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Abstract—Novozyme 435� (Candida antarctica Lipase B) effects the kinetic resolution of both 3-benzylthia-4-hydroxycyclopenta-
none and its six-membered ring analogue, providing a novel route to both enantiomers of 4-benzylthiacyclopent-2-enone and the
two enantiomers of 4-hydroxycyclohex-2-enone, all in a state of very high optical purity.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The diverse synthetic utility of optically active 4-
hydroxycyclohex-2-enone and cyclohex-2-ene-1,4-
diols has been summarised by Figueredo et al.1 Not
surprisingly, therefore, compounds such as (4R)- and
(4S)-4-hydroxycyclohex-2-enone 1 have been the focus
of a number of synthetic endeavours. For example,
(4S)-1 is available in six steps from a member of the chi-
ral pool [(DD)-quinic acid].2 Both enantiomers of the hyd-
roxy ketone 1 are available by a protocol using a chiral
auxiliary3 or by a pathway involving a stereoselective
deprotonation of 4-benzyloxycyclohexanone using a chi-
ral lithium amide reagent.4 One of the most recently
reported methods utilises a chiral derivative of 1,4-ben-
zoquinone;1 unfortunately the partial reduction of 2 to
afford the enone 3 is difficult to control, with over-reduc-
tion to the saturated ketone occurring readily (Scheme
1).5

There are three routes to optically active 1 involving bio-
transformations described in the literature. The first
method describes the Bakers� yeast reduction of the
meso-diketone 4 to give the hydroxy ketone, followed
by a retro-Diels–Alder reaction.6 However, the yield of
the reduction process is low (32%) and the enantiomeric
excess of the desired product is only ca. 67%.
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A better enzymatic method involves the kinetic resolu-
tion of 6-acetoxy-3-methoxycyclohex-2-enone;7 finally
desymmetrisation of cis-1,4-diacetoxycyclohex-2-ene
using Pseudomonas cepacia lipase provided a three step
pathway to (4R)-1;8 unfortunately in both these cases
the starting materials are not readily available on a large
scale.
2. Results and Discussion

In contrast, racemic 4-hydroxycyclohex-2-enone is very
easy to make from anisole 5 (Scheme 2).9 While we con-
sidered that the enzyme-catalysed kinetic resolution of 6
would not be easy (vide infra: attempted resolution of
the five-membered ring analogue) we recognised that a
simple reversible Michael-type derivatisation of 6 would
serve temporarily to distinguish the topology around the
carbon atoms at positions 3 and 5. Thus to investigate
this strategy enone 6 was first reacted with benzylthiol
to give the cis-substituted compound 7 in 84% yield.
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Scheme 2. Reagents and conditions: (i) PhCH2SH (1equiv), Et3N

(0.1equiv), CH2Cl2, rt, 16h; (ii) vinyl acetate (5equiv), Novozyme

435�, diisopropyl ether (DIPE), 30�C, 16h; (iii) DBU (2equiv),

CH2Cl2, rt, 24h; (iv) K2CO3, MeOH, rt, 15min.
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Scheme 3. Reagents and conditions: (i) PhCH2SH (1equiv), Et3N

(1equiv), CH2Cl2, rt, 16h, 86%; (ii) a. vinyl acetate (5equiv),

Novozyme 435�, DIPE, 30�C, 16h, b. Et3N (1equiv), 1h; (iii) Ac2O

in pyridine, Et3N (2equiv) rt, 6h, 87%.
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Scheme 4. Reagents and conditions: (i) AcOH/THF/H2O (3:1:1), rt,

48h, 75%; (ii) PhCH2SH (1equiv), Et3N (0.1equiv), CH2Cl2, rt, 16h,

88%.
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The racemic hydroxy ketone 7 was enantioselectively
esterified employing Novozyme 435� and vinyl acetate
to furnish optically active alcohol (+)-7 (44% yield;
>99% ee, CHPLC)10 and the ester (�)-8 (48% yield;
>99% ee),11 enantioselectivity, E >200,12 which were
readily separated by flash column chromatography.
Desulfurisation of (+)-7 was effected using 1,8-diazabi-
cyclo[5.4.0]undec-7-ene (DBU) to give the (S)-alcohol
(S)-1 [a]D = �120 (c 1.68, CHCl3); lit.

5 [a]D = �92.3 (c
1.3, CHCl3). Similarly the acetate (�)-8 was converted
into the (R)-acetoxy enone (R)-9 and thence by a litera-
ture procedure into the (R)-hydroxy enone (R)-1.4

We have used a related strategy to prepare both enantio-
mers of 4-benzylthiacyclopent-2-enone 13. The simplic-
ity of the protocol suggests it would be the method of
choice for the synthesis of other 4-thiacyclopent-2-
enones.

While optically active 4-hydroxy and 4-alkoxycyclopent-
2-enone (and its silylated derivatives) are well-known
intermediates (e.g., in prostaglandin synthesis),13 the
preparation of optically active 4-alkylthiacyclopent-2-
enone is much more obscure. Indeed, to our knowledge,
there is only one paper detailing the isolation of an opti-
cally active 4-thiacyclopent-2-enone (a derivative of
(1S)-10-mercaptoisoborneol).14 Even in this paper the
formation of the 4-thiacyclopent-2-enone was incidental
to the main thrust of the study.

In order to establish a general route to the latter com-
pounds, racemic 4-hydroxycyclopent-2-enone 11 was
prepared from furfuryl alcohol 10 (Scheme 3).15

Treatment of the enone 11 with benzylthiol produced
only trans-3-benzylthia-4-hydroxycyclopentanone 12
(86% yield).16 Reaction of this racemic compound with
vinyl acetate in the presence of Novozyme 435� then
base gave recovered (3S,4S)-alcohol (�)-12 (49% yield;
>99% ee) and 4(R)-benzylthiacyclopent-2-enone (R)-13
(43% yield; >99% ee), E >200. The (S,S)-alcohol 12
was converted into (4S)-benzylthiacyclopent-2-enone
(S)-1317 in 87% yield using acetic anhydride in pyridine.

The absolute configuration of compounds 12 and 13 was
confirmed by deprotection then thiolation of commer-
cially available (4R)-tert-butyldimethylsilyloxycyclo-
pent-2-enone 14 (Scheme 4).18
Note that in connection with this study, attempts made
to resolve racemic 11 by lipase-catalysed kinetic resolu-
tion were generally unfruitful: in our hands Aspergillus
melleus lipase-catalysed esterification of (±)-11 gave
the best, but still modest, enantioselectivity (E = 15,
conversion = 47%).
3. Conclusion

In summary, in this study we have used Novozyme 435�

to perform kinetic resolutions on racemic 3-benzylthia-
4-hydroxycyclopentanone 12 and its six-membered ring
homologue 7 to afford access to both enantiomers of
4-benzylthiacyclopent-2-enone 13 and both enantiomers
of 4-hydroxycyclohex-2-enone 1, respectively. We have
also proved the concept of Michael-type addition to
4-hydroxycyclopent-2-enone and 4-hydroxycyclohex-2-
enone in order to aid kinetic resolution by altering the
substitution pattern alpha to the hydroxy group.
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