A SIMPLE SYNTHESIS OF NEW PYRIMIDINYL PURINE DIONES

V. S. Yadava*, Neeraj Singh, S. S. Yadav, Vijay S. Yadav and Tej Bahadur

Department of Chemistry, University of Lucknow, Lucknow-226007, India. e-mail: <u>nirvirendra@rediffmail.com</u>

ABSTRACT:

One-pot facile synthesis of three novel unusual pyrimidinyl purine diones viz. 8-[1-(4-Amino-2-oxo-1,2-dihydropyrimidin-1-yl)-ethyl]-3-methyl-3,7-dihydro-1*H*-purine-2,6-dione **3a**, 8-[1-(4-Amino-2-oxo-1,2-dihydropyrimidin-1-yl)-ethyl]-1,3-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione **3b**, and 8-[1-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)ethyl]-3,7-dihydro-1*H*-purine-2,6-dione **3c** using BF₃.Et₂O have been reported.

Key Words : Cyclodehydration, unusual, pyrimidinyl purine diones, imidazole, deacylation.

INTRODUCTION

A number of fused system diones ^{1a-d} have been synthesized for their broad spectrum of biological activity. Various novel reagents^{1e-m} have been used for the construction of imidazole rings on to aromatic hydrocarbons/heterocyclic systems. An α -nucleic acid base substituted propanoic acid has been used in the preparation of optically active polynucleotide analogs with synthetic polymer back bones,²⁻⁵ polyethylenimine, polyvinylamine, poly(vinyl alcohol) and polytrimethylenimine. Some of these compounds possess antiviral activity ⁶⁻⁹.

RESULTS AND DISCUSSION

In this paper we report one-pot synthesis of three novel pyrimidinyl purine-2,6- diones using BF₃.Et₂O for cyclodehydration of N- acyl derivatives. An imdazole ring was constructed onto substituted 5,6-Diaminopyrimidin-2,4-diones 2_{a-c} using BF₃.Et₂O, a new and selective reagent for cyclodehydration of N- acyl derivatives. This reaction has many advantages over previous known methods. The acyl derivatives need not to be isolated for cyclodehydration and deacylation reaction.

An α -nucleic acid base substituted propanoic acid has been widely used as pendant group. It is one of the simplest derivatives of nucleic acid base possessing a chiral center and a carboxylic group. The synthesis of such compounds encouraged us to prepare some new pyrimidinyl purine-2,6-diones.

The three compounds **3a**, **3b**, and **3c** have been prepared by taking the advantage of this cyclodehydration reaction and such nucleic acid analogues having a carboxyl group essential for the following reaction.

Scheme1. Synthesis of pyrimidinyl purine-2,6-diones

The compounds **3a**, **3b** and **3c** were characterized by IR, ¹H-NMR, ¹³C-NMR and Mass spectral data. In the IR spectrum, C=N appeared between 1588-1620 cm⁻¹ where as NH at 3390-3425 cm⁻¹.

Figure 1. Structure of pyrimidinyl purine-2,6-diones

In conclusion, BF₃.Et₂O has been used for the first time as efficient cyclodehydration and deacylation reagent for the synthesis of these novel pyrimidinyl purine-2,6-diones.

EXPERIMENTAL

The ¹H and ¹³C NMR spectra of the three synthetic compounds were measured at 300 MHz and 100 MHz respectively using Bruker (Avance) NMR instrument in CDCl₃ and the chemical shifts referenced to tetramethylsilane. Microanalysis was carried on a Carlo Erba 1108 instrument. Mass Spectra was taken on Jeol SX 102 spectrometer. All the chemicals used were of AR grade (Sigma, BDH, & E. Merck).

Synthesis of Pyrimidinyl purine-2,6-diones ; General Procedure

2-(4-Amino-2-oxo-3,4-dihydro-2H-pyrimidin-1-yl)-propionic acid was prepared by the literature procedure.² The ethyl ester of the compound [α]_D=70.2(C=0.25, TFE) after hydrolysis with 5N-HCl afforded the desired acid in 60% yield. The acid chloride 1 was prepared by treatment with SOCl₂ after acetylation.

To a stirred solution of 2-(4-Amino-2-oxo-3,4-dihydro-2H-pyrimidin-1-yl)-propionic acid chloride 1 (1mmol) in dry dioxane (8 mL) was added drop-wise 5,6-Diamino-1-methyl-1H-pyrimidin-2,4-dione 2a (1mmol) dissolved in dry dioxane (2 mL) at 0° C and stirred for 45min at r.t. BF₃.Et₂O (0.5 mmol) in dry dioxane (2mL) was added to the

above reaction mixture and refluxed for 1.5-2.5 h at 130°C. The resulting content was concentrated in vacuo, cooled to 0°C and 0.1-NaOH aq. solution added till pH 6. The crude product was filtered and crystallized with suitable solvent to give 8-[1-(4-Amino-2-oxo-3,4-dihydro-2H-pyrimidin-1-yl)-ethyl]-3-methyl-3,7-dihydro-purin-2,6-dione **3a**. The other two compounds **3b** and **3c** were prepared following the above procedure. The TLC analysis (CHCl₃ - MeOH, 8:2) and Column Chromatography on Silica Gel (CHCl₃ - MeOH, 8:2) afforded the analytically pure compound **3a**, **3b** and **3c** in 86-89% yield, representative compound **3a**, Yield (0.23g, 89%); ¹H NMR (CDCl₃): δ 7.98 (1H, d, J= 7.4 Hz), 8.1 (1H, d, J= 7.2), 1.62 (3H, d, J= 7.0), 4.8 (1H, q, J= 7.0), 2.71(3H, s); ¹³C NMR (100MHz, CDCl₃): δ 166.8, 157.8, 157.6, 155.2, 136.2, 135.5, 121.9, 107.8, 62.1, 51.8, 35.8, 20.1; MS (FAB): m/z= 303 [M⁺]; Anal. Calc for C₁₂H₁₃N₇O₃: C, 47.52; H, 4.29; N, 32.34. Found: C, 47.45; H, 4.27; N 32.29. Such analytical data for 3b and 3c were also found in conformity with their structures.

ACKNOWLEDGEMENTS

The authors thank UGC, New Delhi and CST, Lucknow for financial assistance.

REFERENCES

S. H. Qi, S. Zhang, C. H. Gao, Q. X. Li, Chem Pharm Bull (Tokyo). 56 (7), 993(2008); (b) V. V. Goryunenko, A. V. Gulevskaya, A. F. Pozharskii, Russian Chemical Bulletin. 53 (4), 846(2004); (c) J. Michel, J. J. Toulmé, J.Vercauteren, S. Moreau, Nucleic Acids Research. 24(6), 1127(1996); (d) I. P. Smirnova, A. F. Pozharskii, I. A. Ivanova, A. I. Chernyshev, Chemistry of Heterocyclic Compounds. 28 (2), 181(1992); (e) P.Tempest, V. Ma, S.Thomas, Z. Hua, M. G. Kelly, C. Hulm, Tetrahedron Letters. 42, 4959(2001); (f) M. R.Deluca, S. M. Kervin, Tetrahedron 53, 457(1997); (g)L. J. Mathias, D.Burkett, Tetrahedron Letters. 4709(1979); (h) C. A. Ramsden, H.L.Rose, J.Chem. Soc. Perkin 1. 33, 2319 (1997); (i) C. Boido, V.Boido, F. Novelli, S. J. Paratore, Heterocycl. Chem. 35, 853(1998); (j) G. Frachey, C.Crestini, R. Bernini, R. Saladino, E. Minicione, Heterocycles. 38, 2621(1997); (k) V. S. Yadava, S. S.Yadav, Neeraj. Singh, Heterocycles. 75 (6), 148(2008); (1) V. K.Tandon, Manoj. Kumar, Tetrahedron Letters. 45, 4185(2004); (m) K, Basanagoud, S. Patil, V. Suresh Babu, International Journal of Peptide Research and Therapeutics. 9(4-5), 227(2002).

- 2 C. G. Overberger, J. Y. Chang, Tetrahedron Lett. 30 (1), 51(1989)
- 3 C. G. Overberger, Y. Morishima, Polym. Sci. Ploym. Chem. Ed.18, 1247, 1267(1980).
- 4 C. G. Overberger, S. Kikyotani, Polym. Sci. Ploym. Chem. Ed. 21, 525, 541(1983).
- 5 C. G. Overberger, C. X Lu, J. Polym. Sci. Ploym. Chem. Ed. 23, 1321(1985).
- 6 C. C. Chen, Ph.D Dissertation, The University of Michigan, Ann Arbor, MI, 1985.
- 7 J. Pitha, Adv. Polym. Sci. 50, 1(1983).
- 8 I. L. Finar, Organic Chemistry, 5th edn, (Longman Group Ltd, England)
 Vol 2, Ch. 16, p. 804, 805, 808, 809.
- 9 O. Mitsunobu, Synthesis 1(1981).

Received on November 15, 2009.

Brought to you by | UZH Hauptbibliothek / Zentralbibliothek Zürich Authenticated | 130.60.206.43 Download Date | 8/5/13 12:01 AM