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Abstract—Novel 2-, and N-substituted 5-methylene-pyrrolidine benzamides and 2-, 3-, and N-substituted 5-methylene-2-pyrroline
benzamides were synthesized for the first time in a straightforward manner and in good yields via iodocyclization of c- and a-alken-
yl-b-enaminoesters, respectively. The key step in the process is the synthesis of the methylene-pyrrolidine iodide and methylene-2-
pyrroline iodide intermediates. Functional group inter-conversion of these iodides to their amino analogs, and their subsequent
coupling to benzoic acids via EDC, afforded the above pyrrolidine/2-pyrroline-substituted benzamides in yields of around 75%.
� 2007 Elsevier Ltd. All rights reserved.
Heterocyclic benzamides represent an important class of
therapeutic compounds with several agents showing
activity in the central nervous system as antipsychotics,
and as antiemetics and gastric motility stimulants.1 The
actions of these agents are primarily due to the blockade
of dopamine (D2) and/or serotonin (i.e., 5-HT3) recep-
tors. Structure–affinity relationship studies (SAFIR) of
methylene-pyrrolidine benzamides were considered in
order to address what role the heterocyclic substituents
might play regarding their binding to D2 and 5-HT3

receptors. That is, although these benzamides have been
shown to be therapeutically effective, the role of substit-
uents at the pyrrolidine N-, 2-, and 3-positions (i.e., the
equivalent N-, 4-, and 5-positions relative to the parent
unsubstituted compound) has not been systematically
investigated because an useful synthetic route to such
analogs has not yet been developed. The purpose of this
study was to identify a convenient method that would
allow an entry to compounds bearing such substituents.
To this end, we applied the method of iodocyclization of
a- and c-alkenyl-b-enaminoesters to the synthesis of the
2-pyrrolines and pyrrolidines substituted at positions
C2, C3, and at the nitrogen atom.2 This synthetic meth-
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odology was previously explored2 and is presented here
as an application to the synthesis of relevant, potentially
biologically active benzamides currently under pharma-
cologic investigation (Fig. 1).

The synthesis of benzamides 1 and 2 started with the
preparation of b-ketoesters 5 and 6 via appropriate
alkylation of methyl acetoacetate enolates with allyl
bromide. These enolates were generated in situ by treat-
ment of the ester with NaH and/or n-BuLi in solution of
THF (Scheme 1). The detailed procedures used for the
synthesis of 5 and 6 are, respectively, noted by Refs.
4a and 4c. From the variety of methods available to pre-
pare b-enaminoesters 3 and 4,3 we chose the condensa-
tion of ethylamine with b-ketoester 5 in a solution of
toluene with azeotropic removal of water4b and the con-
densation of benzylamine to b-ketoester 6 in the pres-
ence of neutral Al2O3 at room temperature.4d Solvent
removal followed by Kugelrohr distillation afforded
the products 3 and 4 in good yields (Scheme 1). The iodo-
cyclization of these b-enaminoesters is the key step for
the synthesis of the desired benzamides. This reaction
was performed under kinetically controlled conditions
that afforded the substituted-pyrrolidine 7 and 2-pyrro-
line 8 derivatives under mild conditions and in good
yields (Scheme 1). The mechanism proposed for this
reaction is the attack of the nitrogen (internal nucleo-
phile) to an iodonium ion intermediate (e.g., 9) in an
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Figure 1. Novel pyrrolidine- and 2-pyrroline-substituted benzamides synthesized via iodocyclization of b-enaminoesters and selected for SAFIR at
D2 and 5-HT3 receptors.
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Scheme 1. Reagents and conditions: (i) NaH, THF, 0 �C, N2, 10 min, then n-BuLi, 10 min, allylbromide, 15 min, 0 �C to rt, then HCl, 74%;4a (ii)
NaH, THF, 0 �C, N2, then allylbromide, 0 �C to rt, 24 h, 49%;4c (iii) 70% EtNH2, AcOH, toluene, reflux, Dean–Stark, 18 h, 95% or BnNH2, Al2O3

neutral, rt, 12 h, 96–98%;16 (iv) I2, NaHCO3, CH2Cl2, rt, 24 h, 49–53%;15 (v) NaN3, (Et)4NBr, DMF, reflux, 4 h, 52–64%;14 (vi) H2 Parr
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antiperiplanar orientation5 (Fig. 2). Alternatively, an
alkene-iodine p-complex has also been proposed for this
type of reaction.6 The ring-closure process follows clas-
sical Baldwin’s rule and occurs in a 5-exo-trig manner.7

In order for a-allyl-b-enaminoesters 4 to achieve the
proper geometry for nitrogen attack for ring formation,
the tautomeric imine-enamine equilibrium might be
shifted to a less stable enamine tautomer 4a. This is
not required for the cyclization of c-allyl-b-enamino-
esters 3 due to the high flexibility of the iodine-acceptor
carbon chain bearing the double bond. In situ deproto-
nation of putative intermediate (e.g., 10) by NaHCO3

affords heterocyclic iodides 7 and 8 (Fig. 2).

The functional group inter-conversion of intermediate
iodides 7 and 8 to amines 11 and 12, respectively, was
achieved by nucleophilic displacement of the iodine
atom by an azide anion with further selective reduction
of compounds 13 and 14 (Scheme 1). Azide formation
was performed in a solid–liquid phase transfer catalysis
fashion.8 The iodide substrates were mixed with NaN3

and (Et)4NBr in anhydrous DMF17 and allowed to stir
for 4 h at reflux. Under these conditions, no product
of dehydrohalogenation was detected which would have
led to double bond migration and formation of the
aromatic pyrrole derivatives, which is observed with
reagents of strong basicity but weak nucleophilicity
(i.e., DBU,17 phenoxide anion).2,9 The isolated azides
were then subjected to hydrogenation in the presence
of Lindlar� catalyst in EtOH as solvent10 to give the
amines in a fairly good yield (Scheme 1).

Finally, representative benzamides 1 and 2 were synthe-
sized in good yields by coupling amines 11 and 12 with
benzoic acids 15 and 16, respectively, in the presence of
EDC17 at room temperature in CH2Cl2 (Scheme 1,
Table 1).

In conclusion, we have provided for the first time, a syn-
thetic application of iodocyclization of b-enaminoesters
to the synthesis of potentially interesting N-, C2-, and/or
C3-substituted 5-methylene-pyrrolidine and 5-methyl-
ene-2-pyrroline benzamides. Though not stereoselective,
the method proved to be robust by affording the key,
highly functionalized iodide intermediates in three syn-
thetic steps. Also, their functional group inter-conver-
sion to amines and subsequent coupling with the
benzoic acids via EDC was achieved in a straight-
forward manner and in good yields. Although the scope
of the reaction remains to be fully explored, it provides
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Figure 2. Proposed mechanism for the iodocyclization of b-enaminoesters.

Table 1. Novel representative pyrrolidine- and 2-pyrroline-substituted benzamides synthesized via iodocyclization of b-enaminoestersa

Compound R1 R Yieldb (%) Mpc (�C)

O

N
H

O

N

CO2CH3

Cl

R1 R
CH3

1a H Et 74 105–106
1b NH2 Et 75 159–160
1c H Bn 76 120–121
1d NH2 Bn 75 146–148

O

N
H

O

N

Cl

R1 Bn
CH3

CH3

CO2CH3 2a H — 75 136–137
2b NH2 — 74 145–146

a See Refs. 11 and 12.
b Isolated yield for the last synthetic step after SiO2 flash chromatography.
c Determined in a Thomas–Hoover apparatus. Uncorrected.
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entry to analogs that have not been previously readily
available for pharmacological evaluation.
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