Difference-Frequency Laser Spectroscopy of the ν_1 and ν_3 Fundamental Bands of H₂Cl⁺: Determination of the Equilibrium Molecular Structure

SANG K. LEE, T. AMANO, K. KAWAGUCHI,¹ AND M. OLDANI²

Herzberg Institute of Astrophysics, National Research Council, Ottawa, Ontario, Canada K1A 0R6

The gas-phase spectra of the ν_1 and ν_3 fundamental bands of H₂Cl⁺ have been observed with a difference-frequency laser spectrometer between 2525 and 2755 cm⁻¹. The ions were generated in a hollow cathode discharge through a gas mixture of HCl and H₂. A simultaneous least-squares analysis of the ν_1 and ν_3 bands with an effective vibration–rotation Hamiltonian including Coriolis interaction between the $v_1 = 1$ and $v_3 = 1$ states yielded the band origins (2643.2200 and 2630.1404 cm⁻¹ for the ν_1 and ν_3 of H₂³⁵Cl⁺, and 2641.4931 and 2628.1065 cm⁻¹ for the ν_1 and ν_3 of H₂³⁷Cl⁺, respectively), the rotational constants, and the centrifugal distortion constants for the ground and excited states. The equilibrium molecular structure has been determined to be $r_e(H-Cl)$ = 1.30412(17) Å and $\theta_e(H-Cl-H) = 94.243(27)^\circ$ for H₂³⁵Cl⁺ and $r_e(H-Cl) = 1.30411(17)$ Å and $\theta_e(H-Cl-H) = 94.244(26)^\circ$ for H₂³³Cl⁺. © 1988 Academic Press, Inc.

INTRODUCTION

The chloronium ion (H₂Cl⁺), which is isoelectronic with H₂S, has been investigated by several experimental techniques such as mass spectroscopy (1, 2), ion cyclotron resonance spectroscopy (3), and the molecular beam photoionization method (4). These methods provided values for the proton affinities of the hydrogen halides. H₂Cl⁺ is expected to be an abundant ion in a discharge through a mixture of H₂ and HCl due to the relatively large proton affinity of HCl, 134.8 kcal/mole (5), compared with that of H₂, and due to the fact that the dissociative recombination with electrons is the only significant depletion channel. However, H₂Cl⁺ had not been studied with high-resolution spectroscopic methods until the recent observation of the ν_2 fundamental band by Kawaguchi and Hirota (6). More recently, Saito *et al.* (7) observed rotational transitions of H₂³⁵Cl⁺ in the ground state and obtained more accurate rotational constants for the ground state. Also, the nuclear quadrupole coupling constants have been determined for the first time from the hyperfine structure of the millimeterwave spectra (7).

The cosmic abundance of Cl is estimated to be 5.3 in a logarithmic scale in which the abundance of H is set to be 12.0 (8). This abundance is about the same order of magnitude as that of P and about two orders of magnitudes less than those of Si and S. Very few molecules containing P or Cl have been identified in interstellar space so

¹ Visiting scientist (June-August, 1986) from Institute for Molecular Science, Okazaki, Japan 444.

² Visiting scientist (June-September, 1986) from Eidgenössische Technische Hochschule, Zurich, Switzerland. Present address: Research Center, BBC Brown, Boveri & Company, Ltd., CH-5405 Baden, Switzerland.

far. Turner and Bally (9) and Ziurys (10) detected PN in several interstellar sources, and PN seems to be the only phosphorus-containing interstellar molecule observed up to the present time. HCl is obviously one of the most likely chlorine-containing molecules expected in interstellar clouds (11). Recently Blake *et al.* (12) reported a detection of HCl in the Orion Molecular Cloud (OMC-1). According to recent discussions of chlorine chemistry in diffuse (13) and dense molecular clouds (14), the chloronium ion is supposed to be an important precursor of HCl in interstellar clouds, although the relative abundance is estimated to be 5×10^{-9} (equivalent to a column density of 2.6×10^{12} cm⁻²) in typical diffuse clouds (13) and to be about 3.3×10^{-12} in dense clouds (14).

Several ab initio molecular orbital calculations have been performed (15-17) to obtain the proton affinity, the molecular structural parameters, and the spectroscopic constants such as the vibrational frequencies and the rotational constants. Botschwina (16) employed the self-consistent electron pair method combined with the coupled electron pair method on H₂F⁺ and H₂Cl⁺ and their deuterated species. More recently he carried out a more extensive CEPA-1 calculation on H₂Cl⁺ (18).

In this work, the ν_1 and ν_3 fundamental bands of H_2Cl^+ have been observed by a difference-frequency laser system with a hollow cathode discharge modulation technique. From a least-squares analysis of the observed transitions, the molecular constants such as the band origin, the rotational constants, the centrifugal distortion constants, and the Coriolis coupling parameters between the $v_1 = 1$ and $v_3 = 1$ states have been determined. By combining these data with the constants obtained from the analysis of the ν_2 fundamental band (6), the equilibrium molecular structure has been determined.

EXPERIMENTAL DETAILS

The experimental apparatus used in this investigation is as described previously (19, 20). Frequency-tunable infrared radiation (2.2–4.4 μ m) with a spectral purity of a few megahertz is generated by mixing visible radiation from a single-mode tunable dye laser with that of a single-mode Ar⁺ laser in a LiNbO₃ crystal contained in a temperature-controlled oven. The resulting difference frequency gives continuous coverage from 2400 to 4400 cm⁻¹ with a Rh-6G dye laser and a few typical Ar⁺ laser lines. The infrared power is proportional to the product of the radiation powers of the two lasers (21). About 300 mW of dye laser and about 250 mW of Ar⁺ laser power were used, and the resulting infrared power was estimated to be about 5 μ W at around 2600 cm⁻¹.

The absorption cell employed in this study was made of Pyrex tube of 70 mm inner diameter fitted with a cylindrical stainless steel of diameter 38 mm and length 80 cm, with copper tubing wound around for the circulation of cooled methanol to cool the discharge. H_2Cl^+ was produced by a modulated discharge at 16 kHz in a flowing gas mixture of H_2 (~700 mTorr) and HCl (~20 mTorr). The optimum peak current was found to be about 500 mA. The signal intensity was not so sensitive to the mixing ratio of the two gases. In order to distinguish the ion signal from that of neutral species, an axial magnetic field of about 150 G was applied to the discharge (19, 22), resulting in the suppression of the intensity of the ion signals.

SPECTRA OF H2Cl+

The infrared beam traveled 32 times through the absorption cell, the total effective path length being about 26 m. A part of the infrared beam was directed through a reference gas cell for wavenumber calibration and the infrared power was monitored by an InSb detector operated at liquid nitrogen temperature. The spectra of $D_2O(23)$, HDO (24), and N₂O (25, 26) were used as references, together with frequency markers from a temperature-stabilized étalon of free spectral range 150 MHz. The accuracy of the wavenumber measurement was estimated to be better than 0.001 cm⁻¹.

OBSERVATION AND ANALYSIS OF THE SPECTRA

The band origins of the ν_1 and ν_3 bands of H₂Cl⁺ have been estimated on the basis of ab initio calculations by Botschwina (16) to be 2676 and 2679 cm⁻¹, respectively, and by DeFrees and McLean (17) to be 2669 and 2666 cm⁻¹. Thus, we started the search from 2620 cm⁻¹ upward and found many transitions that exhibited the characteristics of ion signals upon application of a magnetic field (19, 22). After optimizing the reaction conditions a range of about 100 cm⁻¹ up to 2720 cm⁻¹ was scanned, and more than 300 lines were observed.

However, the assignment was not straightforward because (1) H₂Cl⁺ is a light asym-

FIG. 1. A portion of the spectrum of H_2Cl^+ recorded with the difference frequency laser spectrometer. ³⁵Cl and ³⁷Cl indicate absorption lines of $H_2^{35}Cl^+$ and $H_2^{37}Cl^+$, respectively. The values in parentheses represent the relative intensity defined as

$$I = g_I g_{\rm iso} S \exp(-E_{vr}/kT),$$

where S is the linestrength, g_I the spin weight, and g_{iso} the isotopic abundance, calculated at T = 273 K. The line marked by X is a transition of an H³⁷Cl hot band (R(0) of $v = 4 \leftarrow 3$).

metric top with no specific regularities in the spectrum over a wide range, (2) the vibration-rotation energy levels are perturbed by Coriolis interaction between the $v_1 = 1$ and $v_3 = 1$ states, and (3) there exist two isotopes (³⁵Cl and ³⁷Cl) of substantial abundance. Nevertheless, the assignment was carried out by sorting the combination differences systematically to be compared with all the possible combination differences for the ground state deduced from the analysis of the v_2 fundamental band (6). The statistical weight of 3:1 for $K''_a + K''_c =$ odd:even facilitated the assignment. When the several low-J lines had been thus assigned, it was realized that the scanning range was insufficient. The range previously covered included mostly *R*-branch transitions, and we extended the measurements from 2525 to 2755 cm⁻¹. Eventually more than 1100 transitions were precisely measured. In the course of the measurements, we noticed widely and regularly spaced lines which behaved differently from the ions in the magnetic field. They were identified as the absorption lines of hot bands of HCl (27). A section of the spectrum is shown in Fig. 1.

F1									
	Ground state	v_1 =1 state	v_3 =1 state						
Ã	11.2528817(30) ^a	11.080711(62)	11.025581(60)						
₿.	9.1258843(44)	8.981502(58)	9.016378(60)						
\hat{C}	4.9401016(20)	4.859978(56)	4.880424(56)						
$\Delta_J imes 10^3$	0.66943(23)	0.66226(54)	0.67342(60)						
$\Delta_{JK} imes 10^3$	-2.3989(12)	-2.3522(24)	-2.4163(24)						
$\Delta_K imes 10^3$	4.4086(19)	4.3174(43)	4.3764(23)						
$\delta_J imes 10^3$	0.30040(10)	0.29575(30)	0.30464(32)						
$\delta_K \times 10^3$	-0.06365(28)	-0.0568(11)	-0.08210(72)						
$\Phi_J imes 10^6$	0.2659(29)	0.2683(51)	0.2451(64)						
$\Phi_{JK} imes 10^6$	-1.576(20)	-1.225(30)	-1.259(29)						
$\Phi_{KJ} imes 10^6$	1.280(43)	0.377(69)	0.713(47)						
$\Phi_K imes 10^6$	2.318(39)	2.355(97)	2.607(39)						
$\phi_J imes 10^6$	0.1311(14)	0.1338(26)	0.1330(32)						
$\phi_{JK} imes 10^6$	-0.4656(57)	-0.435(15)	-0.4545(89)						
$\phi_K imes 10^6$	1.389(16)	1.449(26)	1.360(18)						
$ u_0$		2643.21999(14)	2630.14043(13)						
Coupling cons	tants:	$h_{13} = -0.1905(19)$							
		$h_{13}' = 0.17288(31)$)						

TABLE I

TT 3501+ /

-15

^a The values in parentheses denote one standard error in units of the last digit in the parameter.

		_	
TA	BL	Æ	П

	Ground state	v_1 =1 state	v ₃ =1 state		
Ã	11.219603(55)ª	11.04754(13)	10.99352(14)		
₿.	9.125946(44)	8.98208(12)	9.01627(13)		
Ĉ	4.933638(22)	4.85373(12)	4.87403(13)		
$\Delta_J imes 10^3$	0.6719(12)	0.6620(11)	0.6773(11)		
$\Delta_{JK} \times 10^3$	-2.4076(41)	-2.3631(45)	-2.4383(42)		
$\Delta_K \times 10^3$	4.3885(55)	4.3320(67)	4.3656(51)		
$\delta_J imes 10^3$	0.30165(60)	0.29604(60)	0.30556(55)		
$\delta_K \times 10^3$	-0.0634(16)	-0.0583(24)	-0.0808(15)		
$\Phi_J imes 10^6$	0.297(16)	0.275(12)	0.282(12)		
$\Phi_{JK} imes 10^6$	-1.632(70)	-1.500(73)	-1.567(56)		
$\Phi_{KJ} imes 10^6$	0.96(13)	0.91(21)	0.946(98)		
$\Phi_K imes 10^6$	2.85(15)	2.56(18)	2.81(15)		
$\phi_J imes 10^6$	0.1481(79)	0.1361(57)	0.1412(61)		
$\phi_{JK} imes 10^6$	-0.493(25)	-0.441(38)	-0.466(16)		
$\phi_K imes 10^6$	1.636(55)	1.464(75)	1.506(48)		
$ u_0$		2641.49312(19)	2628.10653(17)		
Coupling cons	tants:	$h_{13} = -0.1764(48)$			
		$h_{13}' = 0.17279(72)$)		

Fitted Spectroscopic Parameters for H2³⁷Cl⁺ (in cm⁻¹)

^a The values in parentheses denote one standard error in units of the last digit in the parameter.

A least-squares fit was carried out with Watson's A-reduced vibration-rotation Hamiltonian in a I' representation (28). The Hamiltonian employed is given as

$$\begin{aligned} H_{vr} &= E_v + \frac{1}{2} \left(\tilde{B} + \tilde{C} \right) J^2 + \left[\tilde{A} - \frac{1}{2} \left(\tilde{B} + \tilde{C} \right) \right] J_z^2 + \frac{1}{4} \left(\tilde{B} - \tilde{C} \right) (J_+^2 + J_-^2) \\ &- \Delta_J J^4 - \Delta_{JK} J_a^2 J^2 - \Delta_K J_a^4 - \delta_J J^2 (J_+^2 + J_-^2) \\ &- \frac{\delta_K}{2} \left[J_a^2, \left(J_+^2 + J_-^2 \right) \right]_+ + \Phi_J J^6 + \Phi_{JK} J^4 J_a^2 + \Phi_{KJ} J^2 J_a^4 \\ &+ \Phi_K J_a^6 + \phi_J J^4 (J_+^2 + J_-^2) + \frac{\phi_{JK}}{2} J^2 [J_a^2, \left(J_+^2 + J_-^2 \right)]_+ + \frac{\phi_K}{2} \left[J_a^4, \left(J_+^2 + J_-^2 \right) \right]_+, (1) \end{aligned}$$

where $[A, B]_{+} = AB + BA$ and $J_{\pm} = J_b \pm iJ_c$, for each of the three states involved. In

TABLE III

Observed Transitions of H₂³⁵Cl⁺ (in cm⁻¹)

$J' \mathtt{K}'_{a} \mathtt{K}'_{c}$ +	$J'' \mathbf{K}''_a \mathbf{K}''_c$	Obs.	(O-C) \cdot 10 ⁴	J'K'αK'c ↔	$J'' \mathbf{K}''_{a} \mathbf{K}''_{c}$	0bs.	(O-C) · 10 ⁴
ν_1 fundament	al band						
4 4 1	5 5 0	2531.7710	5	3 2 2	4 ₁ ₃	2588.5596	1
817	9 2 8	2531.8130	18ª	3 3 1	4 2 2	2589.2563	1
8 2 7	918	2531.8130	-1	7 3 5	744	2591.3159	2
7 2 5	836	2531.8730	4	6 2 5	634	2593.2583	1
909	10 110	2531.9175	10	2 1 1	322	2593.8540	-2
919	10 010	2531.9175	10	/ 2 5	734	2594.1689	2
7 3 5	8 ₂₆	2532.1399	7	6 1 5 F	6 ₂₄	2594.1733	7
440	551	2532.5576	8	5 1 5	524	2594.6809	-8
532	643	2533.3943	4	505	D 1 4	2594.8835	-3
4 3 2	541	2533.5200	0	945	954	2590.5234	2
0 43	/ 3 4	2537.4736	1	44	/ 5 3	2590.9465	-3
024 7	435	2542.6350	0	303	414	2597.3301	-5
7 1 6	027	2543.0710	-4	3.0	4 2 0	2597.4400	-4
26	0 1 7	2543.0601	-3	6.0	- U 4	2597.4750	-9
008	919	2043.1030	1-	6	6.	2601 0301	-6
0 1 8 6	909	2543.1030	-0	7 5 3 4	7 6 1	2602 2051	3
4	725	2543.7280	-9	6 4 2	6, 2	2602.2001	4
	7 4 2	2544 3210	3	2 2 1	3,2	2603 0520	5
9 0 0	9, 6	2549 1421	-5	524	5 2 2	2603.7693	-2
5 g g	6	2552 3160	1	1 1 0	2 2 1	2604 2383	õ
3 2 3	4 2 1	2553.0579	5	4 1 4	4 2 3	2605.4932	-4
6 1 5	7 2 6	2554.1743	5	4 0 4	4 1 3	2606.3472	13
6 2 5	716	2554.2197	2	5 4 2	5 5 1	2606.4680	7
7 0 7	8	2554.3137	7	5 4	5 2 3	2606.6792	6
7,7	8	2554.3137	6	2 0 2	3 3	2607.4346	-1
3 3 1	4 4 0	2554.4832	3	6 2 4	6 3 3	2607.7971	-4
5 4 2	6 3 3	2556.0977	-10	2 . 2	3 0 3	2608.1780	0
5 3 3	6 2 4	2556.1167	-13	8 4 4	8 5 3	2608.4333	-1
3 3 0	4 4 1	2556.3911	3	7 3 4	7 4 3	2608.8132	-9
8 o 8	8 1 7	2560.7324	-19 ^a	541	550	2609.9331	-4
8 1 8	827	2560.7324	0	743	752	2611.4453	-2
4 2 2	5 ₃₃	2560.7727	3	4 2 3	4 3 2	2612.7268	-3
5 1 4	6 ₂₅	2565.0537	5	4 ₃₂	4 4 L	2613.3845	-3
524	6 1 5	2565.27 8 1	3	3 ₁₃	3 ₂₂	2615.4644	-2
606	717	2565.3030	9	1 0 1	2 1 2	2616.9231	-3
616	707	2565.3030	2	303	312	2618.2434	-4
927	936	2568.9275	-4	633	642	2618.2805	-11
3 2 1	432	2569.9084	7	4 3 1	440	2619.1790	-3
6 27	836	2570.5073	4	322	331	2019.2095	-2
0 1 7	026 E	2570.5052	4 7	413	4 2 2 E	2019.2990	1
3 2 7	323	2570.0009	12	J 3 2 1	2 4 1	2619.6201	-2
- 1 2 7	7	2572 1065	-6	+ 1 1 5 a a	- 0 2 5 a a	2619 7070	-4
7 0 7	7 2 6	2572 2061	1	2 1 3	2^{3}_{2}	2623.6599	1
4 1 2	5 2 4	2575.4656	11	4 2 2	4 3 1	2626.5222	ō
5	6	2576.1482	10	0 0 0	1 1 1	2627.0278	-4
5 1 5	6 . 6	2576.1482	-32 ^b	3 2 1	3 3 0	2628.0464	7
2 2 1	330	2576.4558	4	3 1 2	3 2 1	2628.9897	4
4 2 3	5 4	2576.4741	-2	2 0 2	2 1 1	2629.4180	2
4 4 1	5 ₃₂	2578.0979	0	2 1 1	2 2 0	2633.3569	1
8 3 6	845	2580.2830	-4	1 0 1	1 1 0	2636.6831	-3
2 ₂₀	3 3 1	2580.4409	-7	1 1 0	1 0 1	2649.2153	-3
8 2 6	8 3 5	2581.2141	1	4 3 1	4 2 2	2653.9521	-6
7 2 6	735	2582.0288	2	321	312	2654.6433	14
1 1 6	125	2582.2683	-2	330 0	5 2 1 0	2000.2000	-2
016 6	025 6	2583.5204 2583 5703	-8 -1	963	954	2000.2904	-1
006	4	2003.0/03	-1	4 1 1 6	402 600	2000.0001	- /
5 1 2	423	2004.9100	-0	7 4 2	7	2656 1743	-1
4 1	5 1 5	2586.8638	1	5 4 1	5 3 3	2656.2607	-2
8 4 5	854	2588.4819	-1	853	8 4 4	2656.8337	7
5	- 5 4		-				

^a The relative weight is 0.5 due to the weaker component of unresolved K-type doublet in which the S/N ratio of the peak is strong.

^b The relative weight is 0.1 due to the weaker component of unresolved K-type doublet in which the S/N ratio of the peak is weak.

^c This transition is omitted from the fit because the S/N ratio of the peak is very weak.

SPECTRA OF H₂Cl⁺

TABLE III—Continued

TIVIVI	Thellall	01	$(0-0) \times 104$	T'V'V'	THEILEN	Obe	$(0-C) > 10^4$
$J K_a K_c \leftarrow$	JKaKc	UDS.	(0-0) + 10	$J \kappa_a \kappa_c \leftarrow$	Jrarc	005.	(0 0) × 10
-	-		_	7	e	2712 4822	-10
532	523	2656.9888	5	7 1 7	006	2/12.4032	-10
1 1 1	000	2659.1680	-2	3 ₂₁	2 1 2 E	2712.0290	2
743	734	2660.2185	15	015	524	2/12.9915	3
6 5 1	6 4 2	2660.6990	-3	025	014	2/13.2334	-1
440	4 3 1	2660.8462	-4	033	4 2 2	2/10.//12	-10
2 2 1	2_{12}	2661.2383	-2	033	542	2720.0909	-10
4 2 2	4 1 3	2662.0247	4	918	909	2720.5002	-2
954	945	2662.5469	-3	024	533	2720.7061	0
3 3 1	322	2663.7119	-6	808	7 1 7	2720.9939	-3
972	963	2664.1855	-4	818	707	2720.9939	-4
3 1 2	3 0 3	2665.4687	4	7 1 6	625	2721.5583	6
2 0 2	1 1 1	2665.8979	-2	726	615	2721.6084	-3
7 6 1	7 5 2	2666.3921	ō	634	5 ₂₃	2724.6335	-6
4 4 1	4 2 2	2666 9351	- 4	4 4 1	330	2725.0732	-2
5 5 6	5,	2667 0310	-12	743	6 5 2	2725.6450	-6
6 2 2	6	2667 6677	-3	4 4 0	3 ₃₁	2727.0007	19 ^a
3	3, 2	2668 1000	-5	4 3 1	322	2728.4089	1
4 2 2	4	2668 1763	- 3	9 0 9	8 1 8	2729.3394	1
2.2	1 2 3	2000.1703	-4	9 1 9	8 0 8	2729.3394	0
5	5	2000.0372	2	8 1 7	726	2729.8923	-1
5	533	2009.0003	-9	8 2 7	7 1 6	2729.9038	10
551	542	2070.0521	25°	7	6	2730 3081	3
5 2	043	2670.6521	0	7 2 5	6	2731 4656	-2
523 7	514	2672.2917	-3	5.0	4 2 4	2734 7573	3
/ 5 3	744	2672.9514	2	7 2 4	6, 2	2735 1453	-3
62	753	2672.9514	6	10 0.0	9 4 3	2737 5191	- 4
863	854	2673.1284	3	10 010	9 9	2737.5101	-4
643	634	2673.6121	-3	10 110	9 09	2737.0101	-5
661	652	2674.4976	0	918	027	2738.0493	1
533	524	2674.9363	-3	928	017	2738.0508	-4
4 1 3	4 0 4	2675.7676	-1	026	135	2738.7864	0
3 ₀₃	2 1 2	2676.4304	-3	036	2 5	2739.0811	-1
4 2 3	4 1 4	2676.5479	-2	043	532	2741.0024	-5
3 1 3	2 0 2	2677.1953	5	541	4 3 2	2745.0991	7
7 3 4	7 2 5	2677.8252	-1	7 4 4	633	2745.4370	-1
7 4 4	7 3 5	2680.2742	2	11 011	10 110	2745.5315	3
3 2	2 2 1	2680.9500	ō	10 1 9	928	2746.0381	-3
2 2 1	1 1 0	2680 9988	ž	5 5 1	440	2746.1006	5
9 4 5	9 3 6	2681 9436	- 3	8 3 5	744	2746.3872	2
6	6, .	2682 2146	ž	844	7 5 3	2746.4917	10
6 2 4	6	2683 0081	-6	927	836	2746.8142	2
5,4	5 6 5	2685 3372	-1	5 5 0	4 4 1	2746.8965	-5
5 2 4	5, 5	2685 5142	2	4 ₃₂	3 ₀₃	2748.7339	1
4 0 4	3, 5	2685 8065	-2	845	734	2750.2681	10
4,4	3	2686 0503	- 2	4 1 1	312	2751.6699	2
8	8	2687 2104	- 1	5 ₃₂	4 2 3	2754.2776	8
2	1	2007.2104	-1	10 3 8	927	2754.6230	2
2 2 0	2 1 1	2007.0039	4	946	8 3 5	2756.4924	4
7	211	2090.0933	-2	6 5 2	5 × ĭ	2756 8784	ō
7 2 5	7 1 6	2091.2032	-5/-		• •		•
4	2 6	2091.4070	1				
- 2 2 A	3 3 1	2092.0/40	3	$ u_3$ fundamenta	l band		
- 1 3 6	6	2093.1000	2				
6	6	2094.4012	3	541	642	2527.6465	0
5 2 5	4 1 6	2094.4971	2	5 ₃₂	6 ₃₃	2529.7410	-3
5 U S	- 14 4	2094.90/0	-2	6 2 4	7 2 5	2530.1904	3
D 1 5	404	2694.9846	-4	7 1 6	8 1 7	2530.5413	3
936	927	2695.6970	-6	7 2 6	8 2 7	2530.5459	4
4 2 3	312	2697.4612	-2	6 3 4	7 3 5	2530.7236	2
532	4 4 1	2699.4854	5	5 5 0	6 5 1	2530,9077	2
826	817	2699.8369	-12	8 0 8	9	2531.0396	-4
836	827	2699.8833	-6	8 1 8	919	2531.0396	-4
331	2_{20}	2703.2151	0	5 5 1	653	2532.5916	1
7 1 6	707	2703.3335	2	5 4 2	6 4 3	2536.6721	1
726	717	2703.3403	1,	3 1 2	4 3 1	2537.3623	î
606	5 1 5	2703.8113	470	5 2 3	6 2 4	2540.5222	7
616	5 ₀₅	2703.8113	0	6, 5	7 1 6	2541 4983	,
5 1 4	4 2 3	2703.9680	9	6	7	2541 5227	2
524	4 1 3	2705.0210	-4	7 . 7	8	2541 0536	-10
3 3 0	2 2 1	2707.2222	7	717	8	2541 9536	-11
927	918	2708.1208	4	5	6 2 4	2542 2661	-10
5 ₂₃	4 3 2	2708.5449	1	4 2 1	~ 3 4 5 o o	2545 0727	20
8 1 7	8 0 8	2712.0088	3	- 3 I O	0 3 2	2040.0131	-5
8 2 7	8 1 8	2712.0088	-11	- 2 B	527	2010.1122	- 3
4 ₃₂	3 2 1	2712.2544	-4	* 4 0	941	2047.2192	-4
707	6 1 6	2712.4832	-2	V 0 8	0 2 7	2040.0090	9

TABLE III—Continued

$J'K'_aK'_c$ ·	<i>J''</i> K″K″	Obs.	(0-C) > 10 ⁴	$J' \mathbf{K}'_{\alpha} \mathbf{K}'_{c} \leftarrow$	J"K"aK"	Obs.	(D-C) · 10 ⁴
8,	8 1 7	2548 5896	-10	7 5 2	7 = 2	2616, 2012	-46°
4 4 1	542	2550.5764	3	8 8 1	8 s n	2616.3860	-7
4 2 2	523	2550.9453	-7	8 8 0	8 8 1	2616.4048	-3
5 1 4	6 1 5	2552.2952	1	2 1 2	2 1 1	2617.0098	-1
524	625	2552.4192	1	8 7 2	8 7 L	2617.9429	٥
606	707	2552.7556	-1	8 7 1	872	2618.5747	4
616	7 1 7	2552.7556	-5	322	321	2618.7244	3
432	533	2554.5703	-4	7 1	7 0	2619.4629	5
937	936	2000.03/0	-1	7 0	1 7 1	2019.5100	4
2 0 0	3 2 3	2558 0959	7	7 6 9	7	2620.3672	-3
8,7	8 2 6	2558 1558	4	6 5 5	6	2621 9170	-3
8 2 7	8 7 6	2558.2163	-1	7 6 1	762	2621.9307	3
7 0 7	7 2 6	2559.8379	-5	6 6 1	660	2622.1438	3
7 1 7	7 1 6	2559.8469	-7	6 6 0	6 ő í	2622.2964	-3
4 1 3	514	2562.7974	13	5 4 2	541	2622.8982	-1
3 3 0	4 ₃₁	2563.2317	1	862	863	2623.6599	-346
4 2 3	524	2563.3489	3	5 5 1	550	2624.3645	-2
505	606	2563.4438	224	5 5 0	551	2624.7842	1
D 1 5 3	016	2003.4430	-2	051	052	2625.4619	2
8 2 1	422	2567 7646	8	1 1 1	2 1 0	2020.0707	124
3 2 1	4 3 3	2567 8845	-6	3 3 1	330	2626.0244	-214
946	945	2568.7070	2	2 2 1	2 2 0	2626.3665	-4
8 3 6	8 3 5	2568.7856	3	4 4 0	4 4 1	2627.0837	-7
7 2 6	7 2 5	2569.7434	6	3 3 0	331	2629.3840	1
6 0 6	6 ₂₅	2570.9812	11	5 4 1	542	2629.4634	5
616	615	2571.0247	3	2 2 0	2 2 1	2631.7910	-1
844	863	25/2.3594	-11	4 3 1	4 3 2	2633.9109	-1
3 1 2	413	20/2.8052	9	1 1 0	1 1 1	2633.9868	-5
404	505	2574.0000	5	042	043	2030.2029	-2
3 2 2	4 2 2	2574 6465	5	5 2 1 8 4 6	3 2 2 8 - 1	2638 3401	- 420
8 3 5	8 5 4	2575.2236	-1	2,1	2 1 2	2641.9263	5
7 2 5	7 4 4	2578.5024	-2	5 3 2	533	2642.6499	ō
2 2 0	3 ₂ ₁	2579.8308	5	1 0 1	000	2644.0256	-2
6 1 5	634	2580.5366	-2	743	744	2646.7388	7
625	624	2581.5208	-5	4 2 2	4 2 3	2648.2341	-4
/ 3 5 E	/ 3 4	2581.7517	- /	2 2 1	202	2648.5940	-5
505	524	2581.9722	-7	312	313	2652.4150	-2
1 0 1	2 2 2 0	2582 3040	-8	231	3 I 2	2653 4900	-3
633	652	2583.2256	-7	6 2 2	674	2653.9363	ŏ
2 1 1	3 1 2	2583.7390	0	2 0 2	101	2655.0332	0
3 0 3	4 0 4	2584.4202	-3	3 2 2	303	2655.2029	-2
313	4 1 4	2584.5110	-3	4 3 2	4 1 3	2655.8220	-6
2 2 1	3 2 2	2586.8638	-5	8 4 4	8 4 5	2658.6836	-7
624 E	643	2587.5100	-4	523	524	2659.3401	0
514	533	2590.7869	1	542	523	2000.2071	0 7
504	423	2592.0300	-1	2	1	2001.4330	-6
4 2 3	4 4 1	2593.4419	-7	5 2 2	510	2662.2417	-6
4 1 4	4 1 3	2593.5286	-2	4 1 3	4 1 4	2662.8704	4
524	5 ₂₃	2594.0444	-1	3 1 3	2 1 2	2663.6118	4
2 0 2	303	2594.5740	-2	4 2 3	4 0 4	2663.6516	-3
212	3 1 3	2595.0269	1	3 _{0 3}	202	2664.1387	0
634	633	2595.8867	1	7 ₃₄	7 3 5	2665.0703	-2
1 1 0	211	2597.5003	-8	° 5 4	• 3 5 7	2005.7000	-4
4 4 4	43	2599.0300	-9	6	6	2007.8420	- /
3 0 3	3 2 2	2602 4084	-1	6 2 4	6.	2670 3037	2
3 1 2	3 3 1	2603.5142	-3	3 2 2	2 2 1	2670.6853	4
1 0 1	2 0 2	2604.5320	-4	9 5 5	936	2672.0620	-2
3 ₁₃	312	2605.4253	7	5 1 4	515	2672.5315	2
1 1 1	212	2605.9102	5	5 2 4	5 0 5	2672.7029	-3
423	4 2 2	2607.1831	-6	4 1 4	3 1 3	2673.0793	-3
2033	2 3 2	2009.000/	-0	404	303	2673.1936	б -1
643	6 / 2	2612 0464	-2	8	411	2014.3902	-1
991	9 9 0	2612.9561	ĩ	2 2 0	1 0 1	2676.7683	õ
990	9 9 1	2612.9626	3	3_{21}	2 2 0	2677.7800	5
982	981	2614.8875	-3	7 2 5	7 2 6	2678.6543	6
973	972	2614.9600	11	7 3 5	7 1 6	2678.8518	-8
V 0 0	101	2616.0771	1	4 2 3	322	2681 6399	-1
° 6 3	6 6 2	2010.0771	-27*	015	616	2681.7751	-4

$J' K'_a K'_c \leftarrow$	J"K"_K"	Obs.	(O-C)×10 ⁴	$J' \mathbf{K}'_{o} \mathbf{K}'_{c} \leftarrow$	- <i>J''</i> K″K″	Obs.	(0-C)×104
625	606	2681.8098	1	642	541	2722.4292	-1
515	4 1 4	2682.2551	7	7 4 4	6 4 3	2725.1633	3
5 0 5	4 0 4	2682.2756	4	10 010	9 0 9	2725.8752	4
4 1 3	312	2683.7837	5	10 110	919	2725.8752	4
4 3 2	3 3 1	2686.4724	-4	928	8 ₂₇	2725.9094	6
8 2 6	827	2687.3652	8	918	817	2725.9094	-10
716	7 1 7	2690.8015	7	4 4 0	3 2 1	2725.9541	-3
7 2 6	7 ₀₇	2690.8081	5	836	7 ₃₅	2726.3584	6
606	5 o s	2691.2632	-11	826	7 2 5	2726.5623	5
616	515	2691 2632	26 ⁶	4 2 2	3 ₀₃	2728.7915	-1
524	4 2 3	2691.3325	-5	762	6 ₆₁	2728.8230	-2
514	4 1 3	2692.0388	1	761	660	2729.4878	0
4 3 1	330	2692.0488	-2	734	633	2730.2339	2
4 2 2	321	2692.3125	-1	7 5 3	652	2730.4060	2
937	918	2695.8301	-2	10 ₂₉	928	2734.1313	2
5 3 3	4 3 2	2698.4956	4	10 1 9	918	2734.1313	-2
817	8 1 8	2699.6594	6	11 011	10 010	2734.1665	5
827	8 o s	2699.6594	-7	11 111	10 1 10	2734.1665	5
3 2 1	202	2700.0071	1	937	836	2734.5237	2
707	606	2700.1252	-5	927	826	2734.5740	3
717	616	2700.1252	2	845	744	2734.7051	3
330	211	2700.2681	4	835	734	2737.0090	4
625	524	2700.3401	2	743	642	2737.5022	5
6 1 5	514	2700.5120	-1	541	4 2 2	2739.6870	3°
542	4 4 1	2702.7629	-3	854	1 5 3	2739.9475	-3
523	4 2 2	2703.1755	3	872	7 7 1	2741.4297	2
541	440	2704.9138	4	871	770	2741.7036	-4
928	909	2708.3594	-8	11 110	10 1 9	2742.2092	2
532	4 3 1	2708.3992	-5	11 210	10 2 9	2742.2092	2
034	533	2708.7952	0	12 012	11 011	2742.3030	-4
808	707	2708.8506	0	12 112	11 111	2742.3030	-4
818	7 1 7	2708.8506	1	10 3 8	937	2742.5100	2
726	625	2709.0322	2	10 2 8	927	2742.5227	8
/ 1 6	615	2709.0698	5	6 63	6 2	2742.9893	-2
331	212	2/10.8059	-24	946	845	2743.1533	-1
024	523	2/11.1050	3	5 ₃₂	413	2743.9021	2
043	542	2/13.8635	6	936	835	2743.9309	-2
10 5 2	551	2715.7939	0	6 62	761	2745.8037	-3
10 1 9	10 110	2/10.9045	-11	044	143	2/48.4/19	12
0 5 1	050	2717.2301	2	12 113	10 10	2750.1392	4
909	008	2/17.4355	6	11 3 9	10 3 8	2750,3472	-6
319 8	° 18 7 ° °	2717 5490	-11	10	954	2/00.409/	2
8	7 2 6	2717 5510	-11	8	336	2751.2000	0
7	6	2717 8000	- 7	9	8	2753 6007	-4 -7b
4	3.4	2718 6452	-5	982	8	2755 4070	- / -
7 3 1	6	2718 6576	1	9,3	8	2755 6240	-0-
623	524	2721 3260	<u>_</u>	545	4 4 4	2753.6240	-1-
- 3 3	V 3 2	2121.0209	v	13 112	12 112	2750 2805	õ
				•• 113	A 112	2100.2000	

TABLE III—Continued

view of the fact that the $v_1 = 1$ and $v_3 = 1$ states lie close together $(E(v_1 = 1) - E(v_3 = 1) \simeq 13 \text{ cm}^{-1})$ and the accuracy of the measurements, the Coriolis interaction between the two states given as (29, 30)

$$H_{\rm C}^{13} = h_{13}iJ_c + h'_{13}[J_b, J_a]_+$$
⁽²⁾

was taken into account explicitly so that the matrix was set up for each symmetry species for the $v_1 = 1$ and $v_3 = 1$ states in terms of the symmetrized base functions. The possible Fermi resonance between the $v_1 = 1$ and $v_2 = 2$ states and Coriolis interaction between the $v_3 = 1$ and $v_2 = 2$ states were neglected. Gillis and Edwards (31) concluded that the Fermi resonance is negligibly small in H₂S. The energy level structure and molecular constants of H₂Cl⁺ are very similar to those of H₂S, and we expect that the Fermi resonance can also be safely neglected in H₂Cl⁺. However, it

TABLE IV

Observed Transitions of $H_2^{37}Cl^+$ (in cm⁻¹)

$J' \mathbf{K}'_{a} \mathbf{K}'_{c}$.	J"K"_K"	Obs.	(0 C) 10 ⁴	$J' \mathbf{K}'_{a} \mathbf{K}'_{c}$.	$J''\!{\tt K}_a''{\tt K}_c''$	Obs.	(0-C) - 10 ⁴
$\overline{\nu_1}$ fundament	tal band						
8 2 7	9 1 8	2530.2183	10	541	5 5 0	2608.5491	-13
7 2 5	8 3 6	2530.3000	-6	4 2 3	4 3 2	2611.0962	-3
909	10 1 10	2530.3093	0	4 3 2	4 4 1	2611.8540	-6
919	10 ₀₁₀	2530.3093	0	3 ₁₃	3 ₂₂	2613.7954	-5
4 4 1	550	2530.3093	-276	743	7 5 2	2614.3464	-34°
4 4 0	5 s i	2531.1252	8	1 0 1	2 1 2	2615.2495	-3
4 3 2	541	2531.8955	4	303	312	2616.5061	-6
643	7 3 4	2535.6624	-6	633	642	2616.6194	-11
0 2 4	735	2541.0750	1	4 1 3	4 2 2	2617.5378	6
/ 1 6	827	2541.4673	5	322	331	2617.6121	-5
/ 2 6	817	2541.4753	2	1 1 1	202	2617.9492	4
008	919	2541.50/4	-3	523	532	2617.9683	2
• 1 8	909	2541.50/4	-3	D 3 2	D 4 1	2621.1155	-12
034	25	2042.0910	-0	4 1 2	4 2 1	2022.0095	-4
4 3 1 E	542	2042.24/3	-5	4 2 2	431	2024.8904	1
323	4	2550.7917	-0	300	3	2020.3413	1
6.	4 31 7 00	2552 5508	-2	3.0	3	2620.4000	1
6	7 2 6	2552 6023	2	2 2 2	2 1	2627 6000	10
7	9 1 6	2552.0023	-1	202	2 1 1	2621 7104	12
707	9	2552.0073	-9	211	2 2 0	2031.7104	Ň
3 2 1	4	2552 9592	15	1 1 0	1 0	2647 4624	-4
5 2 2		2554 4202	7	4	4	2652 1001	5
3	4 4	2554 9087	12	• 3 1	• / /	2002.1001	5
4 2 2	5 2 2	2559.2649	10	321	312	2002.0142	3
514	6 2 5	2563.4341	4	330	321	2003.3007	3
5 2 4	6, 5	2563.6440	2	6	6	2653 8700	7
6 0 6	7,7	2563.6672	11	7	7	2654 1953	a a
6,6	7 0 7	2563.6672	4	5.	5	2654 3040	3
3 2 1	4 3 2	2568.3010	12	1,,	0 3 2	2657 4009	-3
827	8 3 6	2568.8435	6	5 2 2	5 9 2	2658.3005	-3
4 3 2	5 2 3	2569.0789	-3	6 5 1	6 4 2	2658.5933	-9
2_{12}	3 2 1	2570.0142	2	4 4 0	4 3 1	2658,8391	-7
7 ₀₇	7 1 6	2570.5498	9	2 2 1	2 1 2	2659.4304	-7
4 1 3	524	2573.8501	0	4 2 2	4 1 3	2660.3423	- 1
5 o 5	616	2574.5024	15	3 3 1	3 2 2	2661.8455	-8
5 1 5	606	2574 5024	~23*	3 1 2	3 0 3	2663.7549	-8
4 2 3	5 1 4	2574.8108	3	7 6 1	7 5 2	2664.1577	-28°
2 2 1	3 3 0	2574.8613	0	2 0 2	1 1 1	2664.1697	-6
2 2 0	3 ₃₁	2578.8943	-7	5 5 0	541	2664.9307	- 1
6 1 6	6 ₂₅	2581.8601	-4	4 4 1	4 3 2	2664.9937	2
606	6 1 5	2581.9014	1	633	6 2 4	2666.0349	-12
3 1 2	4 2 3	2583.3125	6	3 2 2	3 1 3	2666.3147	-5
4 0 4	5 1 5	2585.1819	3	4 3 2	4 2 3	2666.3364	-4
4 1 4	5 0 5	2585.2051	-2	212	1 ₀₁	2666.8545	2
3 2 2	4 1 3	2586.8384	-2	542	5 3 3	2667.1003	0
625	634	2591.5840	-1	6 5 2	643	2668.6602	4
2_{11}	322	2592.2485	-4	5 ₂₃	5 1 4	2670.6108	9
7 2 5	134	2592.3879	4	643	634	2671.7639	4
0 I 5 E	5 2 4	2592.4551	-6	661	6 5 2	2672.3884	2
505	P 1 4	2093.19/8	-0	533	524	2673.1353	-12
303	414	2090.0003	3	4 1 3	4 0 4	2674.0259	0
3 1 3 6	404	2595.8035	-1	303	2 1 2	2674.6687	-1
2 3 4	3.	2601 2603	44 5	423	4 1 4	2674.7671	-11
€ 2 1 6 : ^	6	2601 3029	6	313	202	20/5.4082	-8
5 4 3	5 2 2	2602 1070	-5	• 5 4 7	045 7	2013.8301	-0
1 1	233	2602.1079	-4	(34	25	20/0.1/50	-1
4	4 0 0	2603 8147	-7	421	1 1 0	20/9.1000	4
4 0 4	4	2604 6348	-6	3 12 6	4 2 1 6 c -	2019.2830 2681 220F	~4
5 1 4	5 2 3	2604.9199	2	5.	5 2 5	2683 5674	- 1
5 4 2	5 . 1	2605.0088	-14	014 5	5	2683 7310	-11
2 0 2	3 . 2	2605.7659	2	4 2 4	3	2684 1122	1
2 1 2	3 0 3	2606.4832	10	- U 4 4	3 0 2	2684 2590	-9
7 3 4	7 4 3	2607.0100	3	2 2 2	1	2686 0022	-1

 a The relative weight is 0.5 due to the weaker component of unresolved K-type doublet in which the S/N ratio of the peak is strong.

^b The relative weight is 0.1 due to the weaker component of unresolved K-type doublet in which the S/N ratio of the peak is weak.

^c This transition is omitted from the fit because the S/N ratio of the peak is very weak.

TABLE IV—Continued

<i>ľ k′ k′ ←</i>	1"K"K"	Obs	$(0-C) \times 10^{4}$. <i>1'</i> K' K' ↔	. <i>T"</i> K"K"	0bs.	(0-C) < 10 ⁴
o nanc							
8 4 5	8 3 6	2686.2019	-2	6 1 5	7 1 6	2539.5935	4
3 2 2	2 1 1	2688.2400	5	6 2 5	7 2 6	2539.6157	1
7 2 5	716	2689.5059	-4	7 0 7	8 0 8	2540.0576	4
413	322	2692.0183	-2	7 1 7	818	2540.0576	3
D 1 5 6 3 5	6,6	2692.7046	6	4 2 1	034 530	2543.0444	0
505	4 1 4	2693.1572	11	4 4 0	541	2545.1433	3
5 1 5	4 0 4	2693.1831	10	4 4 1	542	2548.5957	1
4 2 3	3 1 2	2695.6108	8	4 2 2	523	2549.0217	2
836	827	2698.0925	-12	5 1 4 5	6 1 5 6 1 5	2550.3755	2
716	707	2701.5261	~6	6 n e	7 0 7	2550.8386	ĩ
7 2 6	7 1 7	2701.5261	-70 ^c	616	7 1 7	2550.8386	- 3 ^a
606	515	2701.9932	36°	4 3 2	5 3 3	2552.5935	-5
616	505	2701.9932	-8	2 1 1	330	2555.3437	-2
514 521	423	2702.1775	-5	413	5 1 4 4 7 1	2561 1675	4
330	221	2705.3616	1	4 2 3	5 2 4	2561.3984	4
523	4 3 2	2706.8967	8	5 0 5	6 0 6	2561.5083	22^a
817	8 0 8	2710.1858	3	5 1 5	6 1 6	2561.5083	0
827	818	2710.1858	-9	321	4 2 2	2561.8213	1
432	5 2 1 6 1 6	2710.6511	2	331 726	432 735	2567 7734	-1
7 1 7	6 0 6	2710.6511	-5	3 1 2	4 1 3	2570.9236	10
3 2 1	2 1 2	2710.9768	11	4 0 4	5 0 5	2572.0540	7
615	524	2711.1724	-2	4 1 4	515	2572.0684	6
D 2 5	514	2716 8232	-2	322	423	2572.0000	-2
633	542	2718.5884	-1	6 1 5	6 3 4	2578.5745	-4
624	533	2718.9517	5	7 3 5	7 3 4	2579.6648	11
808	7 1 7	2719.1453	-3	5 ₁₅	514	2580.2053	-3
818	707	2719.1453	-5	101	2_{20}	2580.3816	-8
1 1 6	025	2719.7200	-8	4 1 1 3 0 3	4 0 4	2582 4514	-4
6 3 4	523	2722.7173	7	313	4 1 4	2582.5388	-8
4 4 1	3 3 0	2723.0994	0	2 2 1	3 2 2	2584.8535	-5
4 4 0	3 3 1	2725.0659	-2	6 ₂₄	643	2585.6360	-1
431	322	2726.5811	4	5 1 4	533	2588.8401	1
909	801	2727.4741	2	* 04 5 ₂₄	4 2 3 5 2 2	2591 9778	-6
817	726	2728.0386	-3	2 0 2	3 0 3	2592.5942	-4
8 2 7	7 1 6	2728.0486	0	2_{12}	3 ₁₃	2593.0347	-4
7 2 5	634	2728.4883	2	$\frac{1}{7}$ 1 0	2 1 1	2595.4800	-5
7 4 3	6 ₅₂	2729 5845	-1 5ª	4 4 4	43	2590.5802	-10
5 4 2	4 3 1	2732.7261	3ª	1 0 1	2_{02}	2602.5352	12
7 3 4	643	2733.4995	10	3 ₁ ₃	3 1 2	2603.3811	-3
10 010	919	2735.6353	-3	1 1 1	2_{12}	2603.8962	-2
10 1 10	909	2735.6353	~3	4 2 3 5 a 5	4 2 2	2607 5020	-2
928	7 2 5	2736.9336	-2'	2 0 2	2^{2}	2608.1221	-3
836	7 2 5	2737.2107	14	9 9 1	990	2611.0715	-1
643	5 ₃₂	2738.9407	15	982	981	2612.9846	-23°
541	4 3 2	2743.2319	4. 26	000	101	2614.0500	4
/ 4 4	033	2743.3940	4	8 • •	8	2614.4/41	5
11 111	10 010	2743.6301	4	3 2 2	3 2 1	2616.6411	-1
5 5 1	4 4 0	2744.0669	-5	8 7 1	8 7 2	2616.6675	-6
10 1 9	928	2744.1472	0	771	770	2617.5232	-2
10 2 9	918	2744.1472	-4	7 0	4 2 4	2017.5796	-4
550 907	441 826	2744.9399	-1	- 3 2 7 6 2	≖ 3 1 7 6 1	2618.3982	-16
845	7 3 4	2748.2898	6	6 5 2	6 5 1	2619.9319	2
12 012	11 111	2751.4556	-110	7 ₆₁	7 ₆₂	2620.0159	13
12 112	11 011	2751.4556	-110	0 6 1 6 c o	660 660	2620.1809	0
052	¤4 I	2/04.///1	1	862	863	2621.8437	8
	1 hard			5 5 1	5 5 0	2622.3821	- 3
v ₃ runcamenta	11 Dang			550	551	2622.8120	4
6	7 a ≖	2528.3125	-8	• 5 1 1 • •		2023.5457	1
~ 2 4 7 2 6	8 2 7	2528.6580	2	4 4 3	• ı ∪ 4 ₄ ∩	2624.0400	1
634	7 3 5	2528.8186	3	3 ₃₁	3 3 0	2624.0618	-5
542	643	2531.6804	0	2 2 1	2 2 0	2624.3152	-3
523	024	2000.0099	-12	440	441	2025.1025	3

TABLE IV—Continued

			(0.0) +04	Thul at	716-11-11		()
$J' \mathbf{K}'_{a} \mathbf{K}'_{c} \leftarrow$	J''K''K''	Ubs.	(0-0) + 10*	J'K _a K _c ↔	J'K _a K _c	Ubs.	(0-0) / 10
3 3 0	3 2 1	2627.3933	-2	6 2 5	5 2 4	2698.2278	-3
5 4 1	5 4 2	2627.5439	4	6 1 5	514	2698.3923	-1
2 2 0	2 2 1	2629.7871	13	5 2 3	4 2 2	2701.0452	-1
1 1 0	1	2631.9609	-1	5 4 1	4 4 0	2702.9885	8
4 3 1	4 3 2	2631.9724	1	5 3 2	4 3 1	2706.3845	-3
6 4 2	6 4 3	2634.3660	-2	634	533	2706.6948	4
3 2 1	3 2 2	2636.3022	-2	8 0 8	707	2706.7424	3
2 1	2, 2	2639.9133	1	8 1 8	7,7	2706 7424	Ă
5 2 2	5 2 2	2640 7598	3	7 2 6	6.2 5	2706 9119	5
101	0 0 0	2641.9861	õ	7 1 6	6,5	2706.9475	ă
4 9 9	4 2 2	2646 2795	3	6	5	2708 9373	ĩ
3	3, 3	2650 3999	ě	6,3	5,3	2711 8369	-8
3	3.	2650 4700	1	6,3	5.	2713 8000	ž
2, .	1	2651 4392	-6	9	8.0	2715 3245	- 4
6 2 2	624	2652.0496	2	9,09	8, .	2715 3245	-4
2	1	2652 9673	5	6	5	2715 3401	15
3	3	2653 1086	-7	8 . 7	7	2715 4165	-7
4 2 2	4.	2653 6709	- 1	8.7	7.0	2715 4241	-1
- 3 2 5	- 1 3 5	2654 0822		7	6	2715 7630	-6
542	5 2 3	2657 3606	254	4 3 5	3.	2716 4868	7
2 2 3	1	2650 6477	20	 31 7	6	2716 4000	- 3
5	5	2660 1445	- 3	6	5	2710 224	-7
J 3 3 4	5 1 4	2660 8250	-0	6.	5	2719.2244	-7
413	4 1 4 0	2000.0230	-2	042	541	2120.4032	-2
3 1 3 4	2 1 2	2001.5435	-3	10 010	043	2723.0762	-6
423	* 0 4	2001.5750	-/	10	909	2723.7001	-0
3 03 7	202 7	2002.0500	5	10 110	919	2723.7001	-0
44	125	2003.1521	-5	918	0 1 7 9	2123.1110	-0
024	025	2007.4014		9 2 8	7 7	2123.1110	0
034	015	2000.2292	-0	8	735	2724.2150	-1
522	421	2000.0372	4	7	6	2724.4007	-1
514	515	2070.4030	C C	762	6	2720.9301	~/
524	0 5	2010.0205	0	10	033	2720.0300	9
414	313	2070.9988	é	10 1 9	9 1 8	2731.9903	4
404	203	2011.1079	0	10 2 9	10	2731.9903	5
3 1 2 0	211	2012.3231	2	11 011	10 010	2732.0054	4
220	101	20/4.0300	17	9	10 110	2732.0034	*
321	220	20/5./050	17	937	8	2732.3720	4 E
135	2 1 6	20/0./020	-0	8.,	7	2732.4202	5
423	522	2019.0004	-1	8	7	2734 7000	2
015	016	20/9.0940	0	7.0	6	2735 4641	-2
515	414	2000.1030	2	9.4.3	7	2737 0100	-2
505	404	2080.1831	0	11	10.	2737.9199	1-
4 1 3	312	2081.000/	-2	12 210	10 2 9	2740.0715	-3
432	331	2004.4401	-0	10 0 12	11 011	2740 2622	-1
126	07	2000.7100	3	10 2 8	9 2 7	2740.0046	5
006	505 F	2089.1043	-13	946	045	2740,9940	5
016	D 1 5	2009.1043	21-	062	7 6 1	2140.9734	1
024 E	423 A	2009.2300	-2	12	143	2748 0020	1
514	413	2089.91/2	-1	12 111	11 110	2740.0024	1
431	330	2090.0780	3	11	10	2140.0024	1 7
4 2 2	321	2090.2546	-3	11 3 9	4038	2/40.1010	- 1
533	432	2090.4285	-23-	955	054	2/40.3435	-4
542	441	2697.7576	0	10 3 7	936	2149.0166	1
321	202	2697.9150	-5	964	° 6 3	2/49.0864	0
707	б р 6	2698.0210	-3	Ø 5 3	5 2	2/49.4238	-6
7 1 7	016	2098.0210	3	973	072	2/03.0091	1

maybe necessary to evaluate the Coriolis interaction between the $v_3 = 1$ and $v_2 = 2$ states more carefully. We will discuss this point briefly in the next section.

We eventually assigned 512 transitions to $H_2^{35}Cl^+$ (246 and 266 transitions to the ν_1 and ν_3 fundamental bands, respectively) and carried out a least-squares fit by including the pure rotational transition frequencies derived from the observed (7) after correction for the hyperfine splittings (32). The standard deviation of the fit was found to be 0.0005 cm⁻¹. Although the molecular constants in the ground state were already determined with reasonable accuracy from the analysis of the ν_2 fundamental band

SPECTRA OF H2Cl+

TABLE V

Calculated Term Values of H235Cl+ (in cm-1)a

J K _a K _c	$v_1 = 1$ state	v ₃ =1 state	Ground state	J K _a K _c	v ₁ =1 state	v ₃ =1 state	Ground state
	2643 2200 (0,0000)	2620 1404(0.0000)	0.0000	7 5 3	3151.4348(0.0553)	3140.4006(0.4463)	516.8547
000	2043.2200(0.0000)	2030.1404(0.0000)	0.0000	7 5 2	3158.4683(0.0670)	3146.4827(0.0299)	524.1948
1 0 1	2657 0588(0 0000)	2644.0259(0.0006)	14.0633	762	3189.8057(0.0442)	3176.6311(0.0711)	555.4465
1 1 1	2659,1682(0,0006)	2646.0452(0.0000)	16.1918	761	3190.5869(0.0431)	3177.3767(0.0490)	556.2634
1 1 0	2663.2788(0.0000)	2650.1792(0.0000)	20.3754	771	3233.5703(0.0091)	3218.5559(0.0315)	599.0652
				770	3233.5974(0.0090)	3218.5813(0.0306)	599.0937
202	2682.0898(0.0005)	2669.0964(0.0012)	39.4935				
2 1 2	2682.7002(0.0055)	2669.6819(0.0009)	40.1355	808	3033.2119(0.0160)	3021.0684(0.0160)	390.2103
2 1 1	2695.0779(0.0022)	2682.0613(0.0013)	52.6720	010	3033.2122(0.0180)	3021.0084(0.0100)	390.2103
2 2 1	2701.3740(0.0013)	2688.0879(0.0022)	59.0406	8 2 7	3108 2263(0 0121)	3095.8785(0.0118)	472.4770
2 2 0	2703.9973(0.0004)	2690.8315(0.0042)	61.7210	826	3172 3159(0.0094)	3159.8442(0.0092)	537 6602
303	7716 5667(0 0020)	2703 6321 (0.0022)	74 5223	8 3 6	3172.3635(0.0102)	3159.8872(0.0090)	537,7197
3 1 3	2716 6882(0.0030)	2703 7468(0 0020)	74.6551	8 3 5	3224.8706(0.0056)	3212.4321(0.0099)	591.1021
3 1 2	2739,9905(0,0001)	2727.0703(0.0025)	98.3223	845	3225.6904(0.0164)	3213.1882(0.0072)	592.0803
3 2 2	2742.7654(0.0154)	2729,7253(0.0015)	101.2236	844	3263.3455(0.0446)	3250.7644(0.0186)	629.7263
3 2 1	2752.9644(0.2333)	2739.5005(0.0033)	111.0013	854	3269.7534(0.0506)	3256.8025(0.0563)	637.2086
3 3 1	2764.9360(0.0025)	2750.9417(0.2333)	123.5558	853	3286.5591(0.1347)	3275.5615(0.0266)	654.9121
3 3 0	2766.2620(0.0014)	2752.9397(0.0129)	124.9186	863	3310.3367(0.0689)	3298.4360(0.1494)	678.4043
				862	3314.1221(0.0688)	3302.0674(0.0501)	682.3562
4 0 4	2760.5520(0.0037)	2747.7153(0.0037)	119.2117	872	3353.9873(0.0519)	3340.4949(0.0690)	722.2234
4 1 4	2760.5730(0.0039)	2747.7346(0.0036)	119.2356	8 7 1	3354.3005(0.0512)	3340.7976(0.0605)	722.5520
4 1 3	2794.9795(0.0013)	2782.1057(0.0031)	154.2059	0 0 1	3403.4750(0.0114)	3387.8601(0.0352)	771.4030
4 2 3	2795.7837(0.0080)	2782.8635(0.0022)	155.0794	8 8 V	3403.4849(0.0113)	3387.8089(0.0349)	111.4/34
4 2 2	2816.2302(0.0138)	2803.3140(0.0052)	1/5.0/99	0 0 0	2125 5557(0 0211)	3113 6511(0 0211)	490 0283
4 3 2	2823.2561(0.0246)	2810.0286(0.0170)	183.0500	9 0 9	3125 5557(0 0211)	3113 6514(0.0211)	490.0283
4 3 1	2629.6320(0.0563)	2010.90/0(0.000//	200 8712	0 1 8	3210 5288(0 0161)	3198 3882(0 0159)	576.4131
4 4 1	2849.9919(0.0038)	2836 9558(0 0197)	210 4532	9 2 8	3210.5291(0.0161)	3198,3884(0.0159)	576.4136
•••	2000.004/(0.0001)	2000.3000(0.015))	210.4002	927	3284.5337(0.0126)	3272.2339(0.0122)	651.6758
5 0 5	2814 1934(0.0058)	2801.4868(0.0057)	173.7092	937	3284.5444(0.0128)	3272.2434(0.0121)	651.6899
5 1 5	2814.1968(0.0059)	2801,4900(0.0057)	173.7133	936	3347.3733(0.0098)	3335.0332(0.0109)	715.6057
Б 1 4	2859.0464(0.0038)	2846.2446(0.0042)	219.3094	946	3347.5940(0.0136)	3335.2339(0.0096)	715.8831
524	2859.2273(0.0058)	2846.4124(0.0038)	219.5150	945	3397.5498(0.0053)	3385.3503(0.0162)	766.5269
523	2891.6013(0.0009)	2878.8552(0.0059)	252.3679	955	3400.0437(0.0331)	3387.6680(0.0118)	769.5142
533	2894.4517(0.0205)	2881.5518(0.0043)	255.4578	954	3429.0740(0.4503)	3419,6523(0.0282)	801.0266
532	2909.3562(0.4668)	2898.1077(0.0092)	271.8940	964	3445.1535(0.0765)	3435.1038(0.4093)	810.08/0
542	2924.4651(0.0314)	2912.6345(0.4717)	285.9036	963	3455.3230(0.0969)	2477 6200(0 1112)	860 7006
541	2928.1550(0.0357)	2915.3667(0.0201)	289.7361	973	3401 5537(0.0813)	3479 3892(0 0721)	862 6719
551	2950.5532(0.0054)	2942.5662(0.0324)	318 3214	0 8 2	3538 9670(0.0611)	3525 1643(0 0744)	910.1501
5 5 0	2956.7663(0.0060)	2942.7817(0.0236)	310.2214	9 8 1	3539.0869(0.0607)	3525,2805(0.0711)	910.2764
606	2877 5200(0.0085)	2864.9734(0.0084)	238.0453	9 9 1	3593.8499(0.0139)	3577.6162(0.0403)	964.6567
6 1 6	2877 5205(0 0085)	2864.9739(0.0084)	238.0460	990	3593.8530(0.0139)	3577.6191(0.0401)	964.6602
6 1 5	2932.5061(0.0062)	2919,8215(0.0060)	293.9495				
6 2 5	2932 5430(0 0067)	2919.8550(0.0059)	293.9934	10 0 10	3227.5469(0.0274)	3215.9033(0.0274)	593.6392
624	2976,1638(0,0031)	2963.4727(0.0060)	338,3337	10 1 10	3227.5469(0.0274)	3215.9033(0.0274)	593.6392
634	2977.0020(0.0119)	2964.2529(0.0043)	339.2847	10 1 9	3322.4521(0.0211)	3310.5449(0.0209)	690.1182
6 3 3	3006.0017(0.0304)	2993.2212(0.0111)	368.3665	10 2 9	3322.4521(0.0211)	3310.5449(0.0209)	690.1162
643	3012.8970(0.0385)	2999.7666(0.0379)	375.9624	10 2 8	3406.2961(0.0164)	3394.1975(0.0161)	775.3838
642	3024.0962(0.0965)	3012.1653(0.0164)	387.7200	10 3 8	3406.2986(0.0165)	3394.1997(0.0160)	115.3612
652	3046.6145(0.0375)	3033.7915(0.1023)	409.9949	10 3 7	3479.0049(0.0133)	3466 0253(0 0132)	840 4046
651	3048.4192(0.0369)	3035.4563(0.0352)	411.8745	10 4 7	3540 1284(0.0089)	3528 0100(0 0146)	911 5320
661	3084.4922(0.0071)	3070.0325(0.0297)	447.8079	10 5 6	3540 9231 (0.0218)	3528.7468(0.0107)	912.5337
660	3084.5698(0.0069)	3070.1045(0.0270)	447.8889	10 5 5	3587.0608(0.0577)	3574 7434(0.0275)	958.5574
ł				10 6 5	3592.9055(0.0622)	3580.2158(0.0730)	965.8616
707	2950.5293(0.0119)	2938.1709(0.0118)	312.2178	10 6 4	3615.7805(0.1714)	3605.8462(0.0391)	989.9910
717	2950.5295(0.0119)	2938.1709(0.0118)	312.2180	10 7 4	3640.3101(0.0980)	3629.4883(0.1960)	1014.2039
716	3015.5510(0.0088)	3003.0188(0.0086)	378.3235	10 7 3	3646.7466(0.0982)	3635.8020(0.0652)	1020.9214
726	3015.5581(0.0089)	3003.0254(0.0086)	378.3325	10 8 3	3689.7307(0.0945)	3677.4609(0.1087)	1064.0872
725	3069.5923(0.0064)	3056.9861(0.0071)	433.2825	10 8 2	3690.5046(0.0928)	3678.2278(0.0919)	1064.8977
735	3069.7993(0.0093)	3057.1760(0.0064)	433.5295	10 9 2	3744.4492(0.0717)	3730.3691(0.0835)	1118.9546
7 3 4	3111.10/9(0.0026)	3098.0001(0.0106)	410.4430	10 9 1	3/44.4939(0.0/16)	3130.4124(0.0822)	1178 2809
744	3135 6404(0 4345)	3125 2217(0 0176)	502 2937	10 10 1	3804 3103(0 0169)	3787 4830(0 0464)	1178 2817
/ 4 3	3135.0404(0.4345)	5125.2211(0.0170)	002.2001	0 01 01	3504.3103(0.0108)	0.01.4009(0.0404)	11/0.201/

The values in the parentheses denote the mixing ratio of the perturbing state.

(6) and the millimeter-wave spectra (7), we treated them as adjustable parameters, expecting that an improvement in the determination might be possible, because our data are more extensive. Table I lists the molecular constants of $H_2^{35}Cl^+$ determined from the least-squares analysis. The spectroscopic parameters in the ground state are in very good agreement with those from the ν_2 fundamental band (6) and the millimeter-wave transitions (7) but they are determined more accurately here. The millimeter-wave lines helped reduce the standard errors of \tilde{B}_0 and \tilde{C}_0 by a factor of about five. Also Φ_{KI} , which was fixed to the corresponding value for H_2S in Ref. (6), is determined

TABLE VI

Calculated Term Values of H₂³⁷Cl⁺ (in cm⁻¹)^a

J Ka	к,	v _l =1 state	v_3 =1 state	Ground state	JK, K,	v;=1 state	v,≓1 state	Ground state
0 0	0	2641.4932(0.0000)	2628.1064(0.0000)	0.0000	7 5 3	3148.9062(0.0568)	3133.2351(0.4942)	516.0874
					752	3156.1150(0.0720)	3143.9033(0.0301)	523.6099
1 0	1	2655.3264(0.0000)	2641.9861(0.0005)	14.0569	762	3186.9514(0.0458)	3173.6089(0.0764)	554.3560
1 1	1	2657.4011(0.0005)	2643.9729(0.0000)	16.1521	7 6 1	3187.7703(0.0449)	3174.3706(0.0511)	555.2092
1 1	0	2661.5193(0.0000)	2648.1130(0.0000)	20.3422	7 7 1	3230.2993(0.0092) 3230.3281(0.0091)	3215.09/2(0.0334) 3215.1233(0.0323)	597,5430
2 0	2	2680 3223(0.0004)	2667 0237(0 0010)	30 4523	, , ,	5250.5261(0.0031)	5210.1255(0.0525)	051.0101
2 1	2	2680 9114(0 0058)	2667 5918(0.0007)	40 0764	8 0 8	3030.9563(0.0132)	3018.5525(0.0131)	395,6992
2 1	ĩ	2603 3142(0.0021)	2679 9897(0.0013)	52 6325	8 1 8	3030.9563(0.0132)	3018.5525(0.0131)	395.6992
2 2	- î	2699 5076(0 0013)	2685 9194(0.0021)	58 9015	8 1 7	3105.8848(0.0100)	3093.2622(0.0098)	471.8687
2 2	ô	2702 1543(0 0004)	2688.6873(0.0047)	61.6038	8 2 7	3105.8860(0.0101)	3093.2632(0.0098)	471 8704
5 .					8 2 6	3169.9209(0.0081)	3157.1633(0.0078)	536.9875
3 0	3	2714.7454(0.0017)	2701.5105(0.0018)	74.4292	836	3169.9641(0.0088)	3157.2029(0.0076)	537.0432
3 1	3	2714.8611(0.0027)	2701.6201(0.0017)	74.5567	835	3222.4890(0.0053)	3209.7483(0.0087)	590.4336
3 1	2	2738.1848(0.0001)	2724.9561(0.0022)	98.2386	845	3223.2454(0.0153)	3210,4534(0.0067)	591.3562
32	2	2740.8718(0.0164)	2727.5386(0.0015)	101.0653	844	3261.0952(0.0381)	3248.2231(0.0175)	629.2048
32	1	2751.0520(0.1647)	2737.3679(0.0033)	110.8974	854	3267.1870(0.0504)	3254.0073(0.0496)	636.3904
33	1	2762.9116(0.0024)	2748.7085(0.1647)	123.2593	853	3284.2261(0.1511)	3273.0344(0.0264)	654.3940
33	0	2764.2627(0.0014)	2750.6526(0.0142)	124.6462	863	3307.4980(0.0710)	3295.4956(0.1659)	6//.3390
					862	3311.4299(0.0/20)	3299.1826(0.0509)	700 7551
4 0	4	2758.6687(0.0031)	2745.5366(0.0030)	119.05/8	872	3350.7473(0.0530)	3337.1106(0.0725)	720.7551
4 1	4	2758.6885(0.0033)	2745.5549(0.0030)	119.0804	8 / 1	3351.0791(0.0550)	3337.4231(0.0029)	760 5156
4 1	3	2793.0837(0.0012)	2779.9055(0.0027)	154.0334	8 8 1	3399.7781(0.0114)	3384 0093(0.0366)	769 5261
4 2	3	2/93.8466(0.00/6)	2780.0310(0.0020)	175 5464	000	3033.1001(0.0114)	0004.0030(0.0000)	100.000
4 2	2	2814.3760(0.0125)	2801.1523(0.0049)	190.7500	9 0 9	3123 1733(0 0174)	3111 0239(0 0173)	489 3887
4 3	2	2827 6460(0.0201)	2814 7246(0.0089)	189 4856	919	3123.1733(0.0174)	3111.0239(0.0173)	489.3887
4 3	1	2847 7456(0.0037)	2833 9939(0.0687)	209 3554	918	3208.0483(0.0133)	3195.6472(0.0131)	575.6687
4 4	ò	2848 3254(0.0030)	2834.4575(0.0215)	209.9538	928	3208.0486(0.0133)	3195.6475(0.0131)	575.6692
	÷				927	3281.9834(0.0107)	3269.4072(0.0103)	650.8513
5 0	5	2812.2366(0.0048)	2799.2410(0.0047)	173.4832	937	3281.9929(0.0109)	3269.4160(0.0102)	650.8643
5 1	5	2812,2397(0.0049)	2799.2439(0.0047)	173.4871	936	3344.7988(0.0088)	3332.1665(0.0095)	714.7476
5 1	4	2857,0503(0.0033)	2843.9507(0.0035)	219.0382	946	3344.9988(0.0122)	3332.3503(0.0085)	715.0061
52	4	2857.2195(0.0052)	2844.1089(0.0032)	219.2335	945	3395.0764(0.0055)	3382.5637(0.0147)	765.7595
52	з	2889.6482(0.0010)	2876.5918(0.0053)	252.1308	955	3397.3889(0.0316)	3384.7344(0.0116)	768.5864
53	з	2892.3699(0.0206)	2879.1831(0.0043)	255.1110	954	3432.3928(0.4671)	3417.0500(0.0274)	800.4419
53	2	2910.4314(0.4398)	2895.8706(0.0091)	271.6802	964	3442.3008(0.0773)	3426.4260(0.4860)	814.0045
54	2	2922.2114(0.0330)	2907.1123(0.4447)	285.3982	903	3453.7698(0.1033)	3442.5809(0.0416)	820.0018
54	1	2925.9839(0.0389)	2912.9414(0.0207)	289.3147	973	3488 4305(0.0838)	2476 10EE(0 0739)	959.3170
5 5	1	2954.0212(0.0053)	2939.8159(0.0357)	317.2012	0 8 2	3535 3010(0.0629)	3521 3811(0 0775)	001.3413
5 5	0	2954.2454(0.0049)	2940.0129(0.0286)	317.4330	9 8 1	3535 4292(0.0625)	3521 5020(0 0737)	908 3940
		207E 476B(0 0070)	2962 6490(0 0060)	227 7250	9 9 1	3589 7109(0 0140)	3573 3325(0 0420)	962 2573
6 0	6	2875.4708(0.0070)	2862.6489(0.0009)	237.7357	9 9 0	3589.7144(0.0140)	3573.3357(0.0419)	962.2610
6 1	6	2875.4773(0.0070)	2002.0494(0.0009/	203 5757		,		••••••
0 1	9	2530.4000(0.0002)	2311:4001(0:0001)	200.0707	10 0 10	3225.0242(0.0225)	3213.1553(0.0225)	592.8640
6 2	6	2930 4397(0.0057)	2917.4617(0.0049)	293.6167	10 1 10	3225.0242(0.0225)	3213.1553(0.0225)	592.8640
6 2	4	2974.0620(0.0028)	2961.0679(0.0052)	337.9504	10 1 9	3319.8164(0.0174)	3307.6648(0.0172)	689.2263
6 3	4	2974.8474(0.0112)	2961,8054(0.0040)	338.8557	10 2 9	3319.8164(0.0174)	3307.6650(0.0172)	689.2266
6 3	3	3003.9868(0.0265)	2990.9050(0.0105)	368.0737	10 2 8	3403.5767(0.0138)	3391.2141(0.0134)	774.3965
64	3	3010.6194(0.0392)	2997.2358(0.0339)	375.4319	10 3 8	3403.5789(0.0138)	3391.2161(0.0134)	774.3997
6 4	2	3021.9531(0.1103)	3009.7981(0.0164)	387.3662	10 3 7	3476.2998(0.0116)	3463.8262(0.0113)	848.3750
65	2	3044.0918(0.0391)	3031.1006(0.1161)	409.2271	10 4 7	3476.3501(0.0127)	3463.8718(0.0109)	848.4438
65	1	3045.9602(0.0390)	3032.7720(0.0366)	411.1692	10 4 6	3537,3987(0.0085)	3524.9839(0.0130)	910.5115
66	1	3081.6155(0.0071)	3066.9395(0.0319)	446.6733	10 5 6	3538.1199(0.0201)	3525.6523(0.0100)	911.44/0
66	0	3081.6973(0.0069)	3067.0132(0.0288)	446.7585	10 5 5	3564.5039(0.0487)	3571.9082(0.0258)	961.1450
				211 0102	10 6 6	3613 2175(0 1003)	3603 1104(0.0386)	904.0975
7 0	7	2948.3857(0.0098)	2935 (500(0.0097) 2025 7566(0.0007)	311.0103	10 7 4	3637 1133(0.0999)	3626.2458(0.2151)	1012.7969
7 1	7	2948.3857(0.0098)	2000 5222(0 0071)	377 8376	10 7 3	3643.8142(0.1021)	3632,6990(0.0656)	1019.7832
7 1	0	3013.33/2(0.00(4)	3000 5283(0 0071)	377 8450	10 8 3	3686.1060(0.0970)	3673.7434(0.1132)	1062.2529
7 2	b	3013.3437(0.00(5)	3054 4434(0 0061)	432 7546	10 8 2	3686,9292(0,0954)	3674.5415(0.0942)	1063.1128
7 2	5	3067 5344(0 0083)	3054 6201(0.0055)	432.9873	10 9 2	3740.3401(0.0736)	3726.1604(0.0863)	1116.6111
7 3	3	3108 9304(0.0003)	3096.1113(0.0096)	474,9563	10 9 1	3740.3882(0.0734)	3726.2056(0.0849)	1116.6619
7 1	4	3111.4675(0.0258)	3098.5078(0.0077)	477.8794	10 10 1	3799.7524(0.0169)	3782.7700(0.0483)	1175.4231
7 4	3	3137,9597(0.4825)	3122.8303(0.0172)	501.9207	10 10 0	3799.7537(0.0169)	3782.7710(0.0483)	1175.4243

^a The values in the parentheses denote the mixing ratio of the perturbing state.

fairly well. In the excited vibrational states, all the centrifugal distortion constants up to the sextic constants were treated as adjustable parameters and are determined reasonably well. The sign of the Coriolis coupling constant h'_{13} was chosen to be positive. The sign of h_{13} was then found to be negative, when the phase of the matrix element was chosen as

$$\langle v_1 = 1, J, k | iJ_c | v_3 = 1, J, k \pm 1 \rangle = \pm (1/2) \forall J(J+1) - k(k \pm 1).$$

The assignment of $H_2^{37}Cl^+$ was easily made after removing the assigned lines of the

~

TABLE V	V	ľ.	L	J
---------	---	----	---	---

•					
	(000)	(100)	(001)	(010)	Equilibrium
A	11.25339	11.08123	11.02606	11.70296	11.22835
В	9.12371	8.97939	9.01413	9.31603	9.15450
С	4.94149	4.86130	4.88189	4.87263	5.04582
$\tau_{aaaa} imes 10$	-0.10717	-0.10510	-0.10534	-0.13790	
$ au_{bbbb} imes 10^2$	-0.50809	-0.50150	-0.51308	-0.58983	
$\tau_{cccc} \times 10^3$	-0.27452	-0.28304	-0.25656	-0.27048	
$ au_{aabb} imes 10^2$	0.49564	0.47566	0.51239	0.61662	
$\tau_{bbcc} \times 10^3$	-0.53366	-0.55339	-0.49932	-0.54327	
$ au_{aacc} imes 10^3$	-0.61297	-0.62904	-0.56276	-0.70441	
$\tau_{abab} \times 10^2$	-0.11236	-0.10562	-0.12388	-0.13086	
I^A (amuÅ ²)	1.498004	1.521278	1.528890	1.440459	1.501345
I^B (amuÅ ²)	1.847674	1.877369	1.870134	1.809529	1.841458
$I^{\!C}$ (amu ${ m A}^2$)	3.411447	3.467718	3.453098	3.459657	3.340910
Δ (amuÅ ²)	0.065769	0.069071	0.054074	0.209669	-0.001893
α^A		0.17216	0.22733	-0.44957	
α^{B}		0.14432	0.10958	-0.19232	
α ^C		0.08019	0.05960	0.06886	

Rotational and Centrifugal Distortion Constants of H₂³⁵Cl⁺ (in cm⁻¹)

³⁵Cl species, because its energy level structure is very similar to that of $H_2^{35}Cl^+$. A least-squares fit was performed with 382 assigned lines (190 and 192 transitions to the ν_1 and ν_3 bands, respectively). The standard deviation of the fit was found to be 0.0005 cm⁻¹. The molecular constants of $H_2^{37}Cl^+$ obtained from the least-squares fit are listed in Table II. All the centrifugal distortion constants up to the sixth order were treated as adjustable parameters and are determined reasonably well.

We list the observed transition wavenumbers with the assignments in Tables III and IV. Also, the term values for the ground, $v_1 = 1$, and $v_3 = 1$ states calculated with the best fit molecular constants are listed in Tables V and VI.

DISCUSSIONS

Botschwina (18) estimated the vibrational frequency for the $2\nu_2$ band to be 2352 cm⁻¹. The effect of the Coriolis interaction between the $v_2 = 2$ and $v_3 = 1$ states can be treated as a second-order perturbation. Since the Coriolis interaction operator is expressed as $H_C^{223} = h_{223}iJ_{\nu}$, the \tilde{C} rotational constant for the $v_3 = 1$ state should contain the second-order contribution of the amount of $|h_{223}|^2/\Delta E(v_3 = 1 - v_2 = 2)$.

	(000)	(100)	(001)	(010)	Equilibrium
A	11.22012	11.04807	10. 99404	11.66706	11.19572
В	9.12378	8.97997	9.01407	9.31580	9.15453
С	4.93501	4.85504	4.87542	4.86623	5.03918
$\tau_{aaaa} \times 10$	-0.10611	-0.10524	-0.10419	-0.13717	
$ au_{bbbb} imes 10^2$	-0.51006	-0.50164	-0.51538	-0.59071	
$ au_{ m cccc} imes 10^3$	-0.27424	-0.27972	-0.26484	-0.27928	
$ au_{aabb} imes 10^2$	0.49386	0.47913	0.50297	0.60587	
$ au_{bbcc} imes 10^3$	-0.53579	-0.53998	-0.51743	-0.55651	
$ au_{aacc} imes 10^3$	-0.60841	-0.63225	-0.57810	-0.73385	
$ au_{abab} imes 10^2$	-0.11131	-0.10554	-0.11545	-0.10800	
I^A (amuÅ ²)	1.502446	1.525844	1.533343	1.444891	1.505721
I^B (amu A^2)	1.847659	1.877248	1.870146	1.809573	1.841452
I^C (amuÅ ²)	3.415926	3.472188	3.457677	3.464208	3.345312
Δ (amuÅ ²)	0.065821	0.069097	0.054187	0.20 9 744	-0.001861
α^{A}		0.17205	0.22608	-0.44694	
α^B		0.14381	0.10971	-0.19202	
α^{C}		0.07997	0.05959	0.06878	

]	FABLE	VIII	

Rotational and Centrifugal Distortion Constants of H2³⁷Cl⁺ (in cm⁻¹)

If we take the Coriolis coupling parameter for H₂S obtained by Lechuga-Fossat *et al.* (33) as an estimate for H₂Cl⁺, the contribution to the \tilde{C} rotational constant is estimated to be 1×10^{-4} cm⁻¹, which is about the same magnitude of the standard error of the parameters.

From the fitted parameters, the rotational constants A, B, and C were derived after correcting the centrifugal distortion contributions (28, 34) with the aid of the planarity relations (28). In Tables VII and VIII, these constants are listed together with the derived τ constants and the inertial defects. The observed inertial defect in the v_1 = 1 state is larger than that in the ground state. If ω_1 is larger than ω_3 as calculated by Botschwina (18), Δ_{100} should be smaller than Δ_{000} . In this context, it is interesting to note that ω_1 is smaller than ω_3 in the calculation by DeFrees and McLean (17) while they predicted correctly that v_1 is larger than v_3 . In H₂S, the inertial defect in the $v_1 = 1$ state is larger than that in the ground state as expected, since ω_1 is smaller than ω_3 .

The inertial defect at equilibrium should contain only the electronic contribution. It is estimated to be 0.0001 amu Å² by using the rotational g factors obtained for H₂S

TABLE	IX
-------	----

	(000)	(100)	(001)	(010)	(020)	Equilibrium
A	10.360736	10.201121	10.142957	10.72271B	11 114901	10.368442
В	9.016244	8.892537	8.937375	9.222203	9.443464	9.014553
С	4.731854	4.661994	4.677492	4.670098	4.609337	4.824843
$\tau_{aaaa} imes 10$	-0.08302	-0.08193	-0.08033	-0.10297	-0.12837	
$\tau_{bbbb} \times 10^2$	~0.49745	-0.49012	-0.50432	-0.58061	-0.67542	
$\tau_{eeee} \times 10^3$	-0.24626	-0.24113	-0.23908	-0.24544	-0.24193	
$r_{aabb} imes 10^2$	0.42822	0.42347	0.43116	0.52066	0.63541	
$\tau_{bbec} imes 10^8$	-0.47605	~0.46176	-0.46355	-0.50015	-0.51498	
$ au_{ m aacc} imes 10^3$	-0.55274	-0.54759	-0.52786	-0.61870	-0.69458	
$\tau_{abab} \times 10^2$	-0.09818	-0.09733	-0.10137	-0.11023	-0.13013	
l^A (amu λ^2)	1.627069	1.652527	1.662004	1.572142	1.516669	1.625859
l^{B} (amuÅ ²)	1.869695	1.895705	1.886195	1.827940	1.785111	1.870046
I^C (amuÅ ²)	3.562585	3.615970	3.603989	3.609695	3.657279	3.493923
Δ (amiÅ ²)	0.065821	0.067737	0.055791	0.209614	0.355499	-0.001982
α ^A		0.159615	0.217779	-0.361982	-0.392183ª	
α ^B		0.123707	0.078869	-0.205959	-0.221261ª	
a ^C		0.069860	0.054362	0.061756	0.060761ª	

Rotational and Centrifugal Distortion Constants of H232S (in cm⁻¹)

^a The value is the differences between the values for the (010) and (020) states.

(35, 36). However, the derived values for both the ³⁵Cl and the ³⁷Cl species are negative and much larger than the estimated value, as shown in Tables VII and VIII. A question arises here. Is this large negative value specific to ions? To answer this question, we reexamined the inertial defect of H₂S by using the molecular constants from recent papers (33, 37, 38). The values are listed in Table IX. It was found that the inertial defect at the equilibrium was similarly large and negative for both H₂S and H₂Cl⁺. We conclude that these larger inertial defects may arise from neglecting the higherorder vibration-rotation terms (γ , etc.) rather than an abnormal electronic contribution. Support for this conclusion may be obtained by examining the rotational constants in the $v_2 = 1$ state and in the $v_2 = 2$ state of H₂S. The γ constants are calculated to be $\gamma_{22}^4 = 0.0151$, $\gamma_{22}^B = 0.0765$, and $\gamma_{22}^{22} = 0.0005$ cm⁻¹, which are of the right order of magnitude to explain the inertial defect.

The equilibrium molecular structure was therefore determined by taking an average of the three structures obtained from the three possible combinations of the equilibrium rotational constants to be $r_e = 1.30412(17)$ Å and $\theta_e(H-Cl-H) = 94.243(27)^\circ$ for $H_2^{35}Cl^+$ and $r_e = 1.30411(17)$ Å and $\theta_e(H-Cl-H) = 94.244(26)^\circ$ for $H_2^{37}Cl^+$. The

molecular structures obtained for the two isotopic species agree very well. They also agree very well with the ab initio values, $r_e = 1.303$ Å and $\theta_e(H-Cl-H) = 94.244^\circ$, obtained by Botschwina (18). The τ constants derived for H₂Cl⁺ may be compared with those for H₂S (39, 40).

The structure of H₂Cl⁺ is compared to that of the isoelectronic molecule H₂S $r_e(H-S) = 1.33588(18)$ Å and $\theta_e(H-S-H) = 92.258(27)^{\circ}$.³ The bondlength in H₂Cl⁺ is shorter by 0.03 Å, and the angle is larger by about 2°. This seems to be brought about by the additional positive charge. A similar shortening in the bondlength and a slight widening in the bond angle were observed for SH₃⁺ compared with PH₃ (41).

The ν_1 vibrational frequency is higher than the ν_3 frequency in H₂Cl⁺, in contrast to H₂S. The interchange in the frequencies was also observed for a pair of isoelectronic molecules, H₂O (42) with H₂F⁺ (43). This interchange has been correctly predicted by a recent ab initio calculation by Botschwina (18). The intensity of the ν_3 band was found experimentally to be stronger than that of the ν_1 band by a factor of about 2.

ACKNOWLEDGMENTS

We are grateful to A. R. W. McKellar for providing us with his computer program which was used for the least-squares analysis at the initial stage of this work. We thank J. K. G. Watson for reading the manuscript and for comments.

RECEIVED: February 26, 1988

REFERENCES

- 1. M. A. HANEY AND J. L. FRANKLIN, J. Phys. Chem. 73, 4328-4331 (1969).
- 2. C. W. POLLEY AND B. MUNSON, Int. J. Mass. Spectrom. Ion Phys. 26, 49-60 (1978).
- 3. M. S. FOSTER AND J. L. BEAUCHAMP, Inorg. Chem. 14, 1229-1232 (1975).
- 4. P. W. TIEDEMANN, S. L. ANDERSON, S. T. CEYER, T. HIROOKA, C. Y. NG, B. H. MAHN, AND Y. T. LEE, J. Chem. Phys. 71, 605–609 (1979).
- 5. S. G. LIAS, J. F. LIEBMAN, AND R. D. LEVIN, J. Phys. Chem. Ref. Data 13, 695-808 (1984).
- 6. K. KAWAGUCHI AND E. HIROTA, J. Chem. Phys. 85, 6910-6913 (1986).
- 7. S. SAITO, S. YAMAMOTO, AND K. KAWAGUCHI, J. Chem. Phys. 88, 2281-2283 (1988).
- 8. A. G. W. CAMERON, Space Sci. Rev. 15, 121-146 (1973).
- 9. B. E. TURNER AND J. BALLY, Astrophys. J. Lett. 321, L75-L79 (1987).
- 10. L. M. ZIURYS, Astrophys. J. Lett. 321, L81-L85 (1987).
- 11. A. DALGARNO AND J. H. BLACK, Rep. Prog. Phys. 39, 573-612 (1976).
- 12. G. A. BLAKE, J. KEENE, AND T. G. PHILLIPS, Astrophys. J. 295, 501-506 (1985).
- 13. M. JURA, Astrophys. J. 190, L33-L34 (1974).
- 14. G. A. BLAKE, V. G. ANICICH, AND W. T. HUNTRESS, JR., Astrophys. J. 300, 415-419 (1986).
- 15. W. L. JORGENSEN, J. Amer. Chem. Soc. 100, 1057-1061 (1978).
- P. BOTSCHWINA, in "Molecular Ions: Geometric and Electronic Structures" (J. Berkowitz and K.-O. Groeneved, Eds.), pp. 411-414, Plenum, New York, 1983.
- 17. D. J. DEFREES AND A. D. MCLEAN, J. Chem. Phys. 82, 333-341 (1985).
- 18. P. BOTSCHWINA, J. Chem. Soc., Faraday Trans. 2 84, in press.
- 19. T. AMANO, J. Opt. Soc. Amer. B 2, 790-793 (1985).
- 20. T. AMANO AND K. TANAKA, J. Chem. Phys. 83, 3721-3728 (1985).
- 21. A. S. PINE, J. Opt. Soc. Amer. 64, 1683-1690 (1974).

³ These structural parameters were calculated from the equilibrium rotational constants listed in Table IX. Reference (39) gave $r_e = 1.3356$ Å and $\theta_e = 92.12^\circ$.

- 22. K. KAWAGUCHI, C. YAMADA, S. SAITO, AND E. HIROTA, J. Chem. Phys. 82, 1750-1755 (1985).
- 23. N. PAPINEAU, J.-M. FLAUD, C. CAMY-PEYRET, AND G. GUELACHVILI, J. Mol. Spectrosc. 87, 219–232 (1981).
- 24. N. PAPINEAU, C. CAMY-PEYRET, J.-M. FLAUD, AND G. GUELACHVILI, J. Mol. Spectrosc. 92, 451–468 (1982).
- 25. C. AMIOT AND G. GUELACHVILI, J. Mol. Spectrosc. 59, 171-190 (1976).
- 26. C. AMIOT, J. Mol. Spectrosc. 59, 191-208 (1976).
- C. M. CLAYTON, D. W. MERDES, J. PLIVA, T. K. MCCUBBIN, JR., AND R. H. TIPPING, J. Mol. Spectrosc. 98, 168-184 (1983).
- J. K. G. WATSON, in "Vibrational Spectra and Structure" (J. R. Durig, Ed.), Vol. 6, pp. 1–89, Elsevier, Amsterdam, 1977.
- 29. C. CAMY-PEYRET AND J.-M. FLAUD, J. Mol. Spectrosc. 51, 142-150 (1974).
- 30. F. W. BIRSS, Mol. Phys. 31, 491-500 (1976).
- 31. J. R. GILLIS AND T. H. EDWARDS, J. Mol. Spectrosc. 85, 55-73 (1981).
- 32. S. SAITO, private communication.
- L. LECHUGA-FOSSAT, J.-M. FLAUD, C. CAMY-PEYRET, AND J. W. C. JOHNS, Canad. J. Phys. 62, 1889– 1923 (1984).
- 34. D. KIVELSON AND E. B. WILSON, JR., J. Chem. Phys. 20, 1575-1579 (1952).
- 35. T. OKA AND Y. MORINO, J. Mol. Spectrosc. 8, 9-21 (1961).
- 36. C. A. BURRUS, J. Chem. Phys. 30, 976-983 (1959).
- 37. J.-M. FLAUD, C. CAMY-PEYRET, AND J. W. C. JOHNS, Canad. J. Phys. 61, 1462-1473 (1983).
- 38. WM. C. LANE, T. H. EDWARDS, J. R. GILLIS, F. S. BONOMO, AND F. J. MURCRAY, J. Mol. Spectrosc. 111, 320-326 (1985).
- 39. T. H. EDWARDS, N. K. MONCUR, AND L. E. SNYDER, J. Chem. Phys. 46, 2139-2142 (1967).
- 40. P. HELMINGER, R. L. COOK, AND F. C. DELUCIA, J. Chem. Phys. 56, 4581-4584 (1972).
- 41. T. NAKANAGA AND T. AMANO, in preparation.
- 42. W. S. BENEDICT, N. GAILAR, AND E. K. PLYLER, J. Chem. Phys. 24, 1139-1165 (1956).
- 43. E. SCHAFER AND R. J. SAYKALLY, J. Chem. Phys. 81, 4189-4199 (1984).