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Synthesis of novel rigid-rod and tripodal azulene chromophores
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Abstract—Two novel azulene chromophores 1 and 2 were synthesized to study dynamics of ultrafast electron injection at the inter-
face of TiO2 semiconductor nanoparticles. Fluorescence quenching was observed upon binding.
� 2005 Elsevier Ltd. All rights reserved.
Azulene and its derivatives possess unusual electronic
and optical properties and find application as compo-
nents in advanced materials.1,2 In particular, azulene
has a long-lived (1.4 ns) emissive second excited singlet
(S2) state and an extremely short-lived (1.6 ps) nonemis-
sive first excited singlet (S1) state, the rapid nonradiative
relaxation of which is attributed to the presence of a
conical intersection between the S1 and S0 states.3 For
this reason, azulene was selected to study electron trans-
fer into TiO2 from vibrationally nonrelaxed excited
states (Fig. 1a). The rates of injection and recombina-
tion from 1-carboxyazulene directly bound to TiO2

nanoparticles and azulene encapsulated within a host
molecule (hemicarceplex) anchored to TiO2 were re-
cently studied.4 In the case of the directly bound 1-carb-
oxyazulene injection from the S2 state was complete
within 100 fs.4 In the case of the encapsulated azulene
the injection and recombination rates are reduced by
approximately 3-orders of magnitude.4

In this letter, we describe the synthesis and properties of
two novel azulene chromophores that bind to TiO2

nanoparticles through a rigid-rod (1) or a tripodal (2)
linker. Compounds 1 and 2 were designed as models
to study the effects of linkers on electron injection of
azulene into TiO2 as illustrated in Figure 1b.

Rigid-rod 1 was synthesized by the two routes shown in
Scheme 1.
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Route A involved Suzuki-type5 coupling of dimethyl-5-
iodo-isophthalate 5b with 2-bromoazulene 7 (Scheme 2),
to afford rigid-rod 1 in 35% yield. In this reaction, in-
stead of the commercially available dimethyl-5-bromo-
isophthalate, we used the more reactive iodoisophthal-
ate 4,6 which was readily prepared from the diazonium
salt of the aminoderivative 3. The poor overall yield of
1 (�8% from 3) from this method, which was previously
employed for the synthesis of other rigid-rods,7

prompted us to use route B as an alternative.

Rigid-rod 1 was synthesized in 74% yield by Sonogash-
ira8 cross-coupling of 4 and 2-ethynylazulene9 7b
(Scheme 3). Ethynylazulene was synthesized in high
yield upon iodination of azulene with N-iodosuccin-
imide (NIS) followed by cross-coupling with trimethylsi-
lyacetylene. From this route, the overall yield of 1 from
3 was 23%. Two different cross-coupling methodologies
were used in the final step (Suzuki in route B and Sono-
gashira in route A) because Suzuki-type coupling, pro-
ceeds through an ethynylboronate intermediate formed
by reaction of the lithium acetylide of 5b, and prevents
the dimerization of 5b. The dimerization of the highly
reactive ethynylazulene 7b in Sonogashira conditions
was minimal and the cross-coupling with 4 proceeded
in high yields.

The same strategy, route B involving Sonogashira cross-
coupling of the linker with the ethyne-substituted chro-
mophore, was used to synthesize azulene-tripod 2
(Scheme 4), instead of route A, which we have preva-
lently followed for the synthesis of tripodal dyes.10 Carb-
oxylation of 1,3,5,7-tetrakis-(p-iodophenyl)adamantane
811 with t-BuLi/CO2, esterification with diazomethane
and separation of the di-, tri-, and tetrasubstituted com-
pounds by silica gel column chromatography gave
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Figure 1. (a) Electron injection into TiO2 nanoparticles from the bound photoexcited azulene (Az*). (b) Models used to study this process: azulene

bound through different types of linkers. A = COOH anchoring group.
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Scheme 1. Synthetic routes to azulene rigid-rod 1.
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Scheme 2. Synthesis of 1 by route A. Reagents and conditions: (i) (a)

NaNO2, HCl (aq), �6 to �3 �C; (b) KI, toluene, �6 to 0 �C, (c) 12 h at

rt, (d) 1 h at reflux; (ii) PdCl2(PPh3)2, CuBr, i-Pr2NH, TMSA, reflux

24 h; (iii) TBAF, THF, 2 h at rt; (iv) Pd(PPh3)4, (TMS)2NLi, MeO-9-

BBN, THF.
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monoiodide 9 in 6–10% yields.12 Sonogashira cross-cou-
pling of 9 with 2-ethynylazulene 7b gave 2 in 37% yield.

While azulene derivatives 6 and 7b easily decomposed
and were used immediately, both 1 and 2, isolated as
green powders, were remarkably stable.13 Their spectral
properties are reported in Table 1. The absorption spec-
tra of 1 and 2, where azulene is substituted with a
p-ethynylenephenylene group, showed a significant
(60 nm) red shift of the S0 ! S2 band compared to
unsubstituted azulene. The weaker S0 ! S1 lower energy
band, responsible for the blue color of unsubstituted
azulene, was also red shifted by �30 nm in 1 and 2.
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Scheme 3. Synthesis of 1 by route B. Reagents and conditions: (i) NIS,

CH2Cl2, 2 h at rt; (ii) TMSA, Pd(dba)2, CuI, i-Pr2NH, PPh3, toluene,

24 h at rt; (iii) KOH in MeOH/THF (1:1), 4 h at rt; (iv) Pd(dba)2, CuI,
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Table 1. Absorption and fluorescence solution data for 1, 2, and

azulene

Chromophore kmax, nm kF, nm

S0 ! S2 (e401, M
�1 cm�1) S0 ! S1

Azulenea 340 572 373

1b 401 (9964) 598 429

2b 402 (8216) 600 425

aMeOH, 1 · 10�4 M.
b EtOH, 2.5 · 10�5 M.
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The methyl esters 1 and 2 were converted into the corre-
sponding carboxylic acids (1-COOH and 2-COOH)14

and added to diluted (250 or 500 mg/L) colloidal EtOH
solutions4 of TiO2 nanoparticles. The colloidal solutions
(pH � 3) were optically transparent and light scattering
was minimal.15 The ground state absorption spectra of
1-COOH and 2-COOH did not change considerably
upon binding (�2 nm red shift), as shown in Figure 2.
The absence of charge transfer bands or large shifts
upon binding suggests weak electronic coupling of the
azulene unit with the semiconductor.

The fluorescence emission of the azulene chromophores
was clearly quenched by addition of TiO2 (Fig. 3), indi-
cating that the molecules bind to the nanoparticles and
that binding results in electron injection in the semicon-
ductor. The residual fluorescence is likely to originate
entirely from nonbound molecules.
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Figure 3. Fluorescence emission spectra of (a) 1-COOH (black solid

line) and 1-COOH/colloidal TiO2 (red dotted line). (b) 2-COOH

(black solid line) and 2-COOH/colloidal TiO2 (red dotted line). In all

cases, the solvent was EtOH and kexc = 382 nm.
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In conclusion two novel azulene chromophores, rigid-
rod 1 and tripod 2, have been synthesized and bound
to colloidal solutions of TiO2 nanoparticles. Steady-
state and time-resolved fluorescence quenching studies
are in progress.
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