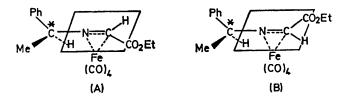
J.C.S. Снем. Сомм., 1972

Asymmetric Synthesis of a-Amino-acids from Diastereomeric Metal–Imine Complexes

By J. Y. CHENARD, D. COMMEREUC, and Y. CHAUVIN*


(Institut Français du Pétrole, 92, Rueil-Malmaison, France)

Summary A new route to optically active α -amino-acids has been achieved by treating halogen compounds with iron(0) and nickel(0) diastereometric complexes of α methylbenzyliminoglyoxylic acid ethyl ester.

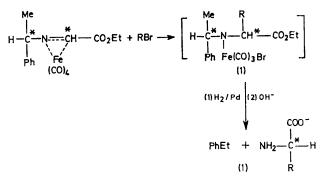
THE π -bonding ability of the C=N double bond of α -methylbenzyliminoglyoxylic acid ethyl ester on several transition metals has been described recently.¹ We report here further reactions of the iron carbonyl-imine complex

 $Fe(CO)_4$ (PhCHMe-N=CHCO_2Et).

When each enantiomer of the glyoxylic imine (obtained by reaction of D- or L- α -methylbenzylamine on ethyl glyoxylate) is treated overnight in benzene at room tempera-

ture with enneacarbonyldi-iron, a mixture of the two predictable diastereomeric complexes is obtained. In the case of the D-(-)-imine, their structures are (A) and (B). We isolated (A) and (B) as optically pure products by t.l.c. (eluting agent, benzene). Their relative abundance is A; B ca. 10:90.

The $[\alpha]_D^{2s}$ values of starting materials and iron diastereomeric complexes are as shown in the Table. The complexing behaviour of the glyoxylic imine parallels that of olefins.²


By treating an excess of benzyl bromide (6 mmol) $[R = PhCH_2$, reaction (1)] with an ethanolic solution of the ironimine complex (0.6 mmol) at 35 °C for a few hours, hydro-

Optical	activity	of the	diastereomers
---------	----------	--------	---------------

	α -Methylbenzylamine ^a	Imine ^a	Fe(CO) ₄ (imine) ^b (A) (B)	
D	-39·2°	$-53.5^{\circ} + 53.1^{\circ}$	+ 780°	$+268^{\circ}$
L	+39·0°		- 845°	-254°

^a Measured as a pure liquid. ^b Measured as 0.2% solution in $C_{e}H_{e}$.

genating the resulting homogeneous red solution with palladium on charcoal, and working up the product,³ phenylalanine (0.32 mol) is recovered. Starting from the most abundant diastereomer originating from the L-(+)-imine, D-(+)-phenylalanine is recovered (chem. yield 53%, opt. activity 77%). Similarly, L-(-)-phenylalanine is prepared from the D-(-)-imine. The optical yield is dependent on the reaction temperature, only the racemate being obtained at 80 °C (chem. yield 100%).

The same reaction takes place on mixing $Fe_{s}(CO)_{0}$, the imine, and benzyl bromide in ethanolic solution. The chemical and optical yields are, respectively, 15 and 55% under these conditions.

J.C.S. CHEM. COMM., 1972

Anisyl bromide $(R = MeOC_6H_4CH_2)$ affords O-methyltyrosine (chem. yield 28%, opt. yield 95%). Ethyl bromoacetate ($R = CH_2CO_2Et$) leads to aspartic acid (chem. yield 24%, opt. yield 78%). In contrast with the preceeding examples, we were unable to isolate significant amounts of alanine from methyl iodide. However, treatment of the iron complex with acetyl chloride (R = Ac) in benzene gives, apart from threenine, the less expected alanine, probably originating from the decarbonylation of an intermediate acyl complex. The factors governing the threonine: alanine ratio are under study.

halogen compounds. When, for example, bis-(1,5-cyclooctadiene)nickel is treated in ethereal solution with the iminoglyoxylic ester, a paramagnetic, air-sensitive complex is obtained, which analyses for Ni₄(imine)₄O₄. Treatment with benzyl bromide, at room temperature in ethanolic solution, results readily in the formation of a mixture of

 α -amino-acids, including phenylalanine. We thank Professor H. B. Kagan for helpful discussions and Elf-Erap for financial support (J.Y.C.).

(Received, 27th March 1972; Com. 502.)

Some other metal-imine complexes were treated with

¹ J. Y. Chénard, D. Commereuc, and Y. Chauvin, J. Organometallic Chem., 1971, 33, C 69. ³ A. Musco, R. Palumbo, and G. Paiaro, Inorg. Chim. Acta, 1971, 5, 157. ³ J. C. Fiaud and H. B. Kagan, Tetrahedron, 1970, 21, 1813.