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The synthesis of carbohydrate-based glycogen phosphorylase inhibitors is attractive for potential appli-
cations in the treatment of type 2 diabetes. A titanium-mediated synthesis led to a benzoylated C-glu-
cosylated cyclopropylamine intermediate, which underwent a benzoyl migration to afford the
corresponding 2-hydroxy-C-glycoside. X-ray crystallographic studies revealed a unit cell composed of
four molecules as pairs of dimers connected through two hydrogen bonds. The deprotection of the ben-
zoate esters under Zemplén conditions afforded a glycogen phosphorylase inhibitor candidate displaying
weak inhibition toward glycogen phosphorylase (16% at 2.5 mM).

� 2008 Elsevier Ltd. All rights reserved.
Glycogen phosphorylase (GP) plays an important role in the
control of glycemia.1–4 This enzyme is responsible for the depoly-
merization of glycogen in which a terminal glucose unit is cleaved
and phosphorylated to produce glucose-1-phosphate and glycogen
missing one glucose unit. GP is mostly located in the muscles for
the production of glucose as a source of energy, but also in the liver
where it contributes to hepatic glucose production. The inhibition
of this enzyme is therefore attractive for the development of new
treatments of type 2 diabetes.5–8 GP possesses various binding
sites on which several types of molecules can act as inhibitors. A
large set of glucose-based molecules has been designed as ligands
binding to the active site of GP, and many of them were moderate
or potent competitive inhibitors of this enzyme.5,6,9–12

Analysis of the structures of glucose-based inhibitors of GP
highlights a few preferred structural features of the aglycons.
Among them, hydrogen bonds in the urea, carbonyl groups in the
acylated glucosyl-ureas,10 and hydrophobic residues as in the C-
glucosylated 1,2,4-oxadiazoles (Fig. 1) have to be considered.
All rights reserved.
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idal).
We have shown that inhibition of GP was enhanced by the
hydrophobicity and the electron density of aromatic moieties in
the aglycon.11,12 Based on these observations, we designed a short
synthetic route to C-glucosylated cyclopropylamides from a C-glu-
cosyl cyanide through a titanium-mediated cyclopropanation
developed recently.13–22 This methodology was also applied to
the synthesis of ester-protected ribofuranosyl cyanides.23 The
amide function would therefore act as a donor and acceptor of
H-bonds, and the cyclopropyl and phenyl rings as hydrophobic res-
idues that can be accommodated in the b-channel next to the ac-
tive site of GP.

The readily available glucosyl cyanide 124 was first reacted un-
der standard13 titanium-mediated cyclopropanation conditions
(Scheme 1). However, the addition of EtMgBr to a mixture of 1
and Ti(Oi-Pr)4 in Et2O, followed by BF3�Et2O, did not give the ex-
pected primary cyclopropylamine 2, but the benzamide 3 in 62%
yield. This amide resulted presumably from a regioselective migra-
tion of the benzoyl group from the 2-position to the amine. Inter-
estingly, when the reaction was performed without a Lewis acid
(BF3�Et2O), the same amide 3 was obtained in a slightly better yield
(66%).25 Changing the solvent (THF or Et2O) or performing the
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Scheme 1. Reagents and conditions: (a) EtMgBr (2.2 equiv), Ti(Oi-Pr)4 (1.1 equiv), Et2O–THF, rt, 1 h (66%); (b) NaOMe, MeOH (93%).
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Figure 1. Structures of some glucose-based inhibitors of glycogen phosphorylase and of the cyclopropylamide inhibitor candidate.
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addition of the Grignard reagent at lower temperature did not
influence the outcome of the reaction, providing invariably the
amide 3 as the main product. The benzoate esters were finally re-
moved under Zemplén conditions to obtain the expected C-glu-
cosylated cyclopropyl-benzamide 426 (Scheme 1).

Such a benzoyl migration in the glucopyranose series is note-
worthy, since a similar amide formation was not observed for a re-
lated 2-benzoylated ribofuranose derivative (Fig. 2).23 2C-selective
acetyl groups migration was similarly observed while preparing
substituted C-glycopyranosyl-methylamines.27,28

The benzoyl group migration occurred either during the cyclo-
propanation process through a spiro-cyclopropylated six-mem-
bered ring system and hydrolysis (Fig. 3, path A), or after
formation of the cyclopropylamine, via intramolecular aminolysis
of the most accessible benzoate group (Fig. 3, path B).

Cyclopropyl-benzamide 3 afforded single crystals suitable for X-
ray crystallography by slow evaporation of a solution in dichloro-
methane followed by washing of the crystals with diethyl ether.29

A colorless crystal with dimensions 0.07 � 0.07 � 0.11 mm3 was
selected for X-ray structure analysis (Fig. 4). The compound crys-
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Figure 2. Titanium-mediated cyclopropanation afforded the expected cyclopropylamine
tallized in the non-centrosymmetric space group P21 with an
asymmetric unit consisting of four independent molecules
(Z0 = 4), which is due to the different orientations of phenyl groups
from one molecule to another (Fig. 5). Two types of hydrogen
bonds were observed (Table 1): an intramolecular O–H���O bond
between the carbonyl of the amide and the hydroxyl group at
the 2-position and an intermolecular N–H���O bond between NH
of the amide and the carbonyl of the O-6 benzoate, leading to the
formation of dimeric entities (Fig. 6). The three-dimensional pack-
ing was achieved through C–H���O interactions. All bond distances
and angles were in agreement with the expected values.30 The
crystal packing contained solvent accessible voids of 208.7 Å3 per
unit cell (3.1% of the total volume).

The inhibition of the hydroxylated cyclopropyl-benzamide 4
was evaluated against rabbit muscle glycogen phosphorylase b
(RMGPb).31 No inhibition was observed at a concentration of
625 lM and 16% inhibition at 2.5 mM. The poor biological activity
observed could be attributed to unfavorable structural and confor-
mational features of the cyclopropyl group or to its inability to
establish binding interactions with the active site of GP. Neverthe-
quiv)
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in good yield in the presence of benzoyl protecting groups in the ribofuranose series.
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Figure 3. Proposed pathways for the formation of the cyclopropyl-benzamide 3.

Figure 4. Representation of the X-ray crystal structure of cyclopropyl-benzamide 3.

Figure 5. Overlay of two molecules of cyclopropyl-benzamide 3 in the same unit
cell displaying different orientations of the phenyl rings.
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less, binding at the inhibitor site cannot be ruled out due to the
presence of a phenyl ring in the inhibitor’s aglycon structure which
could interact with the protein. The use of computer-aided strate-
gies (e.g., fragment-based drug design) will be considered for the
design of other C-glucosylated cyclopropyl-amides with poten-
tially better ability to bind the active site of GP.
In conclusion, titanium-mediated cyclopropanation of the tetra-
benzoylated b-D-glucopyranosyl cyanide afforded a 1-benzamide
derivative. It originated from the selective migration of the 2-ben-
zoyl group to the newly created amine. The selectivity of the ben-
zoyl group transfer from the 2-position to the amine moiety can be
advantageous for the selective synthesis of 2-deoxy-2-amino
glycosides. The crystal packing of the benzamide displayed four
molecules in the unit cell with two dimers held together by two



Figure 6. Dimers formed through intermolecular N–H���O hydrogen bonds (dotted lines) in the same unit cell.

Table 1
Distances and angles characterizing hydrogen bonds observed in each molecule present in the unit cell of cyclopropyl-benzamide 3

D–H (Å) H���A (Å) D���A (Å) D–H���A (�)

N25–H251���O210 0.85 2.10 2.930 (5) 165
O83–H831���O140 0.81 1.93 2.702 (5) 159
N138–H1381���O265ii 0.87 2.07 2.893 (5) 158
O181–H1811���O187 0.82 1.87 2.667 (5) 165
N185–H1851���O50 0.87 2.12 2.961 (5) 162
O243–H2431���O300 0.81 1.98 2.738 (5) 155
N298–H2981���O105vi 0.86 2.06 2.887 (5) 163
O22–H221���O27 0.84 1.98 2.778 (5) 159
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N–H���O hydrogen bonds. The hydroxylated cyclopropyl-benzam-
ide was found a weak inhibitor of GP (16% inhibition at 2.5 mM).
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