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Efficient syntheses of folate receptor (FR) targeting conjugates of the anti-inflammatory, aminopterin
hydrazide, are described. 2-{4-Benzoylamino}-5-oxo-5-{N0-[2-(pyridin-2-yldisulfanyl)-ethoxycarbonyl]-
hydrazino}-pentanoic acid is synthesized from commercially available 4-[(2-amino-4-imino-3,4-dihy-
dro-pteridin-6-yl-methyl)-amino]-benzoic acid. Conjugation of this novel, activated aminopterin
hydrazide to folic acid through cysteine-terminating (C-terminus), peptide/carbohydrate spacers results
in highly water soluble conjugates which allow for the release of free aminopterin hydrazide within the
endosomes of targeted cells.

� 2010 Elsevier Ltd. All rights reserved.
The vitamin folic acid (folate, FA) binds with high affinity
(KD <10�9 M)1 to a glycosylphosphatidylinositol anchored cell-sur-
face glycoprotein called the folate receptor (FR). After binding, FA is
transported into the cell via FR-mediated endocytosis.2 Conse-
quently, FA can be exploited as a molecular ‘Trojan horse’ for the
targeted delivery of covalently-attached, biologically active mole-
cules.3 To date, three isoforms of the FR have been identified and
cloned: FR-a, FR-b, and FR-c and its truncated cogener, FR-c0.4 In
normal tissues, the distribution of measurable levels of FR-a is lim-
ited only to the apical membrane surface of certain polarized epi-
thelial cells, in placental trophoblasts, and on the apical side of
kidney proximal tubule cells, the latter serving as a salvaging route
for folates prior to urinary excretion.5 In contrast, in many human
malignant cells the FR-a is highly overexpressed, especially in
aggressively growing cancers.6 FR-b is present on the cell surface
of human activated macrophages but not on resting/quiescent
macrophages.7 In response to pro-inflammatory stimuli, activated
macrophages concentrate at areas of inflammation. Excessive and
persistent build-up can cause tissue damage, resulting in such
inflammatory diseases as: rheumatoid arthritis, psoriasis, Crohn’s
disease, systemic lupus erythematosus, atherosclerosis, type II
diabetes, ulcerative colitis, osteoarthritis, organ transplant rejec-
tion, and ischemia/reperfusion injury.8 In addition, activated
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macrophages produce and release pro-inflammatory cytokines
such as TNF-a, IL-6, and IL-1, promoting and intensifying the dis-
ease.9 Consequently, developing therapies which target FR-b might
lead to an elimination of the activated macrophages and the result-
ing auto-immune/inflammatory disease while diminishing the
inherent collateral toxicity to normal cells.

Previously, we reported the design and synthesis of a folate
targeted chemotherapeutic conjugate, EC145, which is in phase 2
clinical trials.10 In EC145, an anticancer drug, desacetyl vinblastine
hydrazide (DAVLBH) is attached to folic acid (FA) via a water-solu-
ble peptidic spacer and a reducible disulfide linker system.
Recently, we published the synthesis of folate-DAVLBH conjugates
using carbohydrate-based peptide spacers designed to decrease
undesired hepatobiliary clearance of free DAVLBH without affect-
ing the conjugate’s targeted anti-tumor activity.11

In this Letter, we utilize a peptidic or a carbohydrate-based
spacer along with a disulfide linker system to synthesize targeted
folate-aminopterin hydrazide conjugates 1 and 2, the first conju-
gates in a novel class of compounds designed to suppress inflam-
matory disease ( Fig. 1). Aminopterin, a highly active antifolate
originally developed to treat cancer, was reported in 1951 to
produce rapid improvement in patients with rheumatoid arthritis
and psoriasis; however, due to manufacturing problems and a poor
therapeutic index, the clinical use of aminopterin was discontinued
in favor of the safer alternative, methotrexate.12 In our approach,
we use a novel derivative of aminopterin: aminopterin hydrazide.
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Figure 1. Aminopterin hydrazide-folate conjugates 1 (peptidic spacer region) and 2 (carbohydrate based peptidic spacer region).
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Aminopterin and aminopterin hydrazide both displayed very sim-
ilar in vitro activities in a series of cells (unpublished results). We
selected the hydrazide because base drugs which contain this moi-
ety are readily releasable from their derived conjugates using our
linker technology. In contrast, a conjugate derived from aminop-
terin and linked through an ester moiety would be expected to
be readily releasable, but have poor serum stability.

As outlined in the retrosynthetic analysis (Scheme 1), disulfide-
linked conjugate 1 can be assembled from the corresponding
thiol-containing FA-spacer 3 and thiol-reactive derivative of
aminopterin hydrazide 4. The disulfide bond is readily reduced in
the internalized endosome of the targeted cell, of crucial impor-
tance for drug delivery applications.13 Aminopterin derivative 4
can be readily derived from commercially available 4-aminoptero-
ic acid sodium salt 5 and activated glutamic acid 6. The peptide-
based FA-spacer 3 is designed to introduce a discrete number of
charged amino acids for better water solubility and was synthe-
sized using standard fluorenylmethyloxycarbonyl-based solid
phase peptide synthesis (Fmoc-SPPS).10

The nucleophile- and thiol-activated heterobifunctional carbon-
ate 7 (Scheme 2) served as an important starting material for the
releasable drug conjugate synthesis.10 Reaction of this mixed
carbonate with t-butyl-carbazate in the presence of diisopropyleth-
ylamine (DIPEA) gave the corresponding t-butyl-carbazate 8. Triflu-
oroacetic acid (TFA) mediated Boc deprotection of 8 in the presence
of triisopropylsilane (TIPS) resulted in 9 as a TFA salt. Coupling of 9
with protected glutamic acid 10, using benzotriazol-1-yl-oxytri-
Scheme
pyrrolidinophosphonium hexafluorophosphate (PyBop) and DIPEA,
yielded glutamic acid derivative 6. 4-Dimethylaminopyridine
(DMAP) mediated Fmoc deprotection of 6 followed by in situ cou-
pling with commercially available sodium 4-[(2-amino-4-imino-
3,4-dihydro-pteridin-6-yl-methyl)-amino]-benzoate 5 using PyBop
and hydroxybenzotriazol (HOBt) resulted in fully protected aminop-
terin hydrazide 11. Treatment of 11 with TFA expediently removed
the t-butyl moiety to yield pyridinedisulfanyl-activated aminop-
terin hydrazide 4.14 Finally, treatment of a suspension of FA-spacer
3 in H2O under Argon with 0.1 N NaHCO3 resulted in a clear yellow
solution at pH >6.9. To this mixture was added at once under exten-
sive stirring a solution of 4 in THF.15 According to the HPLC profile,
the reaction was completed in less then 15 min. HPLC purification
gave pure conjugate 1.16

Second generation folate-aminopterin conjugate 2 was de-
signed using carbohydrate-based folate-spacer 12 (Scheme 3).
FA-spacer unit 12 was synthesized using a standard Fmoc-SPPS
protocol as described in our previous publication.11 Treatment of
a suspension of 12 in phosphate buffer and under argon with NaH-
CO3 resulted in a clear yellow solution. To this mixture was added
at once under vigorous stirring a dimethylsulfoxide (DMSO) solu-
tion of 4 to yield the final conjugate 2.17

Treatment of conjugate 2 with a reducing agent demonstrates the
release of free aminopterin hydrazide (Scheme 4). In brief, a 1 mM
solution of 2 in phosphate buffer (pH 7.4) was treated with 40 equiv
of dithiothreitol (DTT) at room temperature.18 The HPLC profile
(Fig. 2) showed cleavage of the disulfide bond (t1/2 �22 min.) with
1.



Scheme 2.

Scheme 3.

Scheme 4.

Figure 2. HPLC profile (280 nm) of the treatment of 2 with DTT.
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concomitant release of the FA-Spacer 12 and 2-thioethyl carbazate
13. Subsequently, 13 fragments into free aminopterin hydrazide
14, thus demonstrating the self-immolative nature of the linker
system.19

Following positive in vitro and in vivo results and toxicological
evaluation, 2 (known also as EC0746) was selected as a lead candi-
date for further (pre)clinical development. Results of the complex
biological investigations will be reported soon in the appropriate
scientific journals.
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