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The codimerization of quadricyclane (QC), the valence isomer of norbornadiene 
(NBD), with norbornene compounds was studied in the presence of Pd(0) complex- 
es. Codimerization of QC with norbornene, 5-methyl- and 5-methylenenorbornene, 
exo-tricyclo[3.2.1.02,~]octene-6, tetracyc!o[4.2.0.02,4.03,7]nonene-8, and pen- 
ta- and hexacyclic NBD dimers was carried out in the presence of PPhs-activated 
Pd2(DBA)s.CHCI 3 to afford a new class of hexa- to nonacyclic strained hydrocar- 
bons with exo- and endo-tetracyclo[4.2.0.02,4.03,7]nonane fragments. 

Recently we carried out homo-, di-, and trimerization of quadricyclane (QC), the val = 
ence isomer of norbornadiene (NBD), into polycyclic C14-C21 hydrocarbons in the presence of 
Pd complexes [i]. We proposed [i] that these types of compounds are formed as a result of 
cyclocodimerization of QC with NBD or its dimers, which are formed in the course of the re- 
action. 

In order to confirm this hypothesis, and also to investigate the possibility of cyclo- 
codimerization of QC with norbornenes of various structures and the synthesis of new types 
of strained polycyclic hydrocarbons, we studied the catalytic reaction of QC with cycloole- 
fins (VIII)-(XVII) in the presence of the complex Pd2(DBA)3.CHCI3-PPh 3 (DBA = dibenzylidene- 
acetone), which is widely used in cycloaddition processes. 

Thus, norbornene (NB) and QC, in the presence of Pd2(DBA)3.CHCI3-PPh3 (C6H ~, 20~ 5 h), 
form two codimers (I) and (II) in a ratio of 56:44 with an overall yield of -28%, along with 
the known dimers (IIl) and (IV) and NBD or QC trimers (V)-(VII) [i]. Under these reaction 
conditions, a part of the QC (up to 5%) is converted to NBD. 

:x) 

The yield of compounds (I)-(VII) depends on the activator ligand, the reaction condi- 
tions, and the molar ratio of NB to QC and Pd(0) to ligand. PPh s is the most effective 
activator ligand in this reaction. When the PPh s concentration of the catalyst is increased 
(PPh~:Pd(0) e 1-4), the proportion of codimers (I) and (II) increases to -40%; however, the 
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TABLE I. Effect of the Molar Ratio of Norbornene to Quadri- 
cyclane on the Composition of Reaction Products (Pd2(DBA) 3. 
CHCI3-PPh 3 = 1:2, 60~ 2 h, toluene, QC:Pd(0) = i00:i) 

NB:QC 
Overall yield e 

of ( i ) - ( v n ) ,  % 

96 
97 
97 
98 
97 

((I)+(ID) 

0 
5 

t7 
28 
40 

C o m p o s i t i o n ,  % 

((iii) + (iv)) 

84 
90 
81 
7t 
59 

((v) + (vl) + iVlID 

t6 
5 
2 
t 
t 

*Calculated on the basis of reacted QC, whose conversion 
reached -100%. 
%100% NB. 

reaction rate (determined from the consumption of QC) decreases fivefold, and the isomeric 
composition of (I) and (II) and (V)-(VII) remains unchanged. At a PPhs:Pd(0) ratio of 2:1 
the conversion of QC reaches -100%. Increasing the codimerization temperature to 60~ short- 
ens the reaction time to 2 h. Changing the solvent (toluene, benzene, THF, CHCI 3) has al- 
most no effect on the process. The selectivity of the reaction with respect to codimers 
increases with an increase in the NB concentration, reaching 40% at a NB:QC ratio of 4:1 
(Table i). 

It should be noted that addition of MeCN or DMSO to the catalyst results in selective 
isomerization of QC to NBD. Addition of P(OPh) 3 and duroquinone almost completely deacti- 
vates the catalyst. 

As seen from Table i, an increase in the NB concentration leads primarily to the for- 
mation of codimers (I) and (II). At a fourfold excess of NB over QC, the overall yield of 
hydrocarbons (I) and (II) is 40%. 

Next we studied under optimal conditions the codimerization of QC with 5-methylenenor- 
bornene-2 (VIII), 5-methylnorbornene-2 (IX), exo-tricyclo[3.2.1.02,4]octene-6 (X), 7-spiro- 
cyclopropanenorbornene-2 (XI), tetracyclo[4.2.0.0a,4.03"7]nonene-8 (XIl), and penta- and 
hexacyclic norbornene dimers (III), (IV), and (XIII)-(XVII) (Table 2). 

(=) (x# (=) (m) 

Compounds (Xl) and (XV)-(XVII) with bulky exo and endo substituents are almost 
inert in the codimerization reaction with QC. The inertness of compound (XI) 
is readily explained by steric hindrance of the 7-spirocyclopropane group during 
exo attack on the norbornene double bond. The reason for the low reactivity 
of compounds (XV)-(XVII) (they form codimers only in trace amounts), whose endo 
substituents are sufficiently removed from the double bond, is as yet unclear. The high re- 
activity of the norbornene bond and its availability for attack in chemical reactions only 
from the exo direction is due to nonplanar deformation of the olefin bond, as a result of 
which the olefin protons are bent by 6 ~ out of the plane of the double bond [2]. Apparent- 
ly, the bulky 5,6-endo substituents of norbornenes hinder such proton deflection from a 
distance, which decreases the activity of the norbornene double bond in the basic state 
and increases the activation energy in the transition complex. 
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TABLE 2. Codimerization of Norbornene Compounds with Quadri- 
cyclane (QC) 

Norbornene 
substrate (NBS) 

(VIII) 
(iX) 
(X) (G{l ~ 5h) 
(X) (~~ lh)  
(XII) (60 ~ . 0.Sh) 
(XII) (~~ lh) 
(XHD 
(XlV) $ 
( lu) ~: 
(iv) :~ 

NBS 
conver- 
sionS':, % 

28 
37 
62 
51 
55 
49 
38 
26 

Codimer yield 
and composition,~ % 

(XVIII), 14; (SIX), t0 
(XX), 18; (XXl). t5 
(XXli), 32; (XXIll), 26 
(XXII), 29; (XXIII), 21 
(XXIV), 30; (XXV), 22 
(XXIV), 29; (XXV), t8 
(XXVD, 18; (XXVII), 15 
(XXVIII), 16; (XXIX), 8 
(V). 23;(VI). 7 
(Yl), 6; (VID, 26 

Yield, % 

NBD ( l i i )+( iv) t  

4 69 
3 62 
i 4 i  

- 3 !  
3 38 
4 20 
~ 63 

64 
at ( i l l )  
59(IV) 

(V) +(VIIJ 

3 
2 

3 
3 
t 
4 
t(VU) 
2(VI) 

*Conversion of QC was 100% in all experiments; the codimer 
yield is calculated per reacted QC. 
%The ratio (lll):(IV) = 56.44. 
SThe experiments were carried out at 60~ (2 h) in toluene. 

On the other hand, compounds (X) and (XII), which have a cyclopropane ring in conjuga- 
tion with the double bond, were very active in codimerization with QC. These olefins readily 
participate in codimerization with QC even at 6~ forming codimers (XXII)-(XXV), whereas 
monomers (VIII), (IX), (XIII), and (XIV) react with QC only at a higher temperature (60~ 

( ~ )  

(xT~) 

I (xT~) 

(~) 

(rr~) 

(~r~) 

H Pd Pd 
I 
Ln L~n 

The presence of a double bond and a cyclopropane fragment in compounds (X) and (XII) 
increases their coordination capacity at the central catalyst atom. This leads to the for- 
mation of chelate complexes A or B during the course of cyclocodimerization, which actively 
participate in the reaction with QC. 
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The structure of the synthesized compounds was determined by physicochemical methods 
and also by comparing their characteristics with those of known samples prepared according 
to the methods described in [i, 3-5]. The structure of compound (XXIII) was verified by 
countersynthesis according to two methods: i) cyclopropanation of NBD dimer (III) with 
CH2N 2 in the presence of Pd(OAc) 2, and 2) codimerization of (X) with NBD in the presence of 
Fe(acac)3-(Ph2PCH2-)2-AIEt2CI [3]. Both reactions are stereospecific and occur as exo addi- 
tions. 

[PcL] [Fe] 

Thus, codimerization of QC with norbornene hydrocarbons in the presence of palladium 
complexes is a fairly simple method for obtaining new types of hexa- to nonacyclic strained 
hydrocarbons with diverse structures. 

EXPERIMENTAL 

IH and 13C ~ spectra were recorded on Tesla BS-467 (CC14, TMS standard) and JeoI-FX- 
90Q (22.5 MHz, CDCI 3, relative to TMS) spectrometers. IR spectra were recorded on a UR-20 
instrument (in a thin layer). GLC analysis was carried out on a Khrom-4 chromatograph with 
a flame-ionizing detector; 3.7 • 0.003 m (with 15% PEG-6000) and 2.4 • 0.003 m (with 5% SE- 
30) columns on Chromaton N-AW-HMDS; helium carrier gas (47 ml/min); vaporizer temperature, 
275~ temperature programmed from 50 to 210~ (to 300~ for trimers). The isomers were 
isolated by preparative HPLC, with phase inversion, on a ZhKh-1304 chromatograph equipped 
with a Varian Aerograf refractometric detector and a Zorbax ODS column, 21 • 250 mm; eluent, 
methanol (i0 ml/min); 24~ 

Compounds (III), (IV), and (VIII)-(XVII) were obtained according to [6-10]. 

Codimerization of Quadricyclane with Norbornenes (general method). A 0.92-g (i0 mmoles) 
portion of QC and 10-40 mmoles of norbornene compound were added to 0.112 g (0.108 mmole) 
Pd2(DBA)3.CHCIs [ii] and 0.028 g (0.108 mmole) PPh 3 [or 0.108 mmole DMSO, duroquinone, ace- 
tonitrile, or P(OPh) 3] in toluene (benzene), and the mixture was heated for 0.5-5 h at 20- 
60~ At the end of the reaction the solution was filtered through AI203 and eluted with 
hexane. The codimers were isolated by fractionation and high-performance LC. 

12-Methylene-exo-endo-hexacyclo[9.2.1.02,1~ (XVIII); yield 
14%; bp 108~ (i mm). PMR spectrum (6, ppm): 0.73-1.25 (4H), 1.53-2.08 (8H), 2.14 s (3H), 
2.44 s (IH), 4.48 (IH), 4.79 (IH). IR spectrum (v, cm-1): 765, 790, 815, 890, 1300, 1665, 
3040, 3065. 

12-Methylene-exo-exo-hexacyc!o[9.2.1.02,1~ (XIX); yield 10%; 
bp 109~ (i mm). PMR spectrum (6, ppm): 0.66-1.16 m (4H), 1.46 s (2H), 1.66-2.00 m (7H), 
2.10 s (2H), 2.43 s (IH), 4.43 s (IH), 4.70 s (IH). IR spectrum (v, cm-1): 770, 795, 810, 
880, 1295, 1665, 3015, 3040, 3070. 

12-Methyl-exo-endo-hexacyclo[9.2.1.02,1~ (XX); yield 18%; 
bp I12~ (i mm). PMR spectrum (6, ppm): 0.67-1.14 m (SH), 1.25-1.91 m (14H), 2.21 s (IH). 
IR spectrum (v, cm-l): 1030, 1460, 805, 822, 3065. 

12-Methyl-exo-exo-hexacyclo[9.2.1.02,1~ (XXI); yield 15%; 
bp I12~ (i mm). PMR spectrum (6, pm): 0.71-1.20 (5H), 1.33-2.01 (14H), 2.09 (IH). IR 
spectrum (v, cm-1): 805, 820, 1020, 1475, 3055. 

Exo-exo-endo-heptacyclo[9.3.1.02,1~ (XXII); yield 29%; 
mp 59-59.5~ 13C NMR spectrum (~, ppm): 50.41 d (C 2, CI~ 46.10 d (C 3, C9), 44.58 d (C8), 
36.93 d (C ~, CI~), 27.98 t (C7), 21.52 t (C~S), 18.16 d (C6), 17.68 d (C ~2, C~4), 13.07 d 
(C 4, CS), 4.53 t (C13). PMR spectrum (6, ppm): 0.48-0.94 m (7H), 1.38 s (2H), 1.85-2.30 m 
(9H). IR spectrum (v, cm-1): 720, 810, 1015, 1033, 1310, 1465, 2800-3000, 3015, 3065. 

Exo-exo-exo-heptacyclo[9.3.1.02,1~ (XXIII); yield 21%; 
bp 96.5~ (1.5 mm); mp 12-130C; nD 2~ 1.5525. IR spectrum (v, cm-1); 805, 815, 1005, 1040, 
1290, 1310, 1500, 2870, 2900-3000, 3020, 3060. PMRspectrum(6, ppm): 0.25-0.83m (7H), 1.08 s 
(IH), 1.37 s (2H), 1.71 s (2H), 1.83-2.05 m (6H). 13C NMR spectrum (6, ppm): 2.82 t (CI~), 
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12.35 d (CG), 16.12 d (C ", CS), 17.38 d (C 12, CZ4), 22.80 t (C~S), 33.74 t (C7), 39.18 d 
(C I, CZZ), 39.57 d (C8), 45.30 d (C 3, C9), 54.05 d (C 2, CZ~ 

Exo-endo-octacyclo[7.7.0.02,7.03,~.04,s.0zz,zs.0z2,Z6]hexadecane (XXIV); yield 30%; 
mp 39.5-40.5~ (from C2HsOH). IR spectrum (v, cm-1): 810, 815, 3070 (nortricyclane), 
1070, 1303, 1390, 1470, 2880, 2950, 2980. PMR spectrum (6, ppm): 0.78 (2H, H s, H"), 0.80 
(2H, H zl, H12), 1.05 (IH, H13), 1.20 (IH, H5), 1.35 (2H, H 2, Hs), 2.31 (2H, H z, Hg), 2.43 
(IH, H15). z3C NMR spectrum (6, ppm): 13.27 d (C 3, C4), 14.90 d (C1S), 16.79 d (CS), 
17.83 (C Iz, C12), 29.27 t (C6), 33.05 t (C~4), 38.46 d (CZS), 44.03 d (C7), 44.35 d (C 2, 
Cs), 48.16 d (C z, C9). Mass spectrum: 210 (M+). 

Ex~-trans-ex~-end~-n~nacyc~[9.8~z~,z7~2,1~.~3,8.~,6.~s,9.~12,z9.~1s,zs]heneic~ - 
sene-15 (XXVI); yield 18% (93% pure). IR spectrum (v, cm-Z): 723, 1570, 1623, 3020 (CH--CH), 
812, 820, 3060 (nortricyclane). PMR spectrum (6, ppm): 0.74-0.90 (3H), 1.23-1.40 
(SH), 1.52-2.58 (14H), 5.91 (2H). Z3C NMR spectrum (6, ppm): 12.80 d (C 4, C5), 17.55 d 
(C6), 27.67 t (C7), 29.03 t (C2Z), 39.05 d (C I, CZl), 40.83 d (C 13, CZS), 41.80 d (C I=, CZg), 
41.85 t (C2~ 44.80 d (C z4, C17), 44.48 d (CS), 46.90 d (C 3, C9), 50.73 d (C 2, CZ~ 135.38 
d (C I~ C16). Mass spectrum: 286 (M+). 

End~-trans-ex~-end~-n~nacyc1~[9~8.~.~4,z7.~2,z~.~3,9.~4,6~5,9.~2,z9.~13,z8]heneic~- 
sene-15 (XXVIII); yield 16%. IR spectrum (v, cm-1): 728, 1578, 1631, 3020 (CH=CH), 810, 
819, 3059, 3077 (nortricyclane). PMR spectrum (6, ppm): 0.68-0.90 (3H), 1.22 (4H), 1.52- 
2.75 (14H), 2.60-2.75 (2H), 6.30 (2H). 13C NMR spectrum (6, ppm): 12.82 d (C ~, C5), 17.71 
d (C~), 28.13 t (C7), 29.25 t (C2Z), 39.20 d (C z, CZZ), 40.85 d (C 12, 019 ) 41 02 d (C z3 
CZS), 44.52 d (C8), 45.11 d (C I~, CZT), 46.92 d (C 3, C9), 50.82 d (C 2, CZ~ 5;.30 t (C2~), 
135.91 d (C zS, C16). Mass spectrum: 276 (M+). 

The characteristics of compounds (V)-(VII), (XXV), (XXVIi), and (XXIX) were in accord 
with those described in the literature [i, 3-5]. 
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