March 1985 Communications 299

Synthesis of 1-Aryl-4-halo-2-pyrazolin-5-ones by Ascorbic Acid Reduction of 1-Aryl-4,4-dihalo-2-pyrazolin-5-ones

Michael J. SPITULNIK

Synthetic Chemicals Division, Eastman Kodak Company, Rochester, New York 14650, U.S.A.

Synthesis of 4-halo-2-pyrazolin-5-ones by direct halogenation is complicated by the fact that the product is often contaminated with 4,4-dihalo derivatives and in many cases this is the major component. If the 3-position is substituted with an anilino or acylamino group, monohalogenation is especially difficult¹. On the other hand, dichlorination and dibromination proceed smoothly under a variety of conditions.

Selective reduction of 4,4-dichloro-2-pyrazolin-5-one compounds has been accomplished in a two-step process involving first reaction with triethyl phosphite followed by alkaline hydrolysis of the intermediate phosphate ester as shown (Scheme A).

$$CI \xrightarrow{CI} R^2$$
 $O \xrightarrow{N} N + (C_2H_5O)_3P \xrightarrow{-C_2H_5CI}$

Scheme A

Reported here is an improved method whereby 4,4-dichloroor 4,4-dibromo-1-aryl-2-pyrazolin-5-ones 1 are selectively reduced to the monohalo derivative 2 by reaction with ascorbic acid and an organic base such as triethylamine at 20-30 °C. Acidification then yields the product 3 (Scheme B). Compounds 3 are relatively strong acids which in all probability provide the driving force for mild reduction of 1 under alkaline conditions. The intermediate enolate salt 2 resists further reduction under the conditions of the reaction.

Extension of this reaction to other 1,3-unsaturated-2-dihalogenated systems is possible. For example, 2,2-dibromo-1,3-indanedione (4a) and 2,2-dichloro-1,3-indanedione (4b) are cleanly reduced to the monohalo derivatives 5 (Scheme C). However, 2,2-dibromo-1,3-diphenyl-1,3-propanedione gives 1,3-diphenyl-1,3-propanedione in good yield with excess ascorbic acid. Mixtures containing some monobromo product are obtained when an equivalent of ascorbic acid is used.

1. ascorbic acid / excess base
2.
$$H^{\oplus}$$

4 a $X = Br$
b $X = Cl$

5 a $X = Br$
b $X = Cl$

Scheme C

Chlorination or Bromination; General Procedure:

To a solution containing the 1-substituted 2-pyrazolin-5-one (0.05 mol) in acetic acid (100 ml) is slowly added 1,3-dichloro-5,5-dimethylhydantoin or 1,3-dibromo-5,5-dimethylhydantoin (0.05 mol) maintaining the temperature at 20 °C by external cooling. After slurrying for 2 h, the mixture is cooled and the product 1 is collected. Alternatively, the product 1 can be precipitated from the mixture by dilution with water. This can be used as is or recrystallized from methanol to obtain analytically pure material. 1,3-Indanedione is similarly halogenated to give 4a, b.

Ascorbic Acid Reduction; General Procedure:

To a solution containing ascorbic acid (10 g, 0.06 mol) and triethylamine (50 ml) in methanol (100 ml) is added the appropriate 4,4-dihalo-2-pyrazolin-5-one 1 (0.04 mol). The temperature is maintained at 20–30 °C by rate of addition or external cooling. Solution is obtained upon reaction. After stirring for 15 min, the mixture is acidified by pouring it into cold dilute hydrochloric acid causing

1-3	а	b	С	d	е
R¹	n-C ₁₃ H ₂₇ -C -N H	0-CH ₂ -C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-	CH ₃	$0 - C_{15}H_{31} = 0$	CH ₃
R ²	CI	CI	Н	CI	н
R ³	CI	CI	н	CH ₃	н
R ⁴	Cl	CI	н	CH ₃	н
х	Cl	CI	Cl	CI	Br
В	(C ₂ H ₅) ₃ N	(C ₂ H ₅) ₃ N	a	_a	_a

^aCompound **2** not isolated

Table. Compounds 1-5 prepared

Sub- strate		Yield [%]	m.p. [°C]		Molecular Formula a
Struce			found	reported	1 Ointuia
_	1a	85	133–135°	reno.	C ₂₉ H ₃₄ Cl ₆ N ₄ O ₂ (683.3)
	1b	93	205-206°	1798	C ₃₄ H ₃₅ Cl ₅ N ₄ O ₄ (740.9)
eror.	1c	84	66-67°	61°2	C ₁₀ H ₈ Cl ₂ N ₂ O (243.1)
	1d	80 b	97-100°	_	C ₃₆ H ₅₀ Cl ₃ N ₃ O ₃ (679.2)
	1e	85	80-82°	80° ²	C ₁₀ H ₈ Br ₂ N ₂ O (332.0)
1a	2a	94	136° (dec)	1961	C ₃₅ H ₅₀ Cl ₅ N ₅ O ₂ (750.1)
1b	2b	95	170° (dec)	- age-t	C ₄₀ H ₅₁ Cl ₄ N ₅ O ₄ (807.7)
1a	3a	92	88° (dec)		C ₂₉ H ₃₅ Cl ₅ N ₄ O ₂ (648.9)
1b	3b	95	125° (dec)		$C_{34}H_{36}Cl_4N_4O_4$ (706.5)
1c	3c	95	166° (dec)	153° ³	C ₁₀ H ₉ ClN ₂ O (208.7)
1d	3d	88	110113°		C ₃₆ H ₅₁ Cl ₂ N ₃ O ₃ (644.7)
1e	3e	90	124–127°	128° ²	C ₁₀ H ₉ BrN ₂ O (253.1)
~	4a	88	177178°	177–179° ⁴	C ₉ H ₄ Br ₂ O ₂ (303.9)
	4b	89	126128°	124–125° 5	C ₉ H ₄ Cl ₂ O ₂ (215.0)
4a	5a	95	118-120°	119-120° 4	C ₉ H ₅ BrO ₂ (225.0)
4b	5b	93	114-116°	114° 4	$C_9H_5ClO_2$ (180.6)

^a Satisfactory microanalyses obtained: C \pm 0.5, H \pm 0.4, N \pm 0.4, $Cl \pm 0.7$, Br +

precipitation of the 4-halo-2-pyrazolin-5-one 3. In most cases, pouring the mixture into water causes precipitation of the amine salt of the 4-halo-2-pyrazolin-5-one **2**. 2,2-Dihalo-1,3-indanediones **4** are similarly reduced to 5.

Received: July 27, 1984

b Ethyl acetate used as a co-solvent.

¹ L. Van Wynsberghe, R.K. Var Poucke, U.S. Patent 4021445

^{(1977);} C.A. **85**, 192 722 (1976).

L. Knorr, Liebigs Ann. Chem. **238**, 175 (1887).

E. Ziegler, R. Salvador, T. Kappe, Monatsh. Chem. **93**, 1376 (1962).

⁴ W. Roser, E. Hasehoff, Liebigs Ann. Chem. 247, 149 (1888).

⁵ T. Zincke, Ber. Dtsch. Chem. Ges. 21, 501 (1888).