(4) Dhimane, A. L.; Aïssa, C.; Malacria M. Angew. Chem., Int. Ed. 2002, 41. 3284-3287.

champs, P.; Dory, Y. L. Org. Lett. 2003, 5, 4799-4802

2001; Vol. 2, pp 350-382

1997, 119, 3427-3428.

Transannular processes constitute a unique opportunity for

achieving chemo-, regio-, and stereoselective synthesis.

Because ring constraints are more predictable than acyclic

ones and can also be tuned, versatile synthetic applications

have already been devised, notably for cycloadditions,¹ and

also for radical processes.² Our group, for instance, has

reported the diastereoselective and efficient synthesis of

polycyclic structures such as natural protoilludanes³ or linear

triquinanes⁴ via 4-exo/6-exo or 5-exo/5-exo transannular radical cyclizations cascades. Surprisingly, besides coordina-

(1) For a review, see: Marsault, E.; Toró, A.; Nowak, P.; Deslongchamps, P. Tetrahedron 2001, 57, 4243-4260. See also: Caussanel, F.; Deslong-

(2) Handa, S.; Pattenden, G. Contemp. Org. Synth. 1997, 4, 196-215.

(3) Rychlet Elliott, M.; Dhimane, A. L.; Malacria, M. J. Am. Chem. Soc.

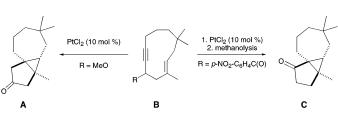
See also: Dhimane, A. L.; Fensterbank, L.; Malacria, M. In Radicals in Organic Synthesis; Renaud, P., Sibi M. P., Eds.; Wiley-VCH: Weiheim,

2004Vol. 6, No. 21 3771 - 3774

PtCl₂-Catalyzed Transannular Cycloisomerization of 1,5-Enynes: A New Efficient Regio- and **Stereocontrolled Access to Tricyclic Derivatives**

Christophe Blaszykowski, Youssef Harrak, Maria-Helena Goncalves, Jean-Manuel Cloarec, Anne-Lise Dhimane,* Louis Fensterbank,* and Max Malacria*

Laboratoire de Chimie Organique, UMR CNRS 7611, Université Pierre et Marie Curie, Case 229, 4 place Jussieu, 75252 Paris Cedex 05, France


adhimane@ccr.jussieu.fr; fensterb@ccr.jussieu.fr; malacria@ccr.jussieu.fr

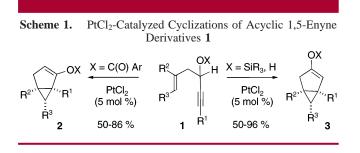
Received August 3, 2004

Transannular PtCl₂-catalyzed cycloisomerizations open a new route to cyclopropanic tricyclic systems. Ketones A or C were efficiently prepared from the same cycloundec-5-en-1-yne precursor B, depending on the substituent at the propargylic position (either benzoate or methoxy). tion complexes incorporating polyunsaturated macrocycles

or macrocyclic Lewis bases serving as ligands,⁵ organometallic reactivities have been rarely envisaged in transannular fashion.6

In that context, PtCl₂-catalyzed cycloisomerizations of transannular enyne substrates appear as highly appealing reacting systems to be explored.^{7,8} Further incentive was gained by considering the following facts. We have recently

ABSTRACT

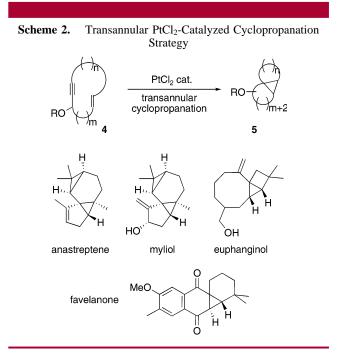

LETTERS

ORGANIC

^{(5) (}a) Diyne transannular reactivity with rhodium: King, R. B.; Ackermann M. N. J. Organomet. Chem. 1974, 67, 431-441. (b) With iron: King, R. B.; Haiduc, I.; Eavenson, C. W. J. Am. Chem. Soc. 1973, 95, 2508-2516. (c) With cobalt: King, R. B.; Efraty, A. J. Am. Chem. Soc. 1972, 94, 3021-3025. (d) For a recent contribution: Pla-Quintana, A.; Roglans, A.; Torrent, A.; Moreno-Mañas, M.; Benet-Buchholz, J. Organometallics 2004, 23, 2762-2767 and references therein.

^{(6) (}a) Transannular oxypalladation: Sasaki, T.; Kanematsu, K.; Kondo A. J. Chem. Soc., Perkin Trans. 1 1976, 2516-2520. (b) Transannular [3 + 2] TMM-like cycloaddition: Yamago, S.; Nakamura, E. Tetrahedron 1989, 45, 3081-3088. (c) Transannular carbopalladation: Ohe, K.; Miki, K.; Yanagi, S.-I.; Tanaka, T.; Sawada, S.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 3627-3634.

shown that such processes can be extended to a variety of partners such as allenynes⁹ and ene-tosylynamides.¹⁰ Moreover, as was the case for dienynol derivatives,¹¹ it has been shown that in acyclic 5-en-1-yn-3-ol precursors **1** the nature of the hydroxy protecting group at the propargylic position is a very practical handle for controlling the outcome of the reaction.¹² When this function is free, or appears as a silyl ether, bicyclic compound **3** is formed, while bicyclic enol ester **2** is isolated when an *O*-acyl group is present (Scheme 1). Electrophilic activation of the alkyne moiety triggers at


will a hydride or an *O*-acyl migration yielding to regioisomeric derivatives.

Since the macrocycles we have designed originate from the macrocylization of α, ω -ynal precursors by using the Nozaki–Hiyama–Kishi–Takai (NHKT) chromium(II)mediated process,¹³ they display the pivotal propargyl alcohol motif and so constitute ideal test substrates.

Thus, we anticipated that enyne macrocycle precursors of type **4** would undergo transannular cyclopropanations which would constitute a straightforward, modular, and unprecedented access to highly valuable tricyclic derivatives **5** incorporating an inner cyclopropane moiety.¹⁴ Various natural

(10) Marion, F.; Coulomb, J.; Courillon, C.; Fensterbank, L.; Malacria, M. Org. Lett. 2004, 6, 1509–1511.

products possess a related tricycloundecane framework (n = 5, m = 1) such as anastreptene¹⁵ or myliol¹⁶ isolated from liverwort plants. Some others, such as euphanginol¹⁷ (n = 2, m = 4) and favelanone¹⁸ (n = 4, m = 2), are obtained from *Euphorbia* species which present some antitumoral or cytotoxic activities (Scheme 2).

Herein, we report the application of this transannular strategy to various 1,5-unsaturated eleven-membered rings such as cycloundecenynes **10** and **11** (Scheme 3) and cycloundecadienynes **Z**,**E**- and **E**,**E**-**17** (Scheme 6) whose syntheses are, as previously mentioned, based on the efficient NHKT macrocyclization conditions. Thus, following the synthesis of the already described heptenal **6** as a TBS-ether,¹⁹ we prepared it as a THP derivative. This one was first submitted to Horner–Wadsworth–Emmons olefination conditions modified by Masamune and Roush²⁰ to reach stereoselectively the corresponding *E*,*E*-nonadienoate **7**. Then, a five-step sequence including a LAH total reduction–iodination–alkynylation–alkyne deprotection–ether deprotection furnished undecenynol **8** in 47% overall yield.

The macrocyclization precursor was prepared by mild iodination of the triple bond, followed by IBX oxidation of the alcohol moiety. Slow addition of the resulting undecenynal to a suspension of chromium(II) chloride in THF was performed to produce cleanly cycloundecenynol *E-9* in 38% overall yield in three steps (Scheme 3).

⁽⁷⁾ For reviews, see: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813–834. (b) Méndez, M.; Mamane, V.; Fürstner, A. Chemtracts-Org. Chem. 2003, 16, 397. (c) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215–236.

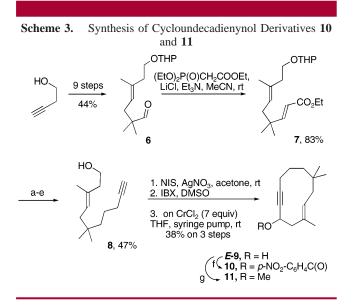
⁽⁸⁾ For recent publications, see: (a) Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627–2635. (b) Chatani, N.; Kataoka, K.; Murai, S.; Furukawa, N.; Seki, Y. J. Am. Chem. Soc. 1998, 120, 9104–9105. (c) Trost, B. M.; Doherty, G. A. J. Am. Chem. Soc. 2000, 122, 3801–3810. (d) Charruault, L.; Michelet, V.; Taras, R.; Gladiali, S.; Genêt, J.-P. Chem. Commun. 2004, 850–851. (e) Fürstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863–11869. (f) Méndez, M.; Muñoz, M. P.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511–10520.

⁽⁹⁾ Cadran, N.; Cariou, K.; Hervé, G.; Aubert, C.; Fensterbank, L.; Malacria, M.; Marco-Contelles, J. J. Am. Chem. Soc. 2004, 126, 3408–3409.

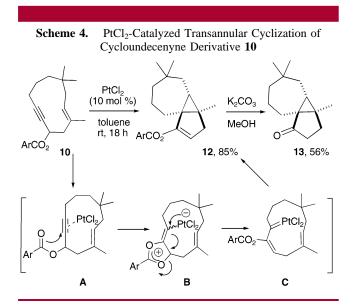
⁽¹¹⁾ Mainetti, E.; Mouriès, V.; Fensterbank, L.; Malacria, M. Marco-Contelles, J. Angew. Chem., Int. Ed. 2002, 41, 2132–2135.

^{(12) (}a) Harrak, Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mouriès, V.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656–8657. For similar findings, see: (b) Mamane, V.; Gress, T.; Krause, H.; Fürstner A. J. Am. Chem. Soc. 2004, 126, 8654–8655.

^{(13) (}a) Takai, K.; Kuroda, T.; Nakatsukasa, S.; Oshima, K.; Nozaki, H. *Tetrahedron Lett.* **1985**, *26*, 5585–5588. (b) Rychlet Elliott, M.; Dhimane, A. L.; Hamon, L.; Malacria, M. *Eur. J. Org. Chem.* **2000**, 155–163.

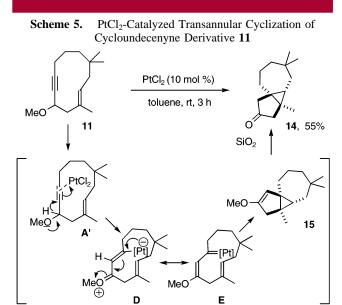

⁽¹⁴⁾ For other access to these intriguing skeletons, see: (a) Hannah, D.
J.; Smith, R. A. J.; Teoh, I.; Weavers, R. T. Aust. J. Chem. 1981, 34, 181–188. (b) Marshall, J. A.; Peterson, J. C.; Lebioda, L. J. Am. Chem. Soc. 1984, 106, 6006–6015. (c) Ricci, A.; Fasani, E.; Mella, M.; Albini, A. J. Org. Chem. 2003, 68, 4361–4366.

⁽¹⁵⁾ Warmers, U.; König, W. A. *Phytochemistry* **1999**, *52*, 1519–1524.
(16) Hayashi, K.-I.; Asano, K.-I.; Tanaka, M.; Takaoka, D.; Nozaki, H. *Phytochemistry* **1998**, *48*, 461–466.


⁽¹⁷⁾ Shi, J.-G.; Shi, Y.-P.; Jia, Z.-J. Phytochemistry 1997, 45, 343-347.

⁽¹⁸⁾ Endo, Y.; Ohta, T.; Nozoe, S. Tetrahedron Lett. 1991, 32, 5555–5558.

⁽¹⁹⁾ Aïssa, C.; Dhimane, A.-L.; Malacria, M. Synlett 2000, 1585–1588.
(20) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. *Tetrahedron Lett.* 1984, 25, 2183-2186.



The corresponding 4-nitrobenzoate and methyl ether derivatives **10** and **11** were then exposed to a catalytic amount of $PtCl_2$ in toluene at rt. In both cases, a clean reaction took place giving, respectively, compounds **12** and **14** as single isomers²¹ in good yields (Schemes 4 and 5).

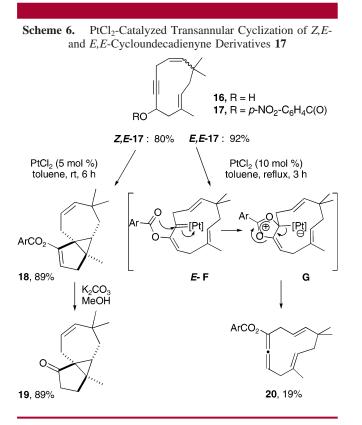
We could readily determine that product 12 was an enol ester and 14 a ketone. This led us to run a methanolysis on 12. Careful spectroscopic analysis showed that the resulting products 13 and 14 were regioisomeric ketones that possess the same 5,3,7-tricyclic skeleton. Thus, as anticipated from the acyclic series, a completely different behavior for methoxy and acyloxy derivatives is observed.¹²

Based on the previous mechanistic rationale, we propose that an initial electrophilic π -complexation of the alkyne by the Pt(II) entity, shown in species A and A', would trigger

two different pathways according to the nature of the hydroxy protecting group. In the case of ester precursor **10**, a [1,2]-migration of the benzoate group^{11,22} via an oxocarbenium species **B** gives birth to an allylic platinacarbene **C** (Scheme 4). Cyclopropanation could then proceed and generate diastereoselectively the tricyclic enol ester **12** in 85% isolated yield.

Alternatively, in the case of the methoxy precursor **11**, the η^2 -alkyne platinum complex **A'** would undergo a 1,2-hydride migration²³ to form, via oxonium of type **D**, an allylic carbene **E** which is stabilized by the donor methoxy group, followed by a diastereoselective cyclopropanation step which gives labile enol ether intermediate **15**. Tricyclo[5.4.0.0.^{1,8}]-undecan-10-one **14** is finally obtained as the isolated product in 55% yield after purification on silica gel (Scheme 5).

We next turned our attention to check the reactivity of cycloundecadienyne systems. By using the same synthetic approach, precursors Z,E- and E,E-cycloundecadienynols **16** and their corresponding nitrobenzoate derivatives **17** were prepared and submitted to PtCl₂ (Scheme 6).


Z,E-Dienyne precursor **17** followed the same reactivity pattern as its enyne equivalent **10.** After methanolysis, it gave the expected tricyclic ketone **19** diastereoselectively with the carbonyl moiety α to the junction of the rings. Stereochemical assignment of the isolated unique diastereomer of tricyclo[5.4.0.0.^{1,8}]undeca-3,10-diene **18** was established by X-ray analysis.²⁴ The spectroscopic data for **12** and **18** being similar, this confirmed the stereochemistry deduced from the NOE for **12**.

⁽²¹⁾ Stereochemical assignments were performed by using NOE studies. See the Supporting Information.

^{(22) (}a) For pioneering findings, see: Rautenstrauch, V. J. Org. Chem. **1984**, 49, 950–952. (b) For an intermolecular version, see: Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. **2003**, 68, 8505–8513.

⁽²³⁾ Whether involving carbenoid or carbocationic intermediates, similar 1,2-hydrogen transfers have been observed by Echavarren, Fürstner, and us on several precursors; see refs 8e,f and 12a,b.

⁽²⁴⁾ CCDC 243389 contains the supplementary crystallographic data for **18** that can be obtained, free of charge, from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/conts/retrieving.html.

Moreover, *E*,*E*-cycloundecadienyne benzoate **17**, submitted to the same conditions as its *Z*,*E*-diastereomer, showed a different behavior. After 6 h at rt, no conversion was observed. So we pursued the reaction overnight at 80 °C and one product appeared slowly. After an additional 3 h under reflux, cycloundeca-1,2,5,9-tetraene **20**²⁵ was isolated in 15% yield along with 60% of recovered material. No trace of the corresponding tricyclic compound was detected.

Optimized conditions afforded 19% of allene **20** after 3 h of reflux conditions. More drastic conditions yielded to complete degradation. An explanation for the formation of this intriguing bis-allylic allene **20** resides in the *E*-stereochemistry of the disubstituted double bond. Due to this geometric constraint, formation of the *E*-seven-membered ring from *Z*-allyl carbene **F** becomes impossible. Instead, another oxocarbenium species **G** could be generated from *E*-**F**. *O*-Acyl migration would occur one more time and yield to the formation of the allenyl ester moiety present in **20**.

In conclusion, we have reported the first examples of a transannular PtCl₂-catalyzed reactivity of 1,5-enynes. This particularly efficient synthetic strategy opens a diastereoselective access to various tricyclic ketones possessing an internal cyclopropane motif. By simple variation of the hydroxy protecting group, the regioselectivity of the carbonyl group incorporation is completely controlled. Modeling the adequate precursor to reach natural bioactive products is under active investigation in our laboratory.

Acknowledgment. M.M. thanks the Institut Universitaire de France for financial support. C.B. acknowledges the M.R.E.S. for a Ph.D. grant and Y.H. the U.P.M.C. for a postdoctoral grant. We extend special thanks to Dr. Y. Dromzée (UPMC) for the X-ray analysis of **18** and Dr. Christophe Aïssa for valuable discussions regarding preparation of macrocycles.

Supporting Information Available: Experimental procedures and spectral data for all new products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL048463N

 $[\]left(25\right)$ For related formation of allenes, see refs 9 and 23b and references therein.