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Abstract: Derivatization of rolipram led to the identification of 3-[4-(3-cyclopentyloxy-4-methoxyphenyl)-2- 
oxo-pyrrolidin-l-yl]-5-(3-methoxybenzyloxy)-benzoic acid N',N'-dimethylhydrazide (_4), a potent and selective 
inhibitor of PDE4, which inhibits the activation of human leukocytes with plC50 values in the range of 7.3 - 7.8, 
and blocks antigen induced eosinophilia in Brown Norway rats at a dose of 1 mg/kg (i.t.). © 1998 Elsevier Science 
Ltd. All rights reserved. 

Modulation of cyclic adenosine-3,5-monophosphate (cAMP) has emerged as one of the most promising 

approaches in the search for new anti-asthma drugs. 2 Cellular levels of this important second messenger are 

regulated by phosphodiesterase enzymes which hydrolyze cAMP to inactive metabolites. While seven subtypes 

of the PDE family are known, recent observations have shown that phosphodiesterase 4 (PDE4) is the principle 

regulator of cAMP in inflammatory cells. 3 Furthermore, several research groups have reported evidence that 

selective PDE4 inhibitors suppress inflammatory mediator release from activated leukocytes and inhibit the 

recruitment of inflammatory cells into the airways of animals. 2'4 
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Rolipram ! R = H _2 
R = COOH _3 
R = CONHNMe 2 _4 

Rolipram (_1), the prototypical, selective PDE4 inhibitor has been used by many research groups as a starting 

point in their search for proprietary drug candidates. 5-8 Although this has lead to the identification of several 
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development compounds, the search for anti-inflammatory agents which can replace inhaled corticosteroids as 

first line anti-asthma treatment is continuing. 9 

Our effort has been aimed at finding rolipram derivatives, suitable for inhalation, which show improved 

PDE4 potency while maintaining selectivity versus PDE3. In theory this should allow for anti-inflammatory 

action in the lung, while at the same time reducing the chance for side effects by limiting systemic exposure. In 

contrast to other research groups which have mainly focused on modifications at either the aromatic catechol 

ether or the pyrrolidone ring of rolipram, 5s we have concentrated our chemistry program on N-phenyl-rolipram 

derivatives. In this communication we describe the synthesis and biological profile of the racemic compounds 2, 

3 and 4 which are highly potent and selective PDE4 inhib]tors and show very prorfiising activity in an animal 

model of airway inflammation. 

Compound 2 was prepared conveniently in three steps from 3-benzyloxy-iodobenzene ~).  Copper catalyzed 

coupling 1° of_5 with rolipram gave _6 (81%), which was converted to the target molecule by hydrogenolysis of" 

the benzyl ether protecting group, followed by alkylation of the resulting phenol 7 with 3- 

methoxybenzylchloride ~ )  in the presence of cesium carbonate (Scheme 1). 
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c ~ - ~  Reagents and conditions used: 

~ "  ~ N  " ~  0 
(a) rolipram, Cu, Ke_CO s, DMF. 
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Scheme 1 
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4-(3-cyc••penty••xy-4-meth•xy-pheny•)-•-[3-(3-meth•xy-benzy••xy)-pheny•]-pyrr••idin-2-•ne ~ )  proved to 

be an excellent inhibitor of the PDE4 isozymes, tl being about two orders of magnitudes more potent than 

rolipram (Table 1). Like rolipram, _2 exhibits little selectivity between the isozymes, being equipotent (within 

the error of the experiments) on PDE4A, B and D. Despite the increase in potency on the PDE4 isozymes, 2 

remained virtually inactive as an inhibitor of PDE3. 

While compound -2 was a very promising lead compound, it exhibited variable activity in secondary, cellular 

assays and could not be administered to animals due to its highly hydrophobic nature, la In order to improve the 

physical properties of the N-phenyl roliprams we introduced hydrophilic substituents in the 5-position of the 

central phenyl ring in 2. Structure activity studies had indicated that this position could accommodate a wide 

variety of substituents without deleterious effects on PDE4 potency. 

The synthesis of_3 and _4 is shown in Scheme 1. Methyl 5-hydroxy-3-iodobenzoate 13 was benzylated to give 9 

and then coupled in the usual way with rolipram. Removal of the benzyl protecting group of 1...00, reaction of 3- 

methoxybenzylchloride with the resulting phenol 11 (51% for two steps) and hydrolysis of the methyl ester gave 

3-[4-(3-cyc••penty••xy-4-meth•xypheny•)-2-•x•-pyrr••idin-•-y•]-5-(3-meth•xybenzy••xy)-benz•ic acid (3). As 

our hypothesis had suggested, the newly introduced carboxyl group was well tolerated (Table 1), and as 

expected the compound showed improved physicochemical characteristics, being appreciably soluble in 

bicarbonate solution as well as in aqueous ethanol. 14 Further derivatization culminated in the synthesis of 

compound _4 (Scheme 1), a highly potent inhibitor with nanomolar activity on all PDE4 isozymes and over 

10000 fold selectivity versus PDE3 (Table 1). 

Table 1. Inhibition of PDE4 isozymes and PDE3 a'15 

Compound PDE4A PDE4B PDE4D PDE3 rolipram 
binding 16 

rolipram (!) 5.9 (+ 0.2) 5.7 (+ 0.3) 6.4 (+ 0.1) < 4 8.4 (+ 0.2) 

-2 8.2(+0.4) 8.6(+0.2) 8.1 (+0.2) <4  8.1 (+0.3) 

_3 7.9(+0.1) 7.7(+0.2) 7.9(+0.2) < 4  7.5(+0.3) 

_4 8.6 (+ 0.6) 8.3 (+ 0.2) 8.8 (+ 0.6) < 4. 8.3 (+ 0.2) 

a Data indicated as plCs0 values (+ SEM) ; n = 2-6. 

PDE4 enzymes seem to exist in two different states, distinguishable by either low or high affinity for 

rolipram. 17 While the precise biological role of the different forms of the PDE4 enzymes is unclear, there have 

been suggestions that the activity of inhibitors at the high affinity site may correlate with their potential to 
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exhibit side effects. 18 Compared to rolipram, compounds 2, 3 and 4 have improved potency as inhibitors of the 

isozymes, while the activity at the high affinity binding site remains the same. 

With two promising candidate compounds in hand, we proceeded to evaluate their anti-asthma potential in a 

number of cellular assays. There is convincing evidence that selected T cell populations play a key role in the 

orchestration of the asthmatic inflammation by the production of a characteristic cytokine pattern in response to 

inhaled allergens and other stimuli.19 IL-4 and 1L-5 produced by these allergen specific TH2 cells are intimately 

involved in the regulation of IgE production as well as in the development, activation and selective 

accumulation of eosinophils, two characteristic features of allergic asthma. Besides TH2 cells, eosinophils 

themselves are major pro-inflammatory cells in asthma, producing reactive oxygen species and releasing 

cationic proteins which are thought to be prime contributors to epithelial cell damage and increased 

hyperreactivity of asthmatic airways. 

Based on this knowledge we chose representative assay systems, which would allow us to study the effect of 

our N-phenyl rolipram derivatives on primary human cells. In an attempt to mimic allergen induced T cell 

activation events, human peripheral blood mononuclear cells (HPBMC) were stimulated with anti-CD3 

antibodies, known to induce T-cell proliferation as well as cytokine release. Both compounds 3 and _4 potently 

inhibited proliferation and the release of a characteristic TH2 (IL-4) as well as TH1 cell cytokine (IFN-7) from 

this key effector cell (Table 2). Moreover, stimulation of HPBMC with lipopolysaccharide (LPS) leads to 

production of TNF-c~ from monocytes/macrophages, which was also suppressed by our new rolipram analogues 

(Table 2). Finally both of our drug candidates showed an improved profile compared to rolipram in inhibiting 

fMLP (N-formyl-Met-Leu-Pro-OH) induced oxidative burst from human eosinophils (Table 2). 

Table  2. Inhibition of human leukocyte activation a 

Compound human peripheral blood rnononuclear cells human 
eosinophils 

anti-CD3 anti-CD3 anti-CD3 induced LPS induced fMLP induced 
induced T-cell induced IL-4 WN-y release 2° TNF-ot release zl oxidative burst 22 
proliferation 2° release 2° 

rolipram 5.7 (_+0.2) 6.3 (_+0.5) 5.6 (_+0.6) 7.1 (_+0.2) 6.1 (_+0.2) 

3 7.2 (_+ 0.2) 6.6 (_+ 0.4) 7.5 (_+ 0.1) 7.4 (_+ 0.4) 6.6 (_+ 0.2) 

_4 7.3 (_+ 0.2) 7.6 (+ 0.4) 7.8 (_+ 0.3) 7.7 (_+ 0.2) 7.3 (_+ 0.3) 

aData indicated as pICs0 values (-+ SEM) ; n = 2-7. 

Especially compound _4 is a remarkably potent and balanced inhibitor, being equipotent in modulating the 

proliferation of T cells, blocking the release of inflammatory cytokines from T cells and monocytes as well as 
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inhibiting the oxidative burst from eosinophils, with plCs0 values ranging from 7.3 to 7.8 (Table 2). 

To analyze the potential anti-asthma activity of our N-phenyl-rolipram derivatives ir~" vivo, we tested the 

compounds in an animal model of antigen-induced pulmonary eosinophilia. 23 For this purpose, ovalbumin (OA) 

sensitized brown Norway rats were challenged with aerosolized antigen (OA), which resulted in a selective 

accumulation of eosinophils as well as the release of increased levels of the eosinophil granule derived 

eosinophil peroxidase (EPO) in bronchoalveolar lavage (BAL) samples obtained from these animals (Fig. 1). 

Both of our candidate compounds, when administered lh before and 24h after challenge by the intratracheal 

route as suspensions in saline, significantly inhibited both measures of airway inflammation. Figure 1 shows the 

effect of _3 and _4 on antigen induced eosinophil recruitment and activation at a dose of 3.2 and 1 mg/kg 

respectively. 

A B 

Eosinophils x 10 e EPO (mO/ml) 

i=  1,, 
12 12 20 

20 
9 9 * 15" 15 . 

8 ,,,,L, lO i 

vehicle OA 3 vehicle OA 4 vehicle OA 3 vehicle OA 4 
3.2 mg/kg 1 mg/kg 3.2 mg/kg 1 mg/kg 

Figure 1. Effect _3 (3.2 mg/kg) and _4 (1 mg/kg) on ovalbumin induced eosinophil accumulation (A) and 
eosinophil activation (B) in actively sensitized brown Norway rats. * p<0.05, ***<0.001 indicates significant 
difference by comparison with vehicle and ovalbumin (OA) treated animals, n = 5. 

In conclusion, we have identified a new class of rolipram derivatives which are highly potent inhibitors of 

human leukocyte activation and show interesting activity in animal models of airway inflammation. We are 

currently synthesizing several compounds of this class in enantiomerically pure form with the aim of further 

studying their potential as anti-asthma drugs. 
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