Accepted Manuscript

Regioselective cyclization of 2-alkynylbenzoic acid in water for the synthesis of isocoumarin

Yan-Hua Wang, Guanyinsheng Qiu, Hongwei Zhou, Wenlin Xie, Jin-Biao Liu

PII: S0040-4020(19)30652-0

DOI: https://doi.org/10.1016/j.tet.2019.06.012

Reference: TET 30404

To appear in: *Tetrahedron*

Received Date: 26 March 2019

Revised Date: 17 May 2019

Accepted Date: 6 June 2019

Please cite this article as: Wang Y-H, Qiu G, Zhou H, Xie W, Liu J-B, Regioselective cyclization of 2-alkynylbenzoic acid in water for the synthesis of isocoumarin, *Tetrahedron* (2019), doi: https://doi.org/10.1016/j.tet.2019.06.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Regioselective Cyclization of 2-Alkynylbenzoic Acid in Water for the Synthesis of Isocoumarin

Yan-Hua Wang,^a Guanyinsheng Qiu,^b* Hongwei Zhou,^b* Wenlin Xie^c, and Jin-Biao Liu^a*

^a School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China

^b College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.

^c School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan 411201, China

^{*} G. Qiu, Tel.: +86-0573-83642057; fax: +86-0573-83642057; e-mail: 11110220028@fudan.edu.cn

^{*} J.-B. Liu, Tel.: +86-0797-88120380; fax: +86-0797-88120380; e-mail: liujbgood@hotmail.com

Tetrahedron journal homepage: www.elsevier.com

Regioselective Cyclization of 2-Alkynylbenzoic Acid in Water for the Synthesis of Isocoumarin

Yan-Hua Wang,^{*a*} Guanyinsheng Qiu,^{*b**} Hongwei Zhou,^{*b**} Wenlin Xie,^{*c*} and Jin-Biao Liu^{*a**}

^a School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China

^b College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.

^C School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan 411201, China

ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

Keywords: 2-Alkynylbenzoic Acid; Radical cyclization; Isocoumarin; Isobenzofuran; Metal-free

ABSTRACT

In this work, a regioselective synthesis of isocoumarins from 2-alkynylbenzoic acid is reported. The transformations proceed smoothly with good yields in water via a metal-free radical pathway. When catalytic TBAB is employed, the reaction provides various isocoumarin derivatives according to the structures of the corresponding precursors. It is believed that TBAB serves as a phase transfer catalyst and radical initiator in the reaction. Compared to previous methodologies, the synthetic procedure reported herein provides a more environmentally benign route for the synthesis of isocoumarins.

2009 Elsevier Ltd. All rights reserved.

Alkyne-based chemistry has attracted increasing attention in the scientific community due to its versatility for the synthesis of diverse synthons and biologically useful architectures.¹ Although alkyne-based reactions provide a number of attractive applications, reaction efficiency and regioselectivity remain major issues which need to be addressed. Generally, the regioselectivity of a reaction is controlled by the nature of the substrate. Therefore, a series of dual-functionalized substrates bearing alkynyl and reactive groups at the *ortho* position of aromatic compounds have been used to investigate the regioselectivity of alkyne-based transformations, and have also been applied to the synthesis of various privileged skeletons under mild conditions.²

The isocoumarin skeleton represents an ubiquitous structural core present in a number of useful molecules and natural products.³ For example, *Thunberginol A*, exhibiting a range of cytotoxicities, is a type of isocoumarin found in Hydrangea macrophylla. To date, tremendous effort has been devoted to the development of new synthetic ruotes for the preparation of isocoumarins due to their potential applications.⁴⁻⁸ For example, Oliver et al. reported 6-endo-dig electrophilic bromocyclization an of 2alkynylbenzoate in 1984 and found that the reaction specifically produces 4-bromoisocoumarin.⁵ The ensuing decades witnessed intense interest in the studies of regioselectivie reactions. To date, the 6-endo-dig cyclization of 2-alkynylbenzoate is braodly recognized as an important transformation for the construction of the isocoumarin core.⁶⁻⁸

Furthermore, 2-alkynylbenzoic acid, an analogue of 2alkynylbenzoate, has been found to produce isocoumarins with higher atom efficiency. Therefore, Larock et al. extensively studied the regioselective 6-endo-dig cyclization of 2alkynylbenzoic acid with an aim to synthesize various isocoumarins in an efficient manner.9 In contrast to 2alkynylbenzoate,5 of the electrophilic cyclization 2alkynylbenzoic acid resulted in a mixture of both 5-exo-dig cyclization and 6-endo-dig cyclization products. Although the base-mediated cyclization of 2-alkynylbenzoic acid proceeds mainly in a 5-*exo-dig* fashion,¹⁰ the development of an alternative approach for realising the regioselective cyclization of 2alkynylbenzoic acid is still highly desired. Considering the importance of the isocoumarin core,³ the regioselective cyclization of 2-alkynylbenzoic acids could be used to synthesize isocoumarin derivatives. Recently, the Gabriele ¹¹ and Bourissou ¹² groups proposed that using an ionic liquid as a solvent or transitional metals as Lewis acid catalysts, enabled a regioselective 6-endo-dig cyclization of 2-alkynylbenzoic acids for the synthesis of isocoumarins. However, most of the reported reactions provide products containing both 5-exo-dig and 6endo-dig cyclization products. Very recently, our group developed а TBAB-mediated regioselective oxidative bromocyclization of 2-alkynylbenzoic acids for the synthesis 3metheneisobenzofurans.^{13e} In this work, we report a new strategy for the regioselective 6-endo-dig cyclization of 2-alkynylbenoic acids to afford isocoumarins.

Scheme 1 Proposed route for the synthesis of isocoumarins from 2-alkynylbenzoic acid

Over the past few years, our group has strived towards developing cleaner, safer and more economic methodologies for the regioselective transformation of alkynes.¹³ For example, we recently reported a TBAB/oxone/water-promoted 2, 4-dibromohydration of 2-enynylbenzoate, suggesting that the regioselectivity of this reaction was attributed to the use of water as a solvent.^{13a} We hypothesize that using water as a solvent in this reaction would modify the reaction pathway. Moreover, the expansion of the TBAB/oxone/water system to the reaction of 2-alkynylbenamides in a regioselective 5-*exo-dig* manner for the synthesis of isobenzofurans.^{13b} Mechanistic studies suggest that the regioselective reaction proceeds via a radical pathway.

Additionally, we envisioned that the regioselective 6-endo-dig cyclization of 2-alkynylbenoic acids for the preparation of isocoumarins could be realized via a radical pathway using water as the solvent (Scheme 1). It is hypothesized that 2-alkynylbenzoic acid oxygen radical **A**, generated from oxidation of 2-alkynylbenzoic acid **1**, subsequently undergoes a regioselective 6-endo-dig cyclization to form isocoumarin radical **B**. Hydrogen abstraction of the isocoumarin radical B affords the final product **2** (Scheme 1). The projected transformation represents a more environmentally benign protocol for the synthesis of isocoumarins from 2-alkynylbenzoic acid via a regioselective 6-endo-dig radical cyclization. To verify the transformation as outlined in Scheme 1, optimization experiments were performed.

Oxone was first employed as an oxidant based on our previously reported works.¹³ Encouragingly, the model reaction of 2-((4-methoxyphenyl)ethynyl)benzoic acid **1a** afforded the desired 6-*endo-dig* cyclization product isocoumarin **2a** in 43% isolated yield (entry 1, Table 1); the 5-*exo-dig* cyclization product, isobenzofuran **2a'**, was not observed. Compound **2a** was characterized using H-NMR, C-NMR and HRMS.^{7a, 7d} The results are consistent with the assumption that regioselective 6-*endo-dig* cyclization of 2-alkynylbenzoic acid could be achieved in water through a radical pathway.

Inspired by this promising outcome, we next optimized other influential factors, the results of which are illustrated in Table 1. To improve the solubility of 2-alkynylbenzoic acid in water, various phase transfer catalysts (PTC) were studied (entries 2-4, Table 1). As expected, PTC was favourable to reaction efficiency. Reaction using sodium dodecyl sulfate gave rise to the desired product 2a in a 62% yield (entry 2, Table 1), while TBAI, TBAB and TBAC provided 2a in 71%, 78% and 66% yields, respectively (entries 3-5, Table 1). Conducting the reaction using TBAB and K₂CO₃ as a co-additive was unfavourable to the yield of 2a and resulted in an increase in the yield of the side product 2a' (entry 6, Table 1). Surprisingly, increasing the loading of TBAB altered the reaction pathway (entries 7-8, Table 1). In the presence of 2.0 equiv TBAB, the reaction only provided a trace amount of isocoumarin 2a, while (E)-3-(bromo(4-

 Table 1 Initial studies for the reaction of regioselective 6endo-dig cyclization of 2-alkynylbenzoic acid ^a

$\frac{y (\text{equiv}) (\text{equiv}) (^{\circ}\text{C}) (\%)^{a,b}}{0 \text{ xone}}$	2a
$\frac{1}{1} - \frac{1}{1} - \frac{1}$	
1 - 80 43	
- (20)	
(2.0)	
dodagyl Overa	
$\begin{array}{c} 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$	
(0.1)	
(0.1) Tetrabutyl	
2 ommonium Oxone 90 71	
3 annionium (2.0) 00 71	
Tetrabutyl	
ammonium	
4 bromide Oxone 80 78	
$(TB \land B \qquad (2.0)$	
(1DAD, 0.1)	
U.1) Tetrabutyla	
mmonium	
5 chloride Oxone 80 66	
(TBAC) (2.0) (2.0)	
(1)	
TBAB Oxone	
6° (0.1) (2.0) 80 19	
TBAB Oxone	
$7 \qquad (0.5) \qquad (2.0) \qquad 80 \qquad 40$	
TBAB Oxone	
8^{d} (2.0) (2.0) 80 trace	
TBAB Oxone	
9 (0.1) (1.0) 80 64	
TBAB Oxone	
$10 \qquad (0.1) \qquad (2.0) \qquad 50 \qquad 36$	
TBAB Oxone	
(0.1) (2.0) rt trace	
$TBAB K_2S_2O_8$	
12 (0.1) (2.0) 80 48	
12 VD (0.1) Oxone 00 20	20
13 KBr (0.1) (2.0) 80 39	
I ZnBr ₂ Oxone oo 17	
14 (0.05) (2.0) 80 17	
Oxone 00 11/77	、 、
15 NBS (0.1) (2.0) 80 $\Pi(7/2)$)
TBAB Oxone 20 70	
10 (0.1) (2.0) 80 79	

^aIsolated yield based on 2-alkynylbenzoi acid **1a**; ^bStandard conditions: 2-alknylbenzoic acid **1a** (0.2 mmol), additive (0.1 equiv), Oxone (2.0 equiv), solvent (2 mL), 80 °C, 8 h, under air; ^c2.0 equiv K₂CO₃ was added, and isobenzofuran **2a**' was obtained in 29% yield; ^d (*E*)-3-(bromo(4-methoxyphenyl)-methylene)isobenzofuran-1(3*H*)-one **3a** was afforded in 74% yield; ^e AIBN (15 mol%) was added; ^f THF/H₂O (v/v = 1:4, 2.0 mL) as the co-solvent. Oxone = 2KHSO₅·KHSO₄·K₂SO₄.

methoxyphenyl)-methylene)-isobenzofuran-1(3H)-one **3a** (see Scheme S1 in ESI and Ref 13e) was obtained in a yield of 74% (entry 8, Table 1). Moreover, reducing either the loading of oxone or reaction temperature (entries 9-11, Table 1) did not improve the product yield. Compared to other oxidants, oxone was found to be the best choice (entry 12, Table 1).Use of other

bromo sources, including KBr, NaBr, and NBS, did not benefit the reaction (entries 13-15, Table 1). Furthermore, in order to verify the plausible radical pathway, we added AIBN (15 mol%) to the NBS conditions and found that the yield of the reaction increased (entry 15, Table 1). We have also implemented a cosolvent system consisting of THF/H₂O (v/v = 1:4), and a comparable yield was obtained (entry 16, Table 1). Therefore, the optimized conditions are 0.1 equiv of TBAB and 2.0 equiv of oxone in water, and conducting the reaction at a temperature of 80 °C.

After optimizing the conditions, we then explored the generality of the reaction . The results are outlined in Table 2. As shown in Table 2, a series of substituted isocoumarins were prepared in good yields. The substituent effects of R^1 were also investigated. The results reveal that electronic effects only have a slight impact on the yield of the desired product. For example, reaction with a substrate containing a 4-methyl group as R^1

Table 2Generation of isocoumarins 2through aregioselective 6-endo-dig radical cyclization of various 2-alkynylbenzoic acids a

^a Isolated yield based on 2-alkynylbenzoic acid 1.

afforded the desired isocoumarin 2b in 79% yield, while a substrate bearing a 3-fluoro group gave the corresponding product 2g in a 68% yield. Other substituents including methoxy, chloro, and bromo groups were compatible with the reaction conditions, leading to the corresponding products 2c-2f in 70-82% yields.

Subsequently, we explored the tolerance of R^2 substituents. Encouragingly, R^2 substituents could be replaced by aryl, vinyl, and alkyl groups. The corresponding products **2h-2q** were obtained in 60-79% yields. For instance, reaction of a substrate bearing a 2-methoxylaryl substituent produced the desired isocoumarin **2j** in 67% yield, whereas a substrate bearing a 2chloroaryl group gave the desired product with a slightly lower yield of 63%. Trimethoxyl-substituted isocoumarin **2i** was also obtained in 82% yield under the standard conditions. Interestingly, isocoumarin **2i** has a high structural similiarity with the natural product *Thunberginol A*. Additionally, 2-(cyclohex-1en-1-ylethynyl)benzoic acid was also amenable to the reaction conditions, with the corresponding isocoumarin **2l** being prepared in 60% yield. The reactions of various alkyl group-linked substrates worked well, with the formation of a diverse range of isocoumarins **2m-2q** in good yields. Remarkably, the substrate 2,2'-(octa-1,7-diyne-1,8-diyl)dibenzoic acid is an efficient reaction partner, giving the corresponding isocoumarin **2r** in 72% yield.

To gain more insight into the mechanism, control experiments with TEMPO, BHT and 1,1-diphenylethene as radical scavengers were carried out (Scheme 2). The results show that the reaction is retarded drastically when radical scavengers are employed. However, none of the radical-trapped species were observed using mass spectroscopy. The control reaction involving the formation of brominated 1,1-diphenylethane product **4** provides unambiguous proof that the reaction proceeds via a radical pathway. Additionally, reaction using D₂O as a solvent produced the deuterized isocoumarin **2a-D** in 72% yield, which implied that the H atom at the C4 position in isocoumarin most likely originates from water.

In light of the above results, a plausible mechanism has been proposed, as shown in Scheme 2. The bromide is oxidized to a bromo radical.¹⁴ Reaction of 2-alkynylbenzoic acid 1 with the bromo radical results in the conversion of the hydroxyl group to oxygen radical species A.¹⁵ The oxygen radical species A undergoes a 6-endo-dig radical cyclization to form isocoumarin radical **B**. Hydrogen abstraction with water occurs on the isocoumarin radical **B**, providing the final isocoumarin 2. In the presence of base, 2-alkynylbenzoic acid anion **C** undergoes a well known 5-exo-dig cyclization to produce isobenzofuran-1-one anion **D** results in the formation of the corresponding product 2a'.

In conclusion, we have developed a TBAB-catalyzed synthetic strategy towards the preparation of isocoumarins from various 2-alkynylbenzoic acids. The transformation proceeds smoothly in water. Mechanistic studies showed that the reaction proceeds in a regioselective manner via a metal-free radical pathway. For the synthesis of isocoumarins, it is believed that TBAB serves as a phase transfer catalyst and allows for the generation of a benzoic acid oxygen radical. Compared to previous methodologies, the synthetic procedure reported herein provides a more environmentally benign route for the preparation of isocoumarins.

Experimental Section

General procedure for the synthesis of compound 2:

2-alkynylbenzoic acid 1 (0.2 mmol), TBAB (0. 1 equiv), and Oxone (2.0 equiv) were added to a test tube, and then H_2O (2.0 mL) was added. The mixture was stirred at 80°C for 8 h, under air. After the disappearance of the substrate as indicated by TLC, the mixture was filtered and the resulting filtrate was extracted with DCM (3*2 mL). The organic layers were combined and dried over Na₂SO₄. Filtration, evaporation of the solvent and purification by flash column chromatography provided the desired product **2**.

Tetrahedron

Scheme 2 Control experiments and plausible mechanism

3-(4-methoxyphenyl)-1*H*-isochromen-1-one (**2a**) (yellow solid, 39.4 mg, 78%)

¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.9 Hz, 2H), 7.68 (t, J = 7.6 Hz, 1H), 7.48 - 7.42 (m, 2H), 6.96 (d, J = 8.9 Hz, 2H), 6.82 (s, 1H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 161.0, 153.7, 137.9, 134.8, 129.6, 127.6, 126.8, 125.9, 124.5, 120.1, 114.2, 100.2, 55.4; IR (KBr): 3032, 2840, 1739, 1632, 1510, 1354, 1237, 1022, 925, 880, 792, 683 cm⁻¹; HRMS (ESI) calcd for C₁₆H₁₃O₃⁺: 253.0859 (M⁺+H), found: 253.0856

3-(4-methoxyphenyl)-6-methyl-1*H*-isochromen-1-one (**2b**) (white solid, 42.1 mg, 79%)

¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.27 - 7.16 (m, 2H), 6.93 (d, J = 8.3 Hz, 2H), 6.71 (s, 1H), 3.83 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 160.9, 153.6, 145.8, 137.9, 129.5, 129.0, 126.7, 125.6, 124.6, 117.7, 114.1, 100.1, 55.3, 21.9; IR (KBr): 3173, 2957, 1764, 1680, 1526, 1354, 1274, 1046, 816, 659 cm⁻¹; HRMS (ESI) calcd for $C_{17}H_{15}O_3^+$: 267.1016 (M⁺+H), found: 267.1021

3-(4-methoxyphenyl)-7-methyl-1*H*-isochromen-1-one (2c) (white solid, 43.7 mg, 82%)

¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.77 (d, J = 8.7 Hz, 2H), 7.47 (d, J = 8.1 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 6.93 (d, J = 8.8 Hz, 2H), 6.76 (s, 1H), 3.83 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 160.8, 152.8, 137.9, 136.1, 135.4, 129.2, 126.6, 125.6, 124.6, 119.9, 114.1, 100.1, 55.3, 21.3; IR (KBr): 3121, 2914, 1747, 1688, 1581, 1373, 1254, 1059, 873,

798 cm³; HRMS (ESI) calcd for $C_{17}H_{15}O_3^+$: 267.1016 (M⁺+H), found: 267.1017

7-methoxy-3-(4-methoxyphenyl)-1*H*-isochromen-1-one (**2d**) (yellow solid, 44.6 mg, 79%)

¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 2H), 7.69-7.67 (m, 1H), 7.37 (d, *J* = 8.6 Hz, 1H), 7.27 (d, *J* = 8.8 Hz, 1H), 6.94 (d, *J* = 8.9 Hz, 2H), 6.77 (s, 1H), 3.89 (s, 3H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 160.7, 159.2, 151.8, 131.6, 131.3, 127.3, 126.4, 124.7, 121.1, 114.1, 109.8, 100.0, 55.7, 55.3; IR (KBr): 3172, 2924, 1760, 1680, 1585, 1379, 1259, 1059, 876, 636 cm⁻¹; HRMS (ESI) calcd for C₁₇H₁₅O₄⁺: 283.0965 (M⁺+H), found: 283.0962

7-chloro-3-(4-methoxyphenyl)-1*H*-isochromen-1-one (2e) (yellow solid, 40.7 mg, 71%)

¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.77 (d, J = 8.6 Hz, 2H), 7.60 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 8.4 Hz, 1H), 6.94 (d, J = 8.6 Hz, 2H), 6.77 (s, 1H), 3.85 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.3, 161.2, 154.0, 136.2, 135.1, 133.2, 129.0, 127.1, 126.8, 124.0, 121.1, 114.2, 99.3, 55.4; IR (KBr): 3122, 2878, 1802, 1677, 1582, 1391, 1247, 1083, 833 cm⁻¹; HRMS (ESI) calcd for $C_{16}H_{12}ClO_3^+$: 287.0469 (M⁺+H), found: 287.0470

7-bromo-3-(4-methoxyphenyl)-1*H*-isochromen-1-one (2f) (yellow solid, 46.2 mg, 70%)

¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.76-7.72 (m, 3H), 7.30 (d, J = 8.3 Hz, 1H), 6.93 (d, J = 8.5 Hz, 2H), 6.74 (s, 1H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 161.1, 154.1, 137.8, 136.6, 132.0, 127.2, 126.8, 124.0, 121.3, 120.82, 114.2, 99.4, 55.4; IR (KBr): 3118, 2915, 1802, 1677, 1582, 1374, 1202, 1010, 853, 623 cm⁻¹; HRMS (ESI) calcd for C₁₆H₁₂BrO₃⁺: 330.9964 (M⁺+H), found: 330.9976

7-fluoro-3-(4-methoxyphenyl)-1*H*-isochromen-1-one (2g) (white solid, 36.8 mg, 68%)

¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.6 Hz, 1H), 7.76 (d, J = 8.2 Hz, 2H), 7.47 - 7.36 (m, 2H), 6.94 (d, J = 8.3 Hz, 2H), 6.78 (s, 1H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.6, 161.5 (d, ¹ $J_{CF} = 248$ Hz), 161.1, 153.1, 134.4, 127.9 (d, ³ $J_{CF} = 8$ Hz), 126.7, 124.1, 123.3 (d, ² $J_{CF} = 23$ Hz), 121.5 (d, ³ $J_{CF} = 8$ Hz), 115.0 (d, ² $J_{CF} = 23$ Hz), 114.2, 99.4, 55.4; IR (KBr): 3128, 2857, 1764, 1637, 1532, 1381, 1247, 1054, 771, 540 cm⁻¹; HRMS (ESI) calcd for C₁₆H₁₂FO₃⁺: 271.0765 (M⁺+H), found: 271.0769

3-(3,4-dimethoxyphenyl)-1H-isochromen-1-one (**2h**) (blue solid, 44.0 mg, 78%)

¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.2 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.45-7.41 (m, 3H), 7.34 (s, 1H), 6.90 (d, J = 7.9 Hz, 1H), 6.81 (s, 1H), 3.96 (s, 3H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 153.6, 150.6, 149.1, 137.8, 134.8, 129.6, 127.7, 125.7, 124.8, 120.1, 118.4, 111.1, 108.1, 100.5, 56.1, 56.0; IR (KBr): 3028, 2867, 1734, 1637, 1512, 1371, 1260, 788, 572 cm⁻¹; HRMS (ESI) calcd for C₁₇H₁₅O₄⁺: 283.0965 (M⁺+H), found: 283.0965

3-(3,4-dimethoxyphenyl)-7-methoxy-1*H*-isochromen-1-one (**2i**) (blue solid, 51.2 mg, 82%)

¹H NMR (400 MHz, CDCl₃) δ 7.69-7.65 (m, 1H), 7.42 - 7.36 (m, 2H), 7.34-7.30 (m, 1H), 7.27 (d, *J* = 8.7 Hz, 1H), 6.89 (d, *J* = 8.5 Hz, 1H), 6.79 (s, 1H), 3.96 (s, 3H), 3.91 (s, 3H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 159.2, 151.7, 150.3, 149.1,

131.5, 127.3, 125.0, 124.7, 121.1, 118.0, 111.1, 109.9, 107.9, M 100.3, 56.1, 55.9, 55.7; IR (KBr): 3020, 2872, 1735, 1655, 1381, 1265, 760, 552 cm⁻¹; HRMS (ESI) calcd for $C_{18}H_{17}O_5^+$: 313.1071 (M⁺+H), found: 313.1073

3-(2-methoxyphenyl)-1*H*-isochromen-1-one (**2j**) (yellow solid, 33.8 mg, 67%)

¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 7.8 Hz, 1H), 7.91 (d, J = 7.9 Hz, 1H), 7.86 - 7.80 (m, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.50 - 7.39 (m, 2H), 7.04-7.00 (m, 2H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.6, 157.3, 150.6, 136.4, 135.3, 131.8, 131.1, 129.8, 129.0, 126.3, 122.3, 120.8, 120.3, 111.3, 103.8, 55.7; IR (KBr): 3010, 2892, 1744, 1650, 1380, 1264, 756 cm⁻¹; HRMS (ESI) calcd for C₁₆H₁₃O₃⁺: 253.0859 (M⁺+H), found: 253.0871

3-(2-chlorophenyl)-1*H*-isochromen-1-one (2k) (white solid, 32.3 mg, 63%)

¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, J = 7.9 Hz, 1H), 7.77 - 7.67 (m, 2H), 7.52-7.48 (m, 3H), 7.37-7.33 (m, 2H), 6.97 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 151.4, 137.0, 134.9, 132.3, 131.6, 130.7, 130.6, 130.63, 129.6, 128.7, 127.0, 126.2, 120.6, 107.7; IR (KBr): 3074, 2920, 2872, 1740, 1625, 1600, 757, 560 cm⁻¹; HRMS (ESI) calcd for C₁₅H₁₀ClO₂⁺: 257.0364 (M⁺+H), found: 257.0372

3-(cyclohex-1-en-1-yl)-1*H*-isochromen-1-one (**2**I) (yellow solid, 27.2 mg, 60%)

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 7.7 Hz, 1H), 7.67 - 7.61 (m, 1H), 7.42-7.38 (m, 2H), 6.83-6.79 (m, 1H), 6.36 (s, 1H), 2.31 - 2.23 (m, 4H), 1.80-1.73 (m, 2H), 1.67-1.60 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 154.3, 137.8, 134.6, 130.1, 129.5, 128.2, 127.5, 125.7, 120.6, 100.0, 25.6, 24.1, 22.3, 21.8; IR (KBr): 3083, 2930, 1682, 1625, 1553, 1280, 1220, 1111, 881 cm⁻¹; HRMS (ESI) calcd for C₁₅H₁₅O₂⁺: 227.1067 (M⁺+H), found: 227.1066

3-butyl-1*H*-isochromen-1-one (**2m**) (yellow oil, 31.6 mg, 78%) ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 7.9 Hz, 1H), 7.67-7.63 (m, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 1H), 6.24 (s, 1H), 2.51 (t, *J* = 7.6 Hz, 2H), 1.72 - 1.64 (m, 2H), 1.44 -1.34 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 158.3, 137.6, 134.7, 129.4, 127.5, 125.0, 120.1, 102.8, 33.2, 28.9, 22.1, 13.7; IR (KBr): 3120, 3080, 2925, 1650, 1575, 1381, 1250, 1011, 878 cm⁻¹; HRMS (ESI) calcd for C₁₃H₁₅O₂⁺: 203.1067 (M⁺+H), found: 203.1073

3-decyl-1*H*-isochromen-1-one (**2n**) (yellow oil, 43.5 mg, 76%) ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 7.9 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 7.8 Hz, 1H), 6.23 (s, 1H), 2.50 (t, *J* = 7.6 Hz, 2H), 1.73 - 1.63 (m, 2H), 1.30-1.20 (m, 14H), 0.86 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 158.3, 137.6, 134.6, 129.4, 127.5, 125.0, 120.1, 102.8, 33.5, 31.8, 29.5, 29.5, 29.3, 29.3, 29.0, 26.9, 22.6, 14.1; IR (KBr): 3122, 3083, 2930, 1625, 1578, 1380, 1252, 1006, 880 cm⁻¹; HRMS (ESI) calcd for C₁₉H₂₇O₂⁺: 287.2006 (M⁺+H), found: 287.2013

3-(3-phenylpropyl)-1*H*-isochromen-1-one (20) (white oil, 34.4 mg, 65%)

¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 7.6 Hz, 1H), 7.68-7.63 (m, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.34 (d, J = 7.9 Hz, 1H), 7.31-7.27 (m, 2H), 7.19 (d, J = 7.3 Hz, 3H), 6.24 (s, 1H), 2.70 (t, J = 7.4 Hz, 2H), 2.55 (t, J = 7.5 Hz, 2H), 2.10 - 2.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 157.7, 141.3, 137.5, 134.7, 129.5, 128.4, 128.4, 127.6, 126.0, 125.0, 120.1, 103.2, 35.1, 32.9, 28.4; IR (KBr): 3111, 2980, 1625, 1578, 1389, 1254, 1022, 773 cm⁻¹; HRMS (ESI) calcd for C₁₈H₁₇O₂⁺: 265.1223 (M⁺+H), found: 265.1207

3-cyclopropyl-1*H*-isochromen-1-one (2p) (white solid, 23.8 mg, 64%)

¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 7.9 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 7.8 Hz, 1H), 6.30 (s, 1H), 1.82-1.74 (m, 1H), 1.10-1.03 (m, 2H), 0.96-0.89 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 158.4, 137.9, 134.7, 129.5, 127.1, 124.6, 119.9, 101.3, 13.8, 6.9; IR (KBr): 3120, 3005, 2920, 1644, 1580, 1378, 1026, 878 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₁O₂⁺: 187.0754 (M⁺+H), found: 187.0751

3-(tert-butyl)-1*H*-isochromen-1-one (2q) (white solid, 32.0 mg, 79%)

¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 7.9 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 6.30 (s, 1H), 1.32 (d, J = 1.0 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 163.0, 137.6, 134.6, 129.3, 127.6, 125.4, 120.1, 99.7, 35.6, 27.9; IR (KBr): 3180, 2975, 1625, 1580, 1381, 1250, 1002, 778 cm⁻¹; HRMS (ESI) calcd for C₁₃H₁₅O₂⁺: 203.1067 (M⁺+H), found: 203.1067

3,3'-(butane-1,4-diyl)bis(1*H*-isochromen-1-one) ($2\mathbf{r}$) (white solid, 49.9 mg, 72%)

¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 7.9 Hz, 1H), 7.65 (t, J = 7.3 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 6.26 (s, 1H), 2.55 (d, J = 6.4 Hz, 2H), 1.82 - 1.76 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 157.3, 137.4, 134.8, 129.4, 127.7, 125.1, 120.1, 103.3, 33.2, 26.2; IR (KBr): 3173, 2936, 1680, 1560, 1380, 1252, 1140, 775 cm⁻¹; HRMS (ESI) calcd for C₂₂H₁₉O₄⁺: 347.1278 (M⁺+H), found: 347.1302

Acknowledgments

Financial supports from the Natural Science Foundation of China (Nos: 21762018 and 21772067), the Natural Science Foundation of Zhejiang (LY19B020004), and the program of Qingjiang Excellent Young Talents of JXUST (No. JXUSTQJYX2017004) is gratefully acknowledged. We are especially thankful for Ms. Ko Chung-Nga from the Hong Kong Baptist University who substantially improved English throughout the manuscript.

References and notes

- For selected reviews, see: (a) V. P. Boyarskiy, D. S. Ryabukhin, N. A. Bokach, A. V. Vasilyev, *Chem. Rev.* 2016, *116*, 5894; (b) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, *Chem. Soc. Rev.* 2016, 45, 4448; (c) H. Yoshida, *ACS Catal.* 2016, 6, 1799; (d) M. Pirnot, Y.-M. Wang, S. Buchwald, *Angew. Chem., Int. Ed.* 2016, 55, 48
- 2 For selected reviews on synthetic applications using dualfunctionalized synthons, see: (a) V. P. Boyarskiy, D. S. Ryabukhin, N. A. Bokach, and A. V. Vasilyev, *Chem. Rev.*, 2016, **116**, 5894; (b) Z. Zheng, Z. Wang, Y. Wang, and L. Zhang, *Chem. Soc. Rev.*, 2016, 45, 4448; (c) M. Pirnot, Y.-M. Wang, and S. Buchwald, *Angew. Chem., Int. Ed.*, 2016, 55, 48; (d) G. Qiu, J. Wu, *Chem. Record.* **2016**, *16*, 19; Examples, see: (e) C. Wu, Z. Wang, Z. Hu, F. Zeng, X.-Y.

Zhang, Z. Cao, Z. Tang, W.-M. He, and X.-H. Xu, Org.

- Biomol. Chem. 2018, 16, 3177; (f) L. -Y. Xie, S. Peng, F. Liu, J.-Y. Yi, M. Wang, Z. Tang, X. Xu, and W.-M He, Adv. Synth. Catal. 2018, 360, 4259; (g) C. Wu, L.-H. Lu, A. -Z. Peng, G.-K. Jia, C. Peng, Z. Cao, Z. Tang, W.-M. He, and X. Xu, Green. Chem. 2018, 20, 3683; (h) Y. Zong, Y. Lang, M. Yang, X. Li, X. Fan, and J. Wu, Org. Lett. 2019, 21, doi: 10.1021/acs.orglett.9b00620; (i) X. Gong, J. Chen, X. Li, W. Xie, and J. Wu, Chem. Asian. J. 2018, 13, 2543; (j) Y. Zhao, Y. Luo, Y. Zhu, H. Wang, H. Zhou, H. Tan, and Z. Zhou, Synlett, 2018, 29, 773; (k) Y.-H. Zhao, Y. Li, M. Luo, Z. Tang, and K. Deng, Synlett, 2016, 27, 2597; (1) Y. Zhao, Y. Li, T. Guo, Z. Tang, W. Xie, and G. Zhao, Tetrahedron Lett. 2016, 57, 2257; (m) T. Guo, Y. Liu, Y.-H. Zhao, P.-K. Zhang, S.-L. Han, and H.-M. Liu, Tetrahedron Lett. 2016, 57, 4629; (o) T. Guo, Y. Liu, Z.-H. Zhao, P.-K. Zhang, S.-L. Han, and H.-M. Liu, Tetrahedron Lett. 2016, 57, 3920.
- For selected examples, see: (a) M. E. Riveiro, A. Moglioni, R. Vazquez, N. Gomez, G. Facorro, L. Piehl, E. R. de Celis, C. Shayo, C. Davio, *Bioorg. Med. Chem.* 2008, *16*, 2665; (b) J. J. Beck, S.-C. Chou, *J. Nat. Prod.* 2007, *70*, 891; (c) H. Nomura, Y. Isshiki, K. Sakuda, K. Sakuma, S. Kondo, *Biol. Pharm. Bull.* 2012, *35*, 1560; (e) W. Xie, Y. Wu, J. Zhang, Q. Mei, Y. Zhang, N. Zhu, R. Liu, and H. Zhang, *Eur. J. Med. Chem.* 2018, *145*, 35; (f) W. Xie, H. Zhang, J. He, J. Zhang, Q. Yu, C. Luo, and S. Li, *Bioorg. Med. Chem. Lett.* 2017, *27*, 530
- For selected examples, see: a) D. Ding, T. Mou, J. Xue, X. Jiang, *Chem. Commun.* 2017, 53, 5279; b) X. Wang, C. Wu, Y. Sun, X. Yao, *Tetrahedron Lett.* 2017, 58, 3164; c) S. Chanudhary, B. R. K. Shyamlal, L. Yadav, M. K. Tiwari, K. Kumar, *RSC Adv.* 2018, 8, 23152; d) D. Ding, G. Zhu, X. Jiang, *Angew. Chem. Int. Ed.* 2018, 57, 9028; e) X.-Z. Tao, J.-J. Dai, J. Zhou, J. Xu, H.-J. Xu, *Chem. Eur. J.* 2018, 24, 6932; f) G. Tan, Q. You, J. Lan, J. You, *Angew. Chem. Int. Ed.* 2018, 57, 6309; g) Z. Wang, M. Yang, Y. Yang, *Org. Lett.* 2018, 20, 3001.
- 5 M. A. Oliver, R. D. Gandour, J. Org. Chem. 1984, 49, 558.
- 6 Cyclization of *o*-alkynylbenzoates: (a) T. Yao, R. C. Larock, *J. Org. Chem.* 2003, *68*, 5936; (b) S. Mehta, J. P. Waldo, R. C. Larock, *J. Org. Chem.* 2009, *74*, 1141; (c) M. Peuchmaur, V. Lisowski, C. Gandreuil, L. T. Maillard, J. Martinez, J.-F. Hernandez, *J. Org. Chem.* 2009, *74*, 4158; (d) C. Wu, J. Wang, X.-Y. Zhang, G.-K. Jia, Z. Cao, Z. Tang, X. Yu, X. Xu, and W.-M. He, *Org. Biomol. Chem.* 2018, 16, 5050
- Bronst acid-triggered cyclization of *o*-alkynylbenzoates: (a) M. Hellal, J.-J. Bourguignon, F. J.-J. Bihel, *Tetrahedron Lett.* 2008, 49, 62; (b) G. Le Bras, A. Hamze, S. Messaoudi, O. Provot, P.-B. Le Calvez, J.-D. Brion, M. Alami, *Synthesis* 2008, 1607.
- Lewis acid-triggered cyclization of o-alkynylbenzoates: (a)
 D. J. Faizi, A. Issaian, A. J. Davis, S. A. Blum, J. Am. Chem. Soc. 2016, 138, 2126; (b) A. Speranca, B. Godoi, S. Pinton,
 D. Back, P. Menezes, G. Zeni, J. Org. Chem. 2011, 76, 6789;
 (c) A. Nagarajan, T. R. Balasubramanian, Indian J. Chem., Section B: Org. Chem. Including Med. Chem. 1987, 26B, 917; (d) Z. Li, J. Hong, L. Weng, X. Zhou, Tetrahedron 2012, 68, 1552; (e) J. Gianni, V. Pirovano, G. Abbiati, Org. Biomol. Chem. 2018, 16, 3213.
- 9 (a) A. Nagarajan, T. R. Balasubramanian, *Indian J. Chem.,* Sect. B 1988, 27, 380; (b) F. Bellina, M. Biagetti, A. Carpita, R. Rossi, *Tetrahedron* 2001, 57, 2857; (c) T. Yao, R. C. Larock, *Tetrahedron Lett.* 2002, 43, 7401; (d) R. Rossi, A.

g. MAN Carpita, F. Bellina, P. Stabile, L. Mannina, *Tetrahedron* F. 2003, 59, 2067.

- 10 (a) M. Terada, C. Kanazawa, M. Yamanaka, *Heterocycles* 2007, 74, 819; (b) C. Kanazawa, M. Terada, *Tetrahedron Lett.* 2007, 48, 933; (c) Y. Zhou, Y. Zhai, J. Li, D. Ye, H. Jiang, H. Liu, *Green Chem.* 2010, 12, 1397.
- (a) R. Mancuso, C. S. Pomelli, P. Chiappetta, K. F. Gioia, A. Maner, N. Marino, L. Veltri, C. Chiappe, B. Gabriele, *J. Org. Chem.* 2018, *83*, 6673; (b) R. Mancuso, C. S. Pomelli, F. Malafronte, A. Maner, N. Marino, C. Chiappe, B. Gabriele, *Org. Biomol. Chem* 2017, *15*, 4831.
- 12 N. Nebra, J. Monot, R. Shaw, B. Martin-Vaca, D. Bourissou, ACS, Catal. 2013, 3, 2930.
- (a) S.-T. Yuan, H. Zhou, L. Gao, J.-B. Liu, G. Qiu, Org. Lett.
 2018, 20, 562; (b) R.-X. Wang, S.-T. Yuan, J.-B. Liu, J. Wu,
 G. Qiu, Org. Biomol. Chem. 2018, 16, 4501; (c) Y.-H. Wang,
 J.-B. Liu, B. Ouyang, H. Zhou, G. Qiu, Tetrahedron 2018,
 74, 4429; (d) Qiu, G.; Li, Y.; Ma, L.; Zhou, H. Org. Chem.
 Front. 2017, 4, 1069; (e) Y. Zheng, M. Liu, G. Qiu, W. Xie,
 J. Wu, Tetrahedron, 2019, 75, 1663; (f) L. Zhang, L. Ma, H.
 Zhou, J. Yao, X. Li, G. Qiu, Org. Lett. 2018, 20, 2407
- 14 H. Husain, I. R. Green, I. Ahmed, Chem. Rev. 2013, 113, 3329; For selected examples, see: (a) L.-H. Lu; S.-J. Zhou; M. Sun; J.-L. Chen; W. Xia; X. Yu; X. Xu; and W.-M. He, ACS Sustaniable Chem. Eng. 2019, 7, 1574; (b) L.Y. Xie, S. Peng, F. Liu, G.- R. Chen. W. Xia, X. Yu, W.-F. Li, Z. Cao, and W.-M. He, Org. Chem. Front. 2018, 5, 2604; (c) L.-H. Lu, S.-J. Zhou, W.-B. He, W. Xia, P. Chen, X. Yu, X. Xu, and W.-M. He, Org. Biomol. Chem. 2018, 16, 9064; (d) L.-Y. Xie, S. Peng, T.-G. Fan, Y.-F. Liu, M. Sun, L.-L. Jiang, X.-X. Wang, Z. Cao, and W.-M. He, Sci China Chem 2019, DOI: 10.1007/s11426-018-9446-1; (e) K. Deng, X. Li, H. Huang, Electrochimica Acta. 2016, 204, 84; (f) B. Liu, X. Li, M. Stepień, P. J. Chmielewski, Chem. Eur. J. 2015, 21, 7790; (g) B. Liu, H. Fang, X. Li, W. Cai, L. Bao, M. Rudolf, F. Plass, L. Fan, X. Lu, D. M. Guldi, Chem. Eur. J. 2015, 21, 746; (h) S. Qiu, C. Wang, S. Xie, X. Huang, L. Chen, Y. Zhao, Z. Zeng, Chem. Commun. 2018, 54, 11383; (i) T. Guo, X.-N. Wei, Y. Liu, P.-K. Zhang, Y.-H. Zhao, Org. Chem. Front. 2019, DOI: 10.1039/C9QO00198K
- (a) J.-J. Guo, A. Hu, Y. Chen, J. Sun, H. Tang, Z. Zuo, Angew. Chem., Int. Ed. 2016, 55, 15319; (b) D. Wang, J. Mao, C. Zhu, Chem. Sci. 2018, 9, 5805; (c) X. Xu, M. Wang, L. Huan, D. Wang, J. Wang, C. Zhu, Angew. Chem. Int. Ed. 2018, 57, 1640;

Supplementary Material

Supplementary material that may be helpful in the review process should be prepared and provided as a separate electronic file. That file can then be transformed into PDF format and submitted along with the manuscript and graphic files to the appropriate editorial office.