	5.798	5609625	21.76
2	6.303	5554190	21.54
3	6.719	6933645	26.89
4	7.051	7683646	29.80

	Retention Time	Area	% Area
1	5.824	70569	0.35
2	6.305	6961043	34.40
3	6.709	16265	0.08
4	7.040	13190221	65.18

9. Copies of NMR spectra for the products

P

-12.467

R

7,229 7,202 7,202 7,202 7,202 7,226 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,220 7,200

10. References

- a) Beagley, B.; Larsen, D.; Pritchard, R.; Stoodley, R.; Whiting, A. J. Chem. Soc., Perkin Trans. 1 1989, 6, 1127-1137. b) McGarraugh, P. G; Brenner, S. E. Org. Lett. 2009, 11, 5654.
- 2. a) Yu, Z. P.; Liu, X. H.; Zhou, L.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2009, 48, 5195.
 b) Yang, X.; Zhou, X.; Lin, L. L.; Chang, L.; Liu, X. H.; Feng, X. M. Angew. Chem., Int. Ed. 2008, 47, 7079.
- 3. Liu, X. F.; Li, H. M.; Deng, L. Org. Lett. 2005, 7, 167.

4. (a) Hoashi, Y.; Yabuta, T.; Takemoto, Y. *Tetrahedron Lett.* **2004**, *45*, 9185. (b) Hoashi, Y.; Yabuta, T.; Yuan, P.; Miyabe, H.; Takemoto, Y. *Tetrahedron* **2006**, *62*, 365.