Chiral α,ω-Dioxy-Carbanions from 1,3-Propanediol and 1,4-Butanediol by Sparteine-Assisted Deprotonation. Enantioselective Synthesis of 1,3- and 1,4-Diols, (R)-Pantolactone, and a Cyclopropane.

Mario Paetow, Hartmut Ahrens, Dieter Hoppe** Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Ölshausenstr. 40-60, W-2300 Kiel 1, Germany

Key Words: chiral 1-oxy-carbanions, enantioselective deprotonation, (-)-sparteine.

Summary: Prostereogenic mono- and dicarbamates of 1,3-propanediol and 1,4-butanediol are deprotonated by the sec-butyllithium/(-)-sparteine system with high enantiotopic differentiation. The electrophilic substitution of the intermediate chiral carbanions furnishes the title compounds with >95% ee.

We recently reported a method for the direct generation of highly enantiomerically enriched α -oxycarbanions, derived from 1-alkanols, by simple asymmetric deprotonation.¹ The trick consists in the simultaneous protection of the hydroxy group and activation of the α -protons by a sterically demanding oxazolidine-derived carbamoyl residue followed by the application of the complex formed from *sec*-butyllithium and the readily available alkaloide (-)-sparteine (2). This chiral base system is capable of achieving a very efficient selection between enantiotopic protons.^{2,3} The lithium carbanions 3 are configurationally stable in ethereal solution below -30°C and add electrophiles with strict stereoretention.¹ Later, the oxazolidine-carbonyl residue is removed by sequential acid and base treatment to give the alcohols 5 usually with >95% *ee* (Scheme 1).

Scheme 1

Since chiral 1,3- and 1,4-dioxy-substituted carbanions have gained great preparative interest,⁴ we investigated whether our method is also applicable to these synthetic building blocks. The dicarbamates $6a-c^5$

Scheme 2

a) **6a**, **6b**, **9**, **12**: 1.4 eq. *s*-BuLi/(-)-sparteine, ether, -78°C, 2-6h; **6c**: 2.0 eq. *s*-BuLi/(-)-sparteine, toluene, -78°C, 4-6h. b) **6a**, **6b**, **9**, **12**: 1.5 eq. *EIX*; **6c**: 2.6 eq. *EIX*. c) 0.5 eq.CH₃SO₃H, methanol, reflux, 16h; excess Ba(OH)₂; methanol, reflux, 4h.

Table 1:	Enantioselective	Substitution of	Carbamates	6, 9, and 12	2
----------	------------------	-----------------	------------	--------------	---

Substrate	EIX	Prod	uct ⁵				Alcoh	ol			
			El	yield (%) ^[a]	%ee	$[\alpha]_D^{20}$	yiel	ld (%)[^{a]} %ee	$[\alpha]_D^{20}$	reference
6a	Me ₃ SiCl	7aa	SiMe ₃	78		+21.3 ^[b]	8aa	85	97 ^[c]	+15.6 ^[d]	
6b	CH ₃ I	7bi	b CH ₃	83		+25.5 ^[e]	8bb	80	>97 ^[c]	+23.2 ^[f]	+25.0 ^{6a}
6b	Me ₃ SnCl	7bc	: SnMe ₃	96	95[8]	+33.6 ^[e]					
6c	CH3I	7cb	CH ₃	92		+7.6 ^[h]	8cb	35	97[°]	+15.1 ^[i]	+18.2 ^{6b}
9	CH3I	10 t	o CH ₃	79		+9.7 ^[j]	11 b	58	97[c]	+12.6 ^[k]	+12.4 ^{6b}
9	Me ₃ SnCl	10 c	: SnMe ₃	70	> 99 .5 ^[1]	+35.5 ^[m]					
12	CH3I	13 I	b CH ₃	81		+7.0 ^[n]	8cb	66	97 ^[c]	+15.2[0]	+18.2 ^{6b}
12	CO_2 , CH_2N_2	13 c	l CO ₂ Me	77	>95 ^[p]	-9.6 ^[q]					

[a] Yield after LC purification. [b] c = 1.1, acetone. [c] Determined by GC analysis of the urethane formed from (*S*)-1-phenylethyl isocyanate. [d] c = 1.0, ethanol. [e] c = 1.0, acetone. [f] c = 0.9, ethanol. [g] Determined after conversion into **7bb**. [h] c = 1.1, CH₂Cl₂. [i] c = 0.2, CHCl₃. [j] c = 0.9, CH₂Cl₂. [k] c = 0.2, CH₂Cl₂. [l] Determined after conversion into **10a**. [m] c = 1.0, CH₂Cl₂. [n] c = 0.6, CH₂Cl₂. [o] c = 1.1, CHCl₃. [p] Determined ¹H-NMR spectroscopically by means of Eu(hfc)₃. [q] c = 0.7, CH₂Cl₂.

were prepared from the diols and the appropriate oxazolidine-3-carbonyl chlorides $CbxCl^1$ or $CbyCl^7$ through the alkoholates. The deprotonation by s-BuLi/(-)-sparteine,⁸ followed by the trapping with CH₃I, CO₂, Me₃SiCl or Me₃SnCl proceeded smoothly to afford the adducts **7a-c**,⁵ respectively, with \geq 95% *ee* in all examples (Scheme 2 and Table 1).

For establishing the absolute configurations, several products were converted into the appropriate diols $8a-c^5$ (see Table 1) and the signs of optical rotation compared with these of reported samples. Evidently, a reliable preference for the abstraction of the *si*-proton under the influence of (-)-sparteine exists also in achiral hetero-substituted alkyl carbamates. The situation becomes more complicated in chiral dicarbamates.⁹

The ω -methoxy- and ω -silyloxy-carbamates 9⁵ and 12,⁵ respectively,⁸ react similarly; their substitution products 10⁵ or 13⁵ permit a selective deprotection of either the α - or the ω -hydroxyl group.

It is noteworthy, that in the lithiated 1,3-propanediyl dicarbamates, derived from **6a** and **b**, neither a carbamoyl migration nor a cycloalkylation to form a cyclopropyl carbamate¹⁰ takes place at -70°C. The latter could be enforced in the geminally dialkylated lithio-dicarbamate **17** to form the cyclopropyl carbamate **18**¹¹ in the presence of Me₃SiCl, which obviously activates the leaving group (Scheme 3).

Trapping the lithium compound 17 with carbon dioxide followed by acid treatment of the substitution product 19⁵ yields (*R*)-pantolactone¹² 20 with 80% yield (based on 16) and \geq 95% ee; thus, one of the most efficient syntheses of this compound has been performed.¹³

Scheme 3

a) 1.5 eq. s-BuLi/(-)-2, -78°C, 2.5h.b) 2 eq.TMSCI, 12h, -78-25°C.c) CO₂, 12h, -78-25°C.d) 2N aq. HCl. e) 5N HCl, 90°C, 12h. Acknowledgement: The work was kindly supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Pharma Research Centre of the Bayer AG, Wuppertal-Elberfeld.

References and Footnotes

- # New address: Institut f
 ür Organische Chemie der Westf
 älischen Wilhelms-Universit
 ät zu M
 ünster, Corrensstr. 40, W-4400 M
 ünster.
- a) Hoppe, D.; Hintze, F.; Tebben, P. Angew. Chem. 1990, 102, 1457-1459; Angew. Chem. Int. Ed. Engl. 1990, 29, 1422-1424; see there for lead references to chiral α-oxy-carbanions. b) Patent claim LE A 27 739; US Appl. 07/718,711.
- For more recent applications of (-)-sparteine c.f.: a) Hoppe, D.; Zschage, O. Angew. Chem. 1989, 101, 67-69; Angew. Chem. Int. Ed. Engl. 1989, 28, 69-71. b) Zschage, O.; Schwark, J.-R.; Hoppe, D. Angew. Chem. 1990, 102, 336-337; Angew. Chem. Int. Ed. Engl. 1990, 29, 296-297. c) Marsch, M.; Harms, K.; Zschage, O.; Hoppe, D.; Boche, G. Angew. Chem. 1991, 103, 338-339; Angew. Chem. Int. Ed. Engl. 1991, 30, 321-322.
- 3. For the utilisation of this chiral base in the enantioselective deprotonation of pyrrolidines see: Kerrick, S. T.; Beak, P. J. Am. Chem. Soc. 1991, 113, 9708-9710.
- a) Lancelin, J.-M.; Morin-Allory, L.; Sinaÿ, P. J. Chem. Soc., Chem. Commun. 1984, 355-356. b) Pedretti, V.; Veyrières, A.; Sinaÿ, P. Tetrahedron 1990, 46, 77-88; and references. c) Rychnovsky, S. D.; Mickus, D. E. Tetrahedron Lett. 1989, 30, 3011-3014. d) Rychnovsky, S. D.; Griesgraber, G.; Zeller, S.; Skalitzky, D. J. J. Org. Chem. 1991, 56, 5161-5169; and references.
- 5. All new products gave satisfactory elemental analysis, $C \pm 0.27\%$, $H \pm 0.19\%$.
- 6. a) Gerlach, H.; Oertle, K.; Thalmann, A. Helv. Chim. Acta 1976, 59, 755-760. b) Novak, E. R.; Tarbell, D. S. J. Am. Chem. Soc. 1967, 89, 73-81.
- 7. Hintze, F.; Hoppe, D. Synthesis 1992, in press.
- 8. General Procedure. To a solution of (-)-sparteine 2 (703 mg, 3.0 mmol) in ether (8 ml), kept under Ar at -78°C, an aprox. 1.5 N solution of sec-butyllithium (2.9 mmol) in cyclohexane/isopentane is added. The carbamate 6, 9, 12, or 16 (2.0 mmol), dissolved in ether (2 ml), is added dropwise and stirring is continued at -78°C for 2-6h. The appropriate electrophile EIX (3.0 mmol), diluted with few ether, is slowly added and stirring is continued at -78°C for 16h. After warming the reaction mixture to rt, the usual workup is performed with 2N aq. HCl/ether (10 ml each), followed by flash chromatography on silica gel with ether/pentane. For the synthesis of 13bb or 20, excess gaseous CO₂ was used for EIX. The crude reaction product was treated with diazomethane (for 13bb) or stirred with 5N aq. HCl (10 ml) for 12h at 90°C (for 20).
- 9. Ahrens, H.; Paetow, M.; Hoppe, D. Tetrahedron. Lett. 1992, subsequent paper.
- a) Gadwood, R. C.; Rubino, M. R.; Nagarajan, S. C.; Michel, S. T. J. Org. Chem. 1985, 50, 3255-3260. b) Gibson, D. H.; DePuy, C.H. Chem. Rev. 1974, 74, 605-623. Salaün, J. R. Y. Topics in Current Chem. 1988, 144, 1-71.
- 11. $[\alpha]_D^{25} = +9.2$ (c=1, acetone).
- 12. mp = 82°C, $[\alpha]_D^{25}$ = -14.0 (c=2.8, acetone).
- a) Glaser, E. Monatsh. Chem. 1904, 25, 46-51. b) Williams, R. J.; Major R. T. Science 1940, 91, 246-252. c) Hatat, C.; Karim, A.; Kokel, N.; Mortreux, A.; Petit, F. New J. Chem. 1990, 14, 141-152. d) Seitetsu Kagaku Co. Ltd. Jpn.; Kokai Tokkyo Koho JP 59.130.192 [84.130.192].

(Received in Germany 22 May 1992)