

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 128 (2007) 1065-1073

www.elsevier.com/locate/fluor

Reaction of perfluoro-1-ethylindan with SiO₂/SbF₅ and skeletal transformations of perfluoro-3-ethylindan-1-one under the action of SbF₅ and SiO₂/SbF₅

Yaroslav V. Zonov, Victor M. Karpov*, Vyacheslav E. Platonov

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk 630090, Russia Received 10 April 2007; received in revised form 23 May 2007; accepted 29 May 2007 Available online 3 June 2007

Dedicated to the Centenary of Academician, Professor N.N. Vorozhtsov, Jr.

Abstract

Perfluoro-1-ethylindan heated with excess of SiO₂ in an SbF₅ medium at 75 °C and then treated with water, gives 4-carboxy-perfluoro-3methylisochromen-1-one. Perfluoro-3-ethylindan-1-one is converted, under the action of SbF₅ at 70 °C, to perfluoro-2-(but-2-en-2-yl)benzoic acid as a mixture of *E*- and *Z*-isomers. When the reaction temperature is raised to 125 °C, a solution of salts of perfluoro-3,4-dimethyl-1H-isochromen-1-yl and perfluoro-4-ethyl-1H-isochromen-1-yl cations is obtained. Increase in the reaction time lowers the content of a salt of the latter cation in the solution. Hydrolysis of the solution of the salts gives perfluoro-3,4-dimethylisochromen-1-one and perfluoro-4-ethylisochromen-1-one. © 2007 Elsevier B.V. All rights reserved.

Keywords: Skeletal transformations; Perfluoro-1-ethylindan; Perfluoro-3-ethylindan-1-one; Silicon dioxide; Antimony pentafluoride; NMR spectroscopy

1. Introduction

Perfluorinated benzocyclobutene, indan, tetralin and their perfluoroalkyl and perfluoroaryl derivatives when heated with antimony pentafluoride undergo skeletal transformations to give products of cleavage, expansion or contraction of the alicyclic ring of benzocycloalkenes [1–4] (see also references [1–7] cited in article [2]). Thus, perfluoro-1-ethylindan (1) isomerizes into perfluoro-1,1-dimethylindan and perfluoro-2-(but-2-en-2-yl)toluene; the latter cyclizes to perfluoro-1,2dimethylindan [5]. Perfluoro-1-methylindan, when heated with SbF₅ in a nickel bomb, is transformed to perfluoro-2isopropyltoluene [1], and when heated with SbF₅ in a glass ampoule, it reacts with glass as a source of inorganic oxides to give perfluoro-4-methyl-1H-isochromene [6] (Scheme 1).

Apparently, the reaction with glass proceeds via intermediate formation of perfluoro-3-methylindan-1-one. On the other hand, we have found that perfluoroindan reacts with SiO_2/SbF_5 to give perfluoroindan-1-one in a good yield. The latter under the action of SbF_5 undergoes five-membered ring cleavage to form perfluoro-2-ethylbenzoic acid [7].

In this connection it was worthwhile to study the reaction of a number of perfluoroalkylindanes with silica in the presence of SbF₅ and the behaviour of their carbonyl derivatives under the action of antimony pentafluoride with the aim to study the possibility of their cationoid skeletal transformations. This work describes the reactions of ethylindan 1 with SiO₂/SbF₅ and with glass in an SbF₅ medium and transformations of perfluoro-3-ethylindan-1-one (2) under the action of antimony pentafluoride.

2. Results and discussion

It has been shown that reaction of ethylindan 1 with SiO_2 (0.6 mol per 1 mol of compound 1) in the presence of SbF_5 at 70 °C gives, after treatment of the reaction mixture with water, indanone 2 together with 4-fluorocarbonyl-perfluoro-3-methylisochromen-1-one (3), 4-carboxy-perfluoro-3-methylisochromen-1-one (4) and 5,6,7,8-tetrafluoro-3-hydroxy-3-tri-fluoromethyl-3,4-dihydroisochromen-1-one (5). The reaction mixture also contains unchanged compound 1 (Scheme 2). Reaction of indan 1 with excess of SiO₂ in an SbF₅ medium at

^{*} Corresponding author. Fax: +7 3832 34 4752.

E-mail address: karpov@nioch.nsc.ru (V.M. Karpov).

^{0022-1139/}\$ – see front matter O 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2007.05.021

75 °C forms a solution of a salt of 4-fluorocarbonyl-perfluoro-3-methyl-1H-isochromen-1-yl cation (6). Hydrolysis of the latter gives acid 4. The reaction of indan 1 with excess of SiO₂/ SbF₅ at 130 °C forms compound 4 together with tetrafluorophthalic acid (7) (Scheme 2).

These data indicate that ketone **2** undergoes further transformations under the reaction conditions of ethylindan **1** with SiO_2/SbF_5 . Apparently, it may be connected with skeletal transformations of compound **2** in the presence of antimony pentafluoride. Ketone **2** was synthesized under milder conditions by reaction of ethylindan **1** with CF₃COOH in the presence of SbF₅ at room temperature [9] and behaviour of ketone **2** in an SbF₅ medium was investigated.

Heating ketone **2** with SbF₅ at 70 °C (7 h) gives, after treatment of the reaction mixture with water, perfluoro-2-(but-2-en-2-yl)benzoic acid (**8**) as a mixture of *E*- and *Z*-isomers together with small amounts of perfluoro-3,4-dimethylisochromen-1-one (**9**). The reaction mixture also contains unchanged compound **2** (Scheme 3).

Transformation of indanone 2 in the presence of SbF₅ to the acid 8 may be represented by Scheme 3. At first, compound 2 with SbF₅ seems to generate the cation 2c. The five-membered ring of the latter may undergo ring opening to yield the benzoyl type ion 10, which undergoes isomerization with removal of the double bond inside the chain to form fluoroanhydride 11. Hydrolysis of the latter gives acid 8. This scheme is analogous to that for five-membered ring opening of ethylindan 1 under the action of antimony pentafluoride [5].

When the reaction temperature is raised to 125 °C (7 h), a solution of salts of perfluoro-3,4-dimethyl-1H-isochromen-1-yl

(12) and perfluoro-4-ethyl-1H-isochromen-1-yl cations (13) is obtained. Hydrolysis of the solution of the salts gives compound 9 and perfluoro-4-ethyl-isochromen-1-one (14). The reaction mixture also contains acid 8 and 5,6,7,8-tetrafluoro-3-hydroxy-3,4-bis(trifluoromethyl)-3,4-dihydroiso-chromen-1-one (15) (Scheme 4). Formation of the latter from compound 9 will be discussed below (Scheme 6).

The probable mechanism for the transformation of indanone 2 in the presence of SbF_5 to salts of cations 12 and 13 can be formulated as shown in Scheme 4. At first ketone 2 isomerizes into fluoroanhydride 11 (Scheme 3). Then an allyl type cation 16 is generated from compound 11 under the action of antimony pentafluoride. An intramolecular attack of one or another positively charged carbon atom of the allyl system of cation 16 at the fluorocarbonyl oxygen atom gives cations 17 and 18. These ions undergo isomerization with removal of the double bond inside the cycle to form cations 12 and 13.

The mixture of compounds **9** and **14**, obtained in the reaction of ketone **2** with SbF₅ at 125 °C (7 h), apparently, is a result of kinetic control of the reaction. Indeed, increase in the reaction time (130 °C, 57 h) led, after treatment of the reaction mixture with water, to the formation of the mixture, which did not contain compound **14** (Scheme 4). It may be explained in the following way. The isomerization of cations **12** and **13** one to another seems to be reversible, with the equilibrium shifted towards the thermodynamically more stable cation **12**, that makes it possible to convert cation **13** to cation **12**.

Consider possible routes of reaction between ethylindan 1 and SiO_2/SbF_5 (Scheme 5). At first cation 1c is generated from indan 1 and SbF₅. Then cation 1c reacts with SiO₂ to form indanon 2 analogously to the formation of perfluoroindan-1-one in the reaction of perfluoroindan with SiO₂/SbF₅ [7].

The interaction of ketone 2 with SbF_5 generates cation 16 (its formation was discussed above, Scheme 4), which reacts with SiO_2 to give cation 19. Intramolecular cyclization of the latter forms cation 20, which isomerizes to produce cation 6.

Scheme 5.

Hydrolysis of the latter gives compound **3**. It has been shown in a separate experiment that compound **3** is not the product of the reaction of a salt of cation **6** with SiO_2/SbF_5 .

The alternative mechanism for the transformation of indanone **2** to a salt of **6** under the action of SiO_2/SbF_5 , which includes interaction of products of cyclization of cation **16** (Scheme 4) with SiO_2 , seems unlikely, because the reaction of compound **1** with SiO_2/SbF_5 proceeds at 70 °C, while the reaction of ketone **2** with SbF_5 leading to the formation of a salt of cation **12** (Scheme 4) at this temperature proceeds very slowly. In addition, it was shown that a salt of cation **12** practically does not react with SiO_2 even at 125 °C.

Some amounts of compound **15** were obtained in the reaction of ethylindanone **2** with SbF_5 (Scheme 4). It has been shown by a separate experiment that compound **15** is formed in the reaction of compound **9** with water in an acidic medium. Compound **9**, when treated with aqueous solution of potassium carbonate, is transformed to compound **5**. The latter is also formed in the reaction of acid **4** with water in an alkaline medium as well as in an acidic (Scheme 6).

Apparently, the reaction of acid **4** with water proceeds via intermediate formation of β -keto acid **21** that is decarboxylated to give compound **5** (at the bottom of Scheme 6). Dehydration

of the latter with oleum forms 5,6,7,8-tetrafluoro-3-trifluoromethylisochromen-1-one (**22**).

Compound 15 under the action of NaHCO₃ in two-phase system H₂O-CHCl₃ gives a mixture of compounds 3, 5 and perfluoro-4-acetylisochromen-1-one (23). The probable routes for these transformations and for the reaction of compound 9 with K₂CO₃ can be formulated as shown in Scheme 6. At first both compounds 9 and 15 form acid 24. The latter is transformed to acid 21, which gives compound 5. On the other hand, one fluorine atom of CF₂ group of acid 24 is substituted by OH to give finally compound 25a, which produces delocalised anion 26. An intramolecular attack of one or another negatively charged oxygen atom of conjugated system of anion 26 at the carbon atom of the carboxyl group gives compounds 3 and 23. It is also possible that anion 27 generated in the reaction with NaHCO₃ from acid 24 undergoes intramolecular cyclization to form compound 23. Also that dehydration of compound 25 under the reaction conditions gives product 3, cannot be excluded.

Consider the reaction of ethylindan 1 with a glass in an SbF₅ medium. Heating compound 1 with antimony pentafluoride at 130 °C in a sealed ampoule with further treatment of the reaction mixture with water leads to compounds 3, 4, 5, 9, 15.

The mixture also contains perfluoro-1,1-dimethylindan (**28**), perfluoro-3,3-dimethylindan-1-one (**29**) and perfluoro-2,3-dimethyl-4,5,6,7-tetrahydro-1H-indene (**30**) (Scheme 7).

The probable routes for the transformations of ethylindan 1 under the action of glass/SbF₅ can be formulated as shown in Scheme 7. On heating with SbF₅ at 130 °C in a nickel bomb, ethylindan 1 gives compounds 28, 30, 31 and 32 [5]. One can assume that compounds 1, 28, 31 and 32 react with glass/SbF₅, similar to the reaction of ethylindan 1 with SiO₂/SbF₅, to produce carbonyl derivatives 2, 29, 11. Ethylindanone 2, as well as compound 11 under the action of antimony pentafluoride forms a salt of cation 12. Moreover, compound 11 under the action of glass/SbF₅ produces a salt of cation 6. As it was mentioned above, hydrolysis of salts of cations 6 and 12 gives compounds 3, 4, 5, 9 and 15.

Formally, compounds 5 and 15 could exist as cyclic 5 and 15 or/and open-chain 5a and 15a forms, respectively (Scheme 8).

Scheme 8.

Signals at 5.20 ppm (OH, ¹H NMR) and at 97.6 ppm (C-3, ¹³C NMR) testify that compound **5** in CDCl₃ solution has cyclic structure. ¹H NMR spectrum of compound **15** (CDCl₃) contains two signals of groups OH at 4.72 and at 5.15 ppm relating to two isomers of cyclic form of compound **15** ($E:Z \sim 65:35$). According to the ¹⁹F NMR spectra, ether solution of compound **5** contains cyclic **5** and open-chain **5a** forms in the ratio 80:20, respectively. In the case of ether solution of compound **15** ($E:Z \sim 70:30$) the content of open-chain form **15a** is not more than 2%.

The structures of *E*- and *Z*-isomers of acid **8** were defined on the base of the $J_{CF_3(\alpha)-CF_3(\beta)}$ values, which is equal to 11 Hz for *E*-isomer and less than 2 Hz for *Z*-isomer [8]. The structures of *E*- and *Z*-isomers of compound **15** were defined on the base of the $J_{CF_3(3)-CF_3(4)}$ values, which is equal to 10 Hz for *E*-isomer and less than 2 Hz for *Z*-isomer.

3. Experimental

IR spectra were taken on a Bruker Vector 22 IR spectrophotometer. UV spectra were measured on a Hewlett Packard 8453 UV spectrophotometer. ¹⁹F NMR and ¹H spectra were recorded on a Bruker WP-200 SY and AC-200 instrument (188.3 and 200 MHz, respectively) whereas ¹³C NMR spectrum of the compound **5** was recorded on a Bruker AM-400 instrument (100.6 MHz). Chemical shifts are given in δ ppm from CCl₃F (¹⁹F) and TMS (¹H and ¹³C), *J* values in Hz; C₆F₆ and SO₂ClF (-162.9 and 99.9 ppm from CCl₃F), (Me₃Si)₂O, CHCl₃ (0.04 and 7.24 ppm from TMS) and CDCl₃ (76.9 from TMS) were used as internal standards. The molecular masses of the compounds were determined by high-resolution spectrometry on a Finnigan Mat 8200 instrument (EI 70 eV). Contents (yields) of products in the reaction mixtures were established by ¹⁹F NMR spectroscopic data.

The structures of the compounds were established by elemental analysis, HRMS and spectral characteristics. Assignment of signals in the ¹⁹F NMR spectra of the compounds and cations **6**, **12** and **13** was made on the basis of chemical shifts of the signals, their fine structure and integral intensities. Compounds **2**, **29** [9], **28**, **30** [5] were identified by comparison of the ¹⁹F NMR data with data for authentic samples.

Antimony pentafluoride was obtained commercially, SiO_2 was prepared by heating of commercial silica gel at 400–450 °C, ethylindan **1** was obtained according to reference [10]. The reactions were carried out in glassware, unless otherwise specified.

3.1. Reaction of perfluoro-1-ethylindan (1) with SiO_2/SbF_5

1. A mixture of compound 1 (1.50 g), SiO₂ (0.14 g) and SbF₅ (1.24 g) (molar ratio, 1:0.6:1.5) was stirred at 70 °C for 5 h. The mixture was poured into 5% hydrochloric acid and extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solvent was distilled off to give 1.20 g of mixture, which contained 40% of 1, 24% (yield 21%) of 2, 29% (25%) of 3, 3% (2%) of 4 and 4% (3%) of 5. The mixture was spontaneously evaporated in the air to dryness to give 0.39 g of a mixture of compounds 3, 4 and 5, which was dissolved in CH₂Cl₂ and washed with aqueous solution of NaHCO₃ and dried over MgSO₄. The solvent was distilled off to give 0.22 g of compound 3. An analytical sample of compound 3 was prepared by crystallization.

4-Fluorocarbonyl-perfluoro-3-methylisochromen-1-one (3): mp 86.5–87.5 °C (hexane–CH₂Cl₂). UV (hexane) λ_{max} , nm (lg ε): 226 (4.36), 267 (3.76), 310 (3.60). IR (CCl₄) ν, cm⁻¹: 1854, 1797 (C=O); 1519, 1492 [fluorinated aromatic ring (FAR)]. ¹⁹F NMR (CH₂Cl₂): δ 56.5 (1F, COF), -68.3 (3F, s, CF₃), -129.1 (1F, F-8), -137.3 (1F, F-5), -139.5 (1F, F-6), -146.2 (1F, F-7); $J_{COF-F(5)} = 12$, $J_{5,6} = 20$, $J_{5,7} = 6$, $J_{5,8} = 14$, $J_{6,7} = 20$, $J_{6,8} = 14$, $J_{7,8} = 20$. HRMS *m/z*, 331.9719 (M⁺). Calcd for C₁₁F₈O₃ = 331.9720.

2. Analogously to the previous procedure, a mixture of ethylindan 1 (1.29 g), SiO₂ (0.39 g) and SbF₅ (2.46 g) (molar ratio, 1:2:3.5) was heated at 75 °C (6.5 h). The mixture was treated with 5% hydrochloric acid and extracted with ether. The extract was dried over MgSO₄. The ether solution contained compounds **3**, **4** and **5** in the ratio 6:90:4. The solvent was distilled off and the residue was sublimed (140 °C, 1 Torr) to give 0.87 g of mixture, which contained compounds **4**, **5** and **22** in the ratio 87:5:8 (yield 71, 4 and 6%, respectively). An analytical sample of acid **4** was prepared by crystallization.

4-Carboxy-perfluoro-3-methylisochromen-1-one (**4**): mp 192.5–194.5 °C (CCl₄). UV (hexane) λ_{max} , nm (lg ε): 220 (4.33), 317 (3.64). IR (KBr) ν , cm⁻¹: 3501, 3208 (OH); 1762, 1743 (C=O); 1520, 1492 (FAR). ¹H NMR [(CD₃)CO-CCl₄]: δ 11.05 (s, OH). ¹⁹F NMR [(CD₃)CO-CCl₄]: δ -68.5 (3F, s, CF₃), -131.8 (1F, F-8), -138.4 (1F, F-5), -143.5 (1F,

F-6), -150.1 (1F, F-7); $J_{5,6} = 20$, $J_{5,7} = 5$, $J_{5,8} = 14$, $J_{6,7} = 20$, $J_{6,8} = 12$, $J_{7,8} = 20$. Anal. Calcd for C₁₁HF₇O₄: C, 40.0; H, 0.3; F, 40.3. Found: C, 39.8; H, 0.2; F, 40.7%.

3. A mixture of compound 1 (0.61 g), SiO₂ (0.08 g) and SbF₅ (3.35 g) (molar ratio, 1:0.9:10) was stirred at 100 °C (1.5 h) and then at 115 °C (3 h). SO₂ClF was added to the resulting mixture at -15 °C and ¹⁹F NMR spectrum of the solution was measured at +20 °C. The spectrum contained signals of cation **6**. The solution was poured into 5% hydrochloric acid and extracted with ether. The extract was dried over MgSO₄. The solvent was distilled off and the residue was sublimed (160 °C, 1 Torr) to give 0.43 g (yield 85%) of acid **4**.

4-Fluorocarbonyl-perfluoro-3-methyl-1H-isochromen-1yl cation (**6**): ¹⁹F NMR (SbF₅–SO₂FCl): δ 60.2 (1F, COF), -7.3 (1F, F-1), -63.6 (3F, s, CF₃), -100.1 (1F, F-6), -107.8 (1F, F-8), -125.5 (1F, F-5), -129.4 (1F, F-7); $J_{1,5} = 4$, $J_{1,6} = 9$, $J_{1,8} = 81$, $J_{COF-F(5)} = 12$, $J_{5,6} = 19$, $J_{5,7} = 13$, $J_{5,8} = 12$, $J_{6,7} = 20$, $J_{6,8} = 31$, $J_{7,8} = 18$.

- 4. A mixture of compound 1 (0.65 g), SiO₂ (0.15 g) and SbF₅ (3.56 g) (molar ratio, 1:1.5:10) was stirred at 75–80 °C for 7 h. SO₂ClF was added to the mixture at -15 °C and ¹⁹F NMR spectrum of the solution was measured at +20 °C. The spectrum contained poorly-resolved signals of cation **6**. Then compound **3** (0.07 g) was added to the solution. ¹⁹F NMR spectrum of the resulting solution contained some extra signals as compared with the previous spectrum. The solution was poured into 5% hydrochloric acid and extracted with ether. The extract was dried over MgSO₄. The solvent was distilled off and the residue was sublimed (160 °C, 1 Torr) to give 0.52 g (yield 85%) of acid **4**.
- 5. A mixture of compound 1 (0.71 g), SiO₂ (0.32 g) and SbF₅ (3.87 g) (molar ratio, 1:3:10) was stirred at 90 °C (2 h) and then at 130 °C (11 h). The mixture was treated with 5% hydrochloric acid and extracted with ether. The extract was dried over MgSO₄. The ether was distilled off and the residue was sublimed (160 °C, 2 Torr) to give 0.38 g of a mixture, which contained compounds **4** and **7** in the ratio 52:48 (yield 39 and 36%, respectively).

3.2. Reaction of perfluoro-1-ethylindan (1) with glass in the presence of SbF_5 at 130 °C

A mixture of compound 1 (1.35 g) and SbF₅ (3.67 g) (molar ratio, 1:5) in a sealed ampoule was heated at 130 °C for 49 h. The mixture was treated with 5% hydrochloric acid and extracted with CHCl₃ and then with ether. The extracts were dried over MgSO₄. The ether solution contained compounds **4** and **5** in the ratio 66:34 and the chloroform solution contained compounds **3**, **4**, **5**, **9**, **15**, **28**, **29** and **30** in the ratio 12:11:4:22:14:9:11:17, respectively. The CHCl₃ extract was washed with aqueous solution of NaHCO₃ and dried over MgSO₄. The solvent was distilled off to give 0.84 g of mixture, which contained 18% (yield 12%) of **3**, 29% (19%) of **9**, 6% (4%) of **23**, 11% (7%) of **28**, 15% (10%) of **29** and 21% (14%) of **30**. The aqueous solution was acidified with HCl, extracted with ether and dried over MgSO₄. The solution contained compounds **4** and **5** in the ratio 27:73. Then it was combined with the previous ether extract, the solvent was distilled off and the residue was sublimed (190 °C, 2 Torr) to give 0.24 g of mixture, which contained compounds **4**, **5** and **22** in the ratio 38:42:20 (yield 9, 10 and 5%, respectively).

3.3. Reaction of perfluoro-3-ethylindan-1-one (2) with SbF_5

1. A mixture of compound 2 (0.33 g) and SbF₅ (1.14 g) (molar ratio, 1:6) was heated at 70 °C for 7 h. Then C₆F₆ (0.6 ml) was added and the mixture was poured into 5% hydrochloric acid and extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solvent and C₆F₆ were distilled off to give 0.21 g of mixture, which contained 2% of **2**, 75% (yield 48%) of Z-**8**, 21% (13%) of E-**8**, and 2% (1%) of **9**. Sublimation (120 °C, 20 Torr) of the mixture gave 0.05 g of liquid products and 0.16 g of solid products. From the latter fraction 0.08 g of acid **8** (E:Z ~ 9:91) was obtained by the single crystallization from hexane.

Perfluoro-2-(but-2-ene-2-yl)benzoic acid (**8**): mixture of two isomers, ratio *E*:*Z* ~ 9:91: mp 70–82 °C (hexane). UV (hexane) λ_{max} , nm (lg ε): 211 (3.95), 224 (3.88), 277 (3.38). IR (CCl₄) ν , cm⁻¹: 3505, 3054 (OH), 1752, 1717 (C=O); 1523, 1481 (FAR). ¹H NMR (CCl₄): δ 11.42 (s, OH). *E*-isomer: ¹⁹F NMR (CCl₄): δ -58.9 (3F, CF₃- α), -69.7 (3F, CF₃- β), -107.2 (1F, F- β), -131.3 (1F, F-6), -135.5 (1F, F-3), -145.9 (1F, F-4), -149.1 (1F, F-5); $J_{F(\beta)-CF_3(\alpha)} = 11$, $J_{F(\beta)-F(3)} = 3$, $J_{CF_3(\beta)-CF_3(\alpha)} = 11$, $J_{F(\beta)-F(3)} = 3$, $J_{CF_3(\beta)-CF_3(\alpha)} = 11$, $J_{A,5} = 20$, $J_{4,6} = 10$, $J_{5,6} = 21$.

Z-isomer: ¹⁹F NMR (CCl₄): δ –62.4 (3F, CF₃- α), –70.5 (3F, CF₃- β), –110.1 (1F, F- β), –131.4 (1F, F-6), –134.9 (1F, F-3), –146.0 (1F, F-4), –148.3 (1F, F-5); $J_{F(\beta)-CF_3(\beta)} = 8$, $J_{F(\beta)-CF_3(\alpha)} = 18$, $J_{F(\beta)-F(3)} = 3$, $J_{CF_3(\alpha)-F(3)} = 2$, $J_{3,4} = 22$, $J_{3,5} = 6$, $J_{3,6} = 12$, $J_{4,5} = 20$, $J_{4,6} = 10$, $J_{5,6} = 21$. HRMS (mixture of *E* and *Z*-isomers) *m*/*z*, 373.9799 (M⁺). Calcd for C₁₁HF₁₁O₂ = 373.9801.

2. A mixture of compound 2 (0.21 g) and SbF₅ (0.94 g) (molar ratio, 1:7.8) in an ampoule with TeflonTM FEP inliner for recording of NMR spectra was heated at 125 °C for 7 h. Then SO₂ClF (0.20 g) was added to the mixture at -15 °C and ¹⁹F NMR spectrum of the solution was measured at +20 °C. The spectrum contained signals of cations **12** and **13** in the ratio 82:18. The solution was poured into 5% hydrochloric acid and extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solution contained compounds **8**, **9**, **14** and **15** in the ratio 10:62:13:15. The extract was washed with aqueous solution of NaHCO₃ and dried over MgSO₄. The solution for and the residue was sublimed (100 °C, 2 Torr) to give 0.12 g (yield 61%) of mixture, which contained compounds **9** and **14** in the ratio 84:16.

Perfluoro-3,4-dimethyl-1H-isochromen-1-yl cation (12): ¹⁹F NMR (SbF₅-SO₂ClF): δ -9.3 (1F, F-1), -55.3 (3F, CF₃-4), -60.2 (3F, CF₃-3), -99.3 (1F, F-6), -108.2 (1F, F-8), -116.7 (1F, F-5), -130.9 (1F, F-7); J_{1,5} = 4, J_{1,6} = 9, J_{1,8} = 92, J_{CF₃(3)-CF₃(4) = 14, J_{CF₃(4)-F(5)} = 46, J_{5,6} = 20, J_{5,7} = 16, J_{5,8} = 11, J_{6,7} = 20, J_{6,8} = 31, J_{7,8} = 20.} Perfluoro-4-ethyl-1H-isochromen-1-yl cation (13): ¹⁹F NMR (SbF₅-SO₂ClF): δ –14.5 (1F, F-1), –60.9 (1F, F-3), –82.0 (3F, CF₃), –97.6 (1F, F-6), –104.5 (2F, CF₂), –109.8 (1F, F-8), –119.6 (1F, F-5), –136.3 (1F, F-7); $J_{1,3} = 10$, $J_{1,5} = 4$, $J_{1,6} = 10$, $J_{1,8} = 94$, $J_{CF_3-F(3)} = 6$, $J_{CF_3-F(5)} = 23$, $J_{CF_2-F(3)} = 41$, $J_{CF_2-F(5)} = 75$, $J_{3,7} = 6$, $J_{5,6} = 20$, $J_{5,7} = 12$, $J_{5,8} = 12$, $J_{6,7} = 20$, $J_{6,8} = 30$, $J_{7,8} = 19$.

Perfluoro-4-ethylisochromen-1-one (14): mixture with isomer **9**, ratio 9:14 ~ 84:16: IR (CCl₄) ν , cm⁻¹: 1799 (C=O); 1518, 1485 (FAR). Compound 14: ¹⁹F NMR (CH₂Cl₂): δ -66.1 (1F, F-3), -83.8 (3F, CF₃), -105.6 (2F, CF₂), -130.9 (1F, F-8), -131.9 (1F, F-5), -139.3 (1F, F-6), -152.6 (1F, F-7); $J_{CF_3-CF_2} = 2$, $J_{CF_3-F(3)} = 10$, $J_{CF_3-F(5)} = 24$, $J_{CF_2-F(3)} = 38$, $J_{CF_2-F(5)} = 72$, $J_{3,5} = 5$, $J_{3,6} = 2$, $J_{3,7} = 5$, $J_{3,8} = 3$, $J_{5,6} = 19$, $J_{5,7} = 5$, $J_{5,8} = 13$, $J_{6,7} = 21$, $J_{6,8} = 14$, $J_{7,8} = 21$. HRMS (mixture of **9** and 14) *m*/*z*, 353.9745 (M⁺). Calcd for C₁₁F₁₀O₂ = 353.9739.

- 3. Analogously to the previous experiments, a solution of compound 2 (0.13 g) in SbF₅ (0.74 g) (molar ratio, 1:10) was prepared and heated at 125 °C. In 35 h the solution contained (¹⁹F NMR) cations 6, 12 and 13 in the ratio 8:80:12 and in 70 h the ratio of the cations became 8:90:2, respectively. Then 0.03 g of SiO₂ was added to the solution and the mixture was heated at 125 °C for 16 h. ¹⁹F NMR spectrum of the mixture was measured at +20 °C. The spectrum mainly contained ill-resolved signals of cation 12. The mixture was treated with 5% hydrochloric acid and extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solvent was distilled off to give 0.08 g of mixture, which contained compounds 4 and 9 in the ratio 13:87 (yield 9 and 58%, respectively).
- 4. A mixture of compound 2 (1.03 g) and SbF₅ (5.93 g) (molar ratio, 1:10) was heated in a nickel bomb at 130 °C for 57 h. The mixture was poured into 5% hydrochloric acid and extracted with CHCl₃. The extract was dried over MgSO₄. The solution contained compounds 3, 4, 5, 9 and 15 in the ratio 3:4:2:61:30. The extract was washed with aqueous solution of NaHCO3 and dried over MgSO4. The solvent was distilled off and the residue was sublimed (100 °C, 5 Torr) to give 0.56 g of mixture, which contained compounds 3, 9 and 23 in the ratio 8:75:17 (yield 5, 44 and 10%, respectively). An analytical sample of compound 9 was prepared by crystallization. The aqueous solution was acidified with HCl, extracted with ether and dried over MgSO₄. The solvent was distilled off to give 0.13 g of mixture, which contained compounds 4 and 5 in the ratio 18:82 (yield 3 and 13%, respectively).

Perfluoro-3,4-dimethylisochromen-1-one (**9**): mp 97– 98 °C (hexane–CH₂Cl₂). UV (hexane) λ_{max} , nm (lg ε): 225 (4.34), 266 (3.78), 309 (3.59). IR (CCl₄) ν , cm⁻¹: 1799 (C=O); 1518, 1485 (FAR). ¹⁹F NMR (CH₂Cl₂): δ –57.1 (3F, CF₃-4), -65.2 (3F, CF₃-3), -130.5 (1F, F-5), -131.2 (1F, F-8), -139.7 (1F, F-6), -147.5 (1F, F-7); $J_{CF_3(3)-CF_3(4)} = 14$, $J_{CF_3(4)-F(5)} = 42$, $J_{5,6} = 19$, $J_{5,7} = 8$, $J_{5,8} = 13$, $J_{6,7} = 21$, $J_{6,8} = 13$, $J_{7,8} = 21$. HRMS *m/z*, 353.9735 (M⁺). Calcd for C₁₁F₁₀O₂ = 353.9739. 3.4. Hydrolysis of 4-carboxy-perfluoro-3methylisochromen-1-one (4) and perfluoro-3,4dimethylisochromen-1-one (9)

- 1. To a solution of acid 4 (0.19 g) in 5 ml of ether 5 ml of 5% hydrochloric acid was added and the mixture was stirred at 20 °C for 26 days. Ether solution was separated and dried over MgSO₄. The solvent was distilled off to give 0.16 g of mixture, which contained 66% of 4 and 34% (yield 29%) of 5.
- 2. Analogously to procedure (1), from 0.12 g of compound 9 (20 °C, 4 d) 0.11 g of compound 15 ($E:Z \sim 65:35$) was obtained (yield 87%).

5,6,7,8-Tetrafluoro-3-hydroxy-3,4-bis(trifluoromethyl)-3,4-dihydroisochromen-1-one (**15**): mixture of two isomers, ratio *E*:*Z* ~ 65:35: mp 133–139 °C (CH₂Cl₂). UV (hexane) λ_{max} , nm (lg ε): 212 (4.00), 230 (3.82), 284 (3.52), 316 (2.93). IR (CCl₄) ν , cm⁻¹: 3388 (OH); 1770 (C=O); 1523, 1502 (FAR). *E*-isomer: ¹H NMR (CDCl₃): δ 4.72 (1H, s, OH), 4.38 (1H, q, *J*_{H(4)-CF3(4)} = 7, H-4). ¹⁹F NMR (CDCl₃): δ -67.6 (3F, CF₃-4), -83.3 (3F, CF₃-3), -132.6 (1F, F-8), -139.5 (1F, F-5), -142.6 (1F, F-6), -150.4 (1F, F-7); *J*_{CF3(3)-CF3(4)} = 10, *J*_{CF3(4)-H(4)} = 7, *J*_{CF3(4)-F(5)} = 8, *J*_{F(5)-H(4)} = 1, *J*_{5,6} = 20, *J*_{5,7} = 5, *J*_{5,8} = 14, *J*_{6,7} = 20, *J*_{6,8} = 12, *J*_{7,8} = 20.

Z-isomer: ¹H NMR (CDCl₃): δ 5.15 (1H, s, OH), 4.44 (1H, q, $J_{H(4)-CF3(4)} = 7$, H-4). ¹⁹F NMR (CDCl₃): δ -65.4 (3F, CF₃-4), -83.8 (3F, c, CF₃-3), -132.3 (1F, F-8), -139.0 (1F, F-5), -142.1 (1F, F-6), -149.1 (1F, F-7); $J_{CF_3(4)-H(4)} = 7$, $J_{CF_3(4)-F(5)} = 7$, $J_{F(5)-H(4)} = 1$, $J_{5,6} = 20$, $J_{5,7} = 6$, $J_{5,8} = 14$, $J_{6,7} = 20$, $J_{6,8} = 12$, $J_{7,8} = 20$. HRMS (mixture of *E* and *Z*-isomers) *m/z*, 371.9815 (M⁺). Calcd for C₁₁H₂F₁₀O₃ = 371.9844.

3. A mixture of acid 4 (0.63 g) and K_2CO_3 (0.54 g) (molar ratio, 1:2.05) was dissolved in 5 ml of H₂O and heated at 45 °C for 4 h. The aqueous solution was acidified with HCl and extracted with ether. The extract was dried over MgSO₄. The solvent was distilled off to give 0.57 g (yield 98%) of compound 5. An analytical sample of product 5 was prepared by sublimation (100 °C, 2 Torr) and then crystallization.

5,6,7,8-Tetrafluoro-3-hydroxy-3-trifluoromethyl-3,4dihydroisochromen-1-one (5): mp 108-109 °C (hexane-CH₂Cl₂). UV (heptane) λ_{max} , nm (lg ϵ): 230 (4.09), 255 (3.29), 261 (3.25), 282 (3.33). IR $(CCl_4) \nu, cm^{-1}$: 3563, 3314 (OH); 1778, 1750 (C=O); 1518, 1499 (FAR). ¹H NMR (CDCl₃): δ 5.20 (1H, s, OH), 3.48 (1H, d, *J*_{A,B} = 17, H_A-4) и 3.23 (1H, dd, $J_{A,B} = 17$, $J_{H(B)-F(7)} = 2$, H_B-4). ¹³C NMR $(CDCl_3, {}^{1}H \text{ decoupled}): \delta 156.2 \text{ (s, C-1), } 149.3 \text{ (dd,}$ ${}^{1}J_{CF} = 271, {}^{2}J_{CF} = 12$) and 144.5 (dd, ${}^{1}J_{CF} = 251, {}^{2}J_{CF} = 11$, C-5 and C-8), 144.9 (ddd, ${}^{1}J_{CF} = 266$, ${}^{2}J_{CF} = 16$, 13) and 140.6 (ddd, ${}^{1}J_{CF} = 257$, ${}^{2}J_{CF} = 16$, 12, C-6 and C-7), 120.9 (q, ${}^{1}J_{CF} = 285$, CF₃), 119.0 (d, ${}^{2}J_{CF} = 16$) and 107.7 (m, C-4a and C-8a), 97.6 (q, ${}^{2}J_{CF} = 35$, C-3), 24.4 (s, C-4). ${}^{19}F$ NMR (CDCl₃): δ -86.7 (3F, s, CF₃), -133.3 (1F, F-8), -142.7 (1F, F-5), -143.7 (1F, F-6), -154.9 (1F, F-7); $J_{F(5)}$ -CH₂ = 1, $J_{F(7)-H(B)} = 2, J_{5,6} = 21, J_{5,7} = 3, J_{5,8} = 14, J_{6,7} = 20, J_{6,8} = 12,$ $J_{7,8} = 20.$ HRMS m/z, 303.9975 (M⁺). Calcd for $C_{10}H_3F_7O_3 = 303.9970.$

2,3,4,5-Tetrafluoro-6-(3,3,3-trifluoro-2-oxopropyl)benzoic acid (**5a**): ¹⁹F NMR (ether), mixture with cyclic form **5**, ratio **5:5a** ~ 80:20: δ -85.8 (3F, CF₃), -135.6 (1F, F-5), -138.4 (1F, F-2), -153.8 (1F, F-4), -157.6 (1F, F-3); $J_{\text{CH}_2-\text{F}(5)} = 2$, $J_{\text{CF}_3-\text{F}(5)} = 1$, $J_{2,3} = 22$, $J_{2,4} = 5$, $J_{2,5} = 12$, $J_{3,4} = 20$, $J_{3,5} = 4$, $J_{4,5} = 21$.

Analogously to the previous procedure, from compound 9 (0.06 g) and K₂CO₃ (0.09 g) (molar ratio, 1:3.8) stirred with 2 ml of H₂O and 15 drops of ether (16 °C, 21 h) 0.05 g of compound 5 was obtained (yield 97%).

3.5. Perfluoro-4-acetylisochromen-1-one (23)

A solution of compound **15** (0.34 g) in 10 ml of CHCl₃ was washed with aqueous solution of NaHCO₃ and dried over MgSO₄. The solution contained compound **3** and **23** in the ratio 12:88. The solvent was distilled off and the residue was sublimed (110 °C, 10 Torr) to give 0.16 g (yield 50%) of mixture, which contained 26% of **3** and 74% of **23**. The aqueous solution was acidified with HCl and extracted with ether. The extract was dried over MgSO₄. The solvent was distilled off to give 0.11 g (yield 37%) of compound **5**.

Perfluoro-4-acetylisochromen-1-one (23): mixture with isomer 3, ratio 3:23 ~ 26:74: IR (CCl₄) ν , cm⁻¹: 1854, 1815, 1800, 1760 (C=O); 1515, 1494 (FAR). Compound 23: ¹⁹F NMR (CH₂Cl₂): δ -71.7 (1F, F-3), -77.8 (3F, CF₃), -130.7 (1F, F-8), -137.7 (1F, F-5), -139.9 (1F, F-6), -152.4 (1F, F-7); $J_{CF_3-F(3)} = 8$, $J_{CF_3-F(5)} = 8$, $J_{3,5} = 3$, $J_{3,6} = 2$, $J_{3,7} = 5$, $J_{3,8} = 3$, $J_{5,6} = 20$, $J_{5,7} = 5$, $J_{5,8} = 13$, $J_{6,7} = 20$, $J_{6,8} = 14$, $J_{7,8} = 20$. HRMS (mixture of 3 and 23) *m/z*, 331.9719 (M⁺). Calcd for C₁₁F₈O₃ = 331.9719.

3.6. 5,6,7,8-Tetrafluoro-3-trifluoromethylisochromen-1-one (22)

A solution of compound 5 (0.31 g) in 1 ml of 9% oleum was kept at room temperature for 4 days. Then the solution was poured into water, extracted with CH_2Cl_2 , washed with aqueous solution of NaHCO₃ and dried over MgSO₄. The solvent was distilled off to give 0.27 g (yield 93%) of compound **22**. An analytical sample of product **22** was prepared by crystallization.

5,6,7,8-Tetrafluoro-3-trifluoromethylisochromen-1-one (22): mp 102.5–103 °C (CH₂Cl₂). UV (hexane) λ_{max} , nm (lg ε): 224 (4.38), 236 (4.07), 243 (4.04), 255 (3.83), 264 (3.82), 313 (3.62). IR (CCl₄) ν , cm⁻¹: 3119 (C–H), 1782 (C=O); 1516, 1495 (FAR). ¹H NMR (CCl₄): δ 7.07 (d, $J_{H(4)-F(8)} = 2$, H-4). ¹⁹F NMR (CH₂Cl₂): δ –73.0 (3F, s, CF₃), –131.2 (1F, F-8), –143.6 (1F, F-6), –145.1 (1F, F-5), –147.5 (1F, F-7); $J_{F(8)-H(4)} = 2$, $J_{5,6} = 20$, $J_{5,7} = 3$, $J_{5,8} = 15$, $J_{6,7} = 20$, $J_{6,8} = 12$, $J_{7,8} = 20$. HRMS *m*/*z*, 285.9850 (M⁺). Calcd for C₁₀HF₇O₂ = 285.9865.

Acknowledgement

We gratefully acknowledge the Russian Foundation for Basic Researches (project no. 06-03-32170) for financial support.

References

- V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, G.G. Yakobson, Bull. Soc. Chim. Fr. (1986) 980–985.
- [2] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, V.R. Sinyakov, J. Fluorine Chem. 107 (2001) 53–57.
- [3] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, V.R. Sinyakov, J. Fluorine Chem. 117 (2002) 73–81.
- [4] V.R. Sinyakov, T.V. Mezhenkova, V.M. Karpov, V.E. Platonov, J. Fluorine Chem. 125 (2004) 49–53.
- [5] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, Izv. Akad. Nauk SSSR Ser. Khim. (1990) 645–652;
 - V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, Bull. Acad. Sci. USSR Div. Chem. Sci. 39 (1990) 566–572 (English translation).
- [6] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, G.G. Yakobson, Izv. Akad. Nauk SSSR Ser. Khim. (1991) 745–746;
 V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, G.G. Yakobson, Bull. Acad. Sci. USSR Div. Chem. Sci. 40 (1991) 659–660 (English translation).
- [7] Ya.V. Zonov, V.M. Karpov, V.E. Platonov, J. Fluorine Chem. 126 (2005) 437–443.
- [8] S. Andreades, J. Am. Chem. Soc. 84 (1962) 864-865.
- [9] Ya.V. Zonov, V.M. Karpov, V.E. Platonov, J. Fluorine Chem. 128 (2007) 1058–1064.
- [10] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, G.G. Yakobson, J. Fluorine Chem. 28 (1985) 121–137.