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Abstract: Orthobenzoates of glucose and mannose provide donor
and acceptor partners to produce a disaccharide bearing a benzoyl
group at the site where gluco to manno conversion is required, the
inverted center being ready to function, iteratively, as the next
acceptor for the gluco n-pentenyl orthobenzoate to extend the oligo-
mannan.
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The spectrum of diseases1 caused by Candida albicans
exceeds that of most other microorganisms, this virulence
being attributable to the pathogen’s ability to survive in
several anatomically distinct sites.2 The organism’s cell
wall phospholipomannan, first identified by Shibata and
co-workers as a b-1,2-linked oligomannan,3 is the seat of
its activity. Rees’ 1971 prediction that such oligomannans
would display a-helicity,4 is fraught with structural and
biological implications,5 fulfilled by observations of
Poulain6 and Bundle7 on the correlation of periodic bio-
logical activity with chain length. Our long-standing inter-
est in glycosylphosphatidylinositols (GPIs),8 was
captured by Poulain’s observation that C. albicans trig-
gers ‘intense signaling and secretory responses’ similar to
those that are induced by GPI-related glycolipids.9

In this paper, we describe an n-pentenyl orthoester
(NPOE)-based approach that is simple and totally itera-
tive, using identical methodologies for synthetic as well as
structure verification protocols. It should be noted that al-
though the orthoester 1 and 2-O-benzoyl NPG 3 are func-
tionally equivalent, the former (a) usually gives much
higher yields of trans-coupled products,10,11 and (b) reacts
infinitely more quickly as measured by our procedure for
comparing relative reactivity of glycosyl donors.12

The above biological concerns have induced much activi-
ty towards the synthetically defiant13 b-1,2-mannoside
motif. Sinay and co-workers14 employed the classical
Garegg protocol15 to prepare a tetramer. Elegant proce-
dures developed by Bundle7 and Crich16 have afforded
structures in the M4-M8 range, and recently Bundle re-

ported detailed 1H NMR analysis of a pentamannan7a

which confirms the ‘compact configuration’ predicted by
Rees.4

The iterative cycle is depicted in Scheme 2. The high
yields maintained throughout, have afforded all units, in-
cluding the 8-mer, in ca 200 mg amounts. The key starting
glycosyl orthoesters 1 and 2, are easily prepared10 from
the corresponding glycoses in five simple, identical steps
using 4-pentenol and benzyl alcohol respectively. Treat-
ment of each with ytterbium (III) triflate17 or TBDMSOTf
effects quantitative rearrangement to the n-pentenyl and
benzyl glycosides 3 and 4 respectively, and debenzoyla-
tion of the latter gives the starting acceptor 5, which con-
stitutes the reducing end unit of the prospective
oligomannan

Coupling of 5 with NPOE 1 mediated by TBDMSOTf/
NIS gave the glucoside 6 in 92% yield, which carries a
single benzoyl group. The exclusive use of benzyl protect-
ing groups elsewhere provided a convenient window
for monitoring the upcoming transformations leading to 7
by 1H and 13C NMR spectroscopy (Scheme 1). Thus,
employing the Garegg strategy,14,15 compound 6 was
deesterified, oxidized and reduced (with L-selectride as
pioneered by Danishefsky18) leading to the dimannan 7 in
excellent yield.

The iterative protocols,19 for both synthesis and structure
analysis remained constant up to the 8-mer (i.e. 15, n = 6),
Scheme 2, without any need to tamper with protecting
groups. As the synthesis progressed the acceptor, generat-
ed in the previous step, became more and more precious,
and so a generous excess of the easily prepared donor 1
was applied. Normally ketone 14b, obtained by Swern ox-
idation,20 was not isolated but was reduced directly with
L-selectride.21

The critical use of NPOE 1 as donor gave only a trace, if
any, of cis-coupled product thereby simplifying purifica-
tion and monitoring of subsequent transformations. Thus
the 5.6 ppm region of the 1H NMR spectra of the coupling
products, exemplified for 7–10 in Figure 1A characteristi-
cally shows a triplet ca 5.4 ppm which is consistent with
H2 of the non-reducing end (gluco) entity. Upon the de-
benzoylation to 14a, the 5–6 ppm window is no longer
useful; however, 13C NMR provides excellent resort. Thus
as shown in Figure 1C, C2 occurs ca 105 ppm in the gluco
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moiety (13a, n = 0 and 1), but ca 100 ppm in the manno
(14a, n = 0 and 1). The stereoselectivity of the L-selectride
reduction,18 could also be easily checked by studying
the 1H NMR spectrum of the acetylated products 15b
(n = 0–3) which showed the H2 proton of the newly intro-
duced manno units to be shifted downfield to ca 5.6 ppm,
Figure 1B.

Interestingly the anomeric proton of the gluco-moiety of
7 is ca 4.55 ppm for n = 0 (not shown in Fig 1A) and
moves downfield to 5.59 for 8 (n = 1) and 5.76 for both 9
(n = 2) and 10 (n = 3). The spectroscopic data for the 8-
mer (15a, n = 6) fully support the assigned structure.22

Debenzylation is most conveniently carried out by trans-
fer hydrogenation using formic acid. For example 15a
(n = 4) gave 16 quantitatively. Detailed analyses of
chemical shifts in protected and deprotected samples of
oligomers will be reported in due course.

In summary, once compounds 1 and 5 are in hand, one cy-
cle of the protocol shown in Scheme 2 can be accom-
plished in 2–3 days, allowing for rigorous characterization
of each intermediate. The data in Scheme 2 show that ex-
cellent yields are maintained as the array is lengthened.
Accordingly, the 9–16-mers of b-1,2-oligomannans,
which occur in the cell wall of C. albicans should be ob-
tainable by this iterative procedure.
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