

Tetrahedron Letters 44 (2003) 4149-4151

TETRAHEDRON LETTERS

Silicon polypodands: powerful metal cation complexing agents and solid-liquid phase-transfer catalysts of new generation

Angelamaria Maia,^{a,*} Dario Landini,^a Boguslawa Leska^b and Grzegorz Schroeder^b

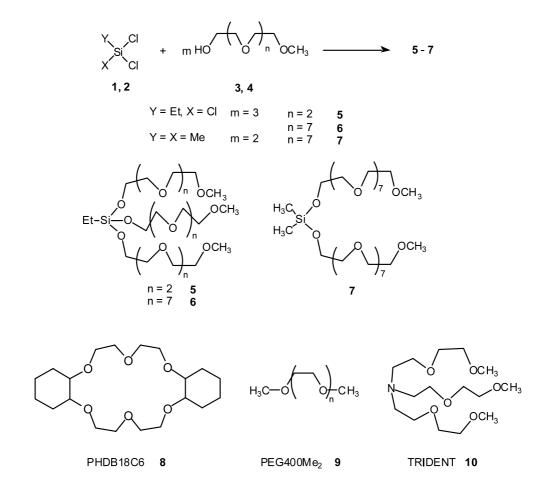
^aIstituto di Scienze e Tecnologie Molecolari (ISTM) del CNR and Dipartimento di Chimica Organica e Industriale dell'Università, Via C. Golgi 19, I-20133 Milano, Italy ^bFaculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland

Received 30 January 2003; accepted 14 March 2003

Abstract—Silicon polypodands 5–7 are found to be powerful complexing agents of alkali metal salts in low polarity solvents and very efficient catalysts in anion-promoted reactions under solid–liquid PTC conditions. The catalytic activity is comparable with that of the cyclic polyether PHDB18C6 8. © 2003 Elsevier Science Ltd. All rights reserved.

In recent years, polypodands, open-chain ligands in which several polyether chains are linked to the same binding centre, have attracted increasing interest as anion activators in homogeneous and heterogeneous systems.¹⁻⁶ They represent a valid alternative to the cyclic analogues crown ethers and cryptands due to their substantially lower cost, relative non-toxicity and high efficiency.¹⁻⁶ In addition, the possibility of regulating their complex-forming properties by altering their structure make them particularly suitable ligands for phase-transfer catalyzed (PTC) processes.¹⁻⁶ Here we report that silicon polypodands 5-7, obtained in high yields, by reacting trichloroethyl- (1) or dichlorodimethylsilane (2) with the appropriate polyethyleneglycol monomethylether 3 and 4 (Scheme 1),⁷ revealed powerful complexation of alkali metal salts even in low polarity solvents and hence are very efficient catalysts in a number of anion-promoted reactions (nucleophilic substitution, reduction, alkylation, ...) under solid-liquid (SL) PTC conditions. Typical examples of complexation extent and catalytic activity in PTC reactions are collected in Tables 1-3. The data of Table 1 highlight the remarkable complexing ability of polypodands 5-7, increasing in the order $5 < 7 \le 6$. The complexation value (up to 4 mol of salt per mol of ligand) mainly depends on the total

amount of donor atoms (oxygens) and, to a lesser extent, on the number of polyether chains linked to the central silicon atom. Catalytic activity of 5-7 parallels their complexing ability. Indeed, as reported in Table 2 for typical S_N 2 reactions under SL-PTC conditions, the shortest reaction times are always found for polypodands 6 and 7 in line with their high complexation values (Table 1). Comparison with classical polyether ligands reveals that the catalytic efficiency of polypodands 6 and 7 (Table 2) is comparable with that of perhydrodibenzo-18-crown-6 PHDB18C6 (8), whereas that of 5, with shorter chains and a lower number of binding sites, is similar to that of openchain tris(polyoxaalkyl)amine TRIDENT (10), considered to be the catalyst of choice for many SL-PTC reactions,⁸ or PEG400Me₂ 9. Analogously, 6 and 7 behave like crown ether 8 in alkylation reactions (2) and (3) (Scheme 2), where PEG400Me₂ 9 requires reaction times remarkably longer, close to those of the uncatalyzed reaction (Table 3). In addition, the SL-PTC reduction with NaBH4 of benzaldehyde to the corresponding alcohol is three times faster with 6and 7 than with crown 8.


Accordingly, the complexing ability of these silicon podands is similar or even higher than that of the cyclic polyether **8**, and much higher than that of open-chain ligands **9** and **10** (Table 1).

Silicon podands 5–7 are found to be thermally stable, almost up to the distillation temperature (250°C, 2

Keywords: polypodands; complexing agents; solid–liquid phase-transfer catalysts; anion-promoted reactions.

^{*} Corresponding author. Tel.: +39-02-503-14162; fax. +39-02-503-14159; e-mail: angelamaria.maia@unimi.it

^{0040-4039/03/\$ -} see front matter @ 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0040-4039(03)00838-4

Scheme 1.

Table 1. Complexation extent^{a,b} of silicon polypodands 5-7 and polyether ligands 8-10 under SL-PTC conditions at $60^{\circ}C$

МҮ	Ligand						
	5	6	7	8	9	10	
NaI ^a	0.47	4.0	2.5	1.0	0.86	0.95	
KI ^c	0.22	1.7	1.3	1.0	0.47	0.55	
NaBr ^{c,d}	0.35	1.8	1.7	1.1	1.0	1.5	
KPh(CO)Ne,f	0.05	0.18	0.18	0.8	0.13	1.1	
KPhO ^{e,g}	2.0	3.6	3.4	1.2	1.7	2.6	

^a Defined as complexed MY mol/ligand mol.

- ^b Average of at least four titrimetric determinations. The error is estimated to be 10%.
- ^c A chlorobenzene solution (25 ml) of ligand (0.01 M) and 50 molar equiv. of salt MY, as solid phase.
- ^d In CH₃CN.
- ^e In CH₃CN at 80°C.
- ^f A CH₃CN solution (25 ml) of ligand (0.02 M) and 10 molar equiv. of KPh(CO)₂NY, as solid phase.
- $^{\rm g}$ A CH₃CN solution (25 ml) of ligand (0.02 M), phenol (0.2 M) and 5 mmol equiv. of solid K₂CO₃.

mmHg) and stable for long times (almost 3 days) under reaction conditions. The results as a whole reveal the remarkable complexing ability of this new class of open-chain ligands. The presence of more than one polyether chain linked to the same binding centre makes these silicon polypodands complexing agents more efficient than the simple podand PEG400Me₂ 9. As a consequence, the catalytic activity in SL–PT reactions is much higher, even comparable with that of cyclic polyethers such as PHDB18C6 8.

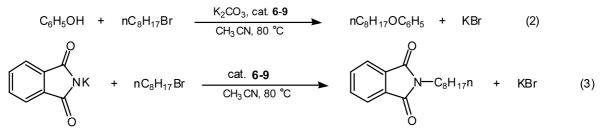
Acknowledgements

This work was performed in the framework of a NATO Science Fellowship (37/J/2000) granted to B.L. and Grant KBN No. T09A 096 20. Financial support of CNR and Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) is also acknowledged. Table 2. Catalytic activity of silicon polypodands 5–7 and polyether ligands 8–10 in S_N^2 reactions (1) under SL–PTC conditions^a

$$n-C_{8}H_{17}X + MY_{solid} \xrightarrow{\text{cat. 5 - 10}} n-C_{8}H_{17}Y + MX_{solid}$$
(1)

Х	MY	Reaction time ^b (h)							
	No cat.	5	6	7	8	9	10		
OSO ₂ CH ₃	NaI	>70	2.1	0.6	0.9	0.7	5.0	2.3	
OSO ₂ CH ₃	KI	с	~ 10	2.2	3	3.3	6	7	
Br	NaI	d	8	1.8	4.5	1.2	4.2	6	
OSO ₂ CH ₃ ^{e,f}	NaBr	113	32	29	31	57	57	47	

^a A chlorobenzene solution (5 ml) of substrate *n*-C₈H₁₇X (1 M), catalyst (0.05 M) and internal standard (0.5 M) with 12.5 mmol of MY as solid phase.


^b A conversion $\geq 90\%$ by GLC.

^c 24% conversion after 4 days.

^d 4% conversion after 6 days.

^e In CH₃CN.

^f A CH₃CN solution (5 ml) of substrate (0.2 M), catalyst (0.02 M), internal standard (0.1 M) and 5 mmol of solid NaBr.

Scheme 2.

Table 3. Catalytic activity of silicon polypodands (6 and 7) and polyether ligands (8 and 9) in alkylation reactions (2) and (3) under SL-PTC conditions, at 80°C

Catalyst	Reaction time ^a (h)			
	Reaction (2) ^b	Reaction (3) ^c		
_	8	32		
6	3	3.8		
7	3	4.5		
8	2.3	3.3		
9	7	10.7		

^a For conversion $\geq 90\%$.

- ^b A CH₃CN solution (5 ml) of substrate (0.2 M), ligand (0.02 M), internal standard (0.1 M), phenol (0.2 M) and 1 mmol of K₂CO₃. ^c A CH₃CN solution (5 ml) of substrate (0.2 M), ligand (0.02 M),
- internal standard (0.1 M), and 1 mmol of C₆H₄(CO)₂NK.

References

- 1. Kron, T. E.; Tsvetkov, E. N. Russ. Chem. Rev. 1990, 59, 283–298 and references cited therein.
- Gokel, G. W.; Murillo, O. In Comprehensive Supramolecular Chemistry–Molecular Recognition: Receptors for Cationic Guests; Gokel, G. W., Ed. Podands; Elsevier, UK: Oxford, 1996; Vol. 1, pp. 1–33.
- Landini, D.; Maia, A.; Penso, M. In Comprehensive Supramolecular Chemistry–Molecular Recognition: Receptors for Cationic Guests; Gokel, G. W., Ed. Anion Activation; Elsevier, UK: Oxford, 1996; Vol. 1, pp. 417–464.
- 4. Maia, A. Pure Appl. Chem. 1995, 67, 697-702.
- 5. Pedersen, C. J.; Frensdorff, H. K. Angew. Chem., Int. Ed. Engl. 1972, 11, 16–25 and references cited therein.
- 6. Lehn, J. M. Angew. Chem., Int. Ed. Engl. 1988, 27, 89-112.
- The structures of 5-7 were proved by ¹H, ¹³C and ²⁹Si NMR spectroscopy. See: Leska, B.; Gierczyk, B.; Eitner, K.; Rybachenko, V.; Schroeder, G. *Phys. Chem. Chem. Phys.*, submitted.
- 8. Soula, G. J. Org. Chem. 1985, 50, 3717-3721.