Novel Microwave-Assisted One-Pot Synthesis of Isoxazoles by a Three-Component Coupling–Cycloaddition Sequence

Benjamin Willy,^a Frank Rominger,^b Thomas J. J. Müller*^a

^b Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69210 Heidelberg, Germany *Received 28 August 2007; revised 26 October 2007*

Abstract: The consecutive Sonogashira coupling of acid chlorides with terminal alkynes, followed by 1,3-dipolar cycloaddition under dielectric heating of in situ generated nitrile oxides from hydroximinoyl chlorides furnishes isoxazoles in moderate to good yields in the sense of a one-pot three-component reaction.

Key words: alkynes, cross-couplings, cycloaddition, isoxazole, microwave reaction

The biological activity of many substituted isoxazoles¹ is an important theme in medicinal chemistry. Isoxazoles are potent, selective agonists of human cloned dopamine D4 receptors² and exhibit GABA_A antagonist,³ analgesic,⁴ anti-inflammatory,⁴ ulcerogenic,⁴ COX-2 inhibitory,⁵ antinociceptive,⁶ and anticancer⁷ activity. Therefore, many synthetic approaches have been made to access the isoxazole core,8 including reactions of hydroxylamine with 1,3-dicarbonyl compounds,⁹ α , β -unsaturated carbonyl compounds,¹⁰ and α , β -unsaturated nitriles.¹¹ The reaction of an oxime-derived dianion and an ester¹² or amide¹³ also provides isoxazoles. In addition, [3+2] cycloadditions between alkynes and nitrile oxides have been reported.¹⁴ Although these strategies are highly convergent, often strong bases or strong mineral acids are required, or prolonged heating to high temperatures is necessary. Other shortcomings are poor regioselectivities. Therefore, as part of our program on the design and development of new multicomponent synthesis of heterocycles initiated by Sonogashira coupling,^{15,16} we have now focused on couplingcycloaddition sequences as an entry to heterocycle sequences.¹⁷ Here, we wish to report a concise, consecutive, three-component synthesis of 3,4,5-substituted isoxazoles with a flexible substitution pattern, applying dielectric heating (microwave irradiation) in the concluding pericyclic step.

The Sonogashira coupling of acid chlorides with terminal alkynes allows straightforward access to alkynones.¹⁸ Recently, we reported that only one equivalent of triethylamine as the hydrochloric acid scavenging base proved to be most favorable for the successful coupling of even sensitive alkynes such as trimethylsilyl acetylene.¹⁹ In turn,

SYNTHESIS 2008, No. 2, pp 0293–0303 Advanced online publication: 18.12.2007 DOI: 10.1055/s-2007-1000856; Art ID: T14107SS © Georg Thieme Verlag Stuttgart · New York the resulting alkynones are highly reactive and readily react with all kinds of 1,3-dipoles, even in a one-pot fashion.¹⁷ The 1,3-dipolar cycloaddition of aromatic nitrile oxides, a class of propargyl-type 1,3 dipoles is, in general, a suitable route to isoxazoles.¹⁴ Since aromatic nitrile oxides are usually unstable compounds, it is necessary for them to be prepared in situ by dehydrochlorination of the corresponding hydroximinoyl chlorides with a suitable base. If triethylamine is the base, this step should be fully compatible with a preceding alkynone formation.

Therefore, after reacting acid chlorides 1 with terminal alkynes 2 under modified Sonogashira conditions for one hour at room temperature to furnish the expected alkynones 3, subsequently, hydroximinoyl chlorides 4 and triethylamine are added. After heating for 30 minutes under dielectric heating, the isoxazoles 5 were obtained in moderate to excellent yields, often as crystalline solids (Scheme 1, Table 1–3).

Scheme 1 One-pot, three-component synthesis of isoxazoles

Initial attempts at performing the concluding cycloaddition step under conductive heating proved to be time-consuming (2–4 days) and were often inefficient; conventional heating for 12 hours (85 °C, oil bath) of the alkynone formed from **1c** and **2b** with **4a**, gave rise to formation of isoxazole **5c** only in 49%. One major drawback of the extended reaction times was that a side reaction of the in situ generated nitrile oxides gave rise to the formation of furoxan oxides **6**²⁰ (Scheme 2). Furoxane **6a**, for instance, was formed under conductive heating conditions in 32% yield, whereas dielectric heating diminished the amount of this side product to 14% (with respect to hydroximinoyl chloride **4a**).

^a Institut f
ür Organische Chemie und Makromolekulare Chemie, Lehrstuhl f
ür Organische Chemie, Heinrich-Heine-Universit
ät D
üsseldorf, Universit
ätsstra
ße 1, 40225 D
üsseldorf, Germany

Fax +49(211)8114324; E-mail: ThomasJJ.Mueller@uni-duesseldorf.de

 Table 1
 Coupling–Cycloaddition Synthesis of Isoxazoles 5; Variation of Acid Chlorides

Entry	Acid chloride 1	Alkyne 2	Hydroximinoyl chloride 4	Isoxazole 5 (yield, %)
1	1a : R ¹ = 2-thienyl	$2\mathbf{a}: \mathbf{R}^2 = \mathbf{M}\mathbf{e}_3\mathbf{S}\mathbf{i}$	$R^3 = 4-MeOC_6H_4$ (4a)	OMe S Me ₃ Si Sa (77)
2	1b : $R^1 = 4 - O_2 N C_6 H_4$	2b : R ² = <i>n</i> -butyl	4a	O ₂ N O ₂ N O _{Bu} OMe
3	1c : $R^1 = 4$ -MeOC ₆ H ₄	2b	4a	5b (56) MeO
4	1d : $R^1 = 4$ -ClC ₆ H ₄	2b	4a	5c (64) Cl $rac{O}{N}$ OMe
5	1e : $R^1 = 4 - F_3 CC_6 H_4$	2a	4a	5d (59) $F_3C \xrightarrow{O}_{Me_3Si} \xrightarrow{O}_N$
6	1f : R ¹ = 2-styryl	2a	4a	Se (56) $Me_3Si \longrightarrow N$
7	$\mathbf{1g:} \ \mathbf{R}^1 = t\text{-}\mathbf{Bu}$	2a	4a	Me_3Si OMe Me_3Si ON 5g (56)

Synthesis 2008, No. 2, 293-303 © Thieme Stuttgart · New York

Table 1 Coupling-Cycloaddition Synthesis of Isoxazoles 5; Variation of Acid Chlorides (continued) Acid chloride 1 Alkyne 2 Hydroximinoyl chloride 4 Isoxazole 5 (yield, %) Entry OMe 8 1h: R¹ = cyclopropyl 2a 4a Me₂S **5h** (54) 9 **1i**: R^1 = cyclohexen-1-yl 2a 4a Me₃S

Scheme 2 Dimerization of nitrile oxides to furoxan oxides 6

In addition to spectroscopic and analytical characterization, the structure of 3,4-bis(4-methoxyphenyl)-1,2,5oxadiazole-2-oxide (**6a**) was corroborated by an X-ray crystal structure analysis (Figure 1).²¹

Hence, the synthesis was optimized by heating the reaction mixture under microwave irradiation. Thus, reaction times were reduced from three days to 30 minutes, while simultaneously increasing the yields, in some cases quite dramatically, and significantly reducing the amount of byproduct formation.

Figure 1 ORTEP plot of furoxan oxide 6a

 Table 2
 Coupling–Cycloaddition Synthesis of Isoxazoles 5; Variation of Alkynes

 Table 2
 Coupling–Cycloaddition Synthesis of Isoxazoles 5; Variation of Alkynes (continued)

Entry	Acid chloride 1	Alkyne 2	Hydroximinoyl chloride 4	Isoxazole 5 (yield, %)
3	1a	2d : $R^2 = 4$ -MeO ₂ CC ₆ H ₄	4 a	MeO 51 (72)
4	1a	2e : $R^2 = 4-(1-pyrrolidinyl)C_6H_4$	4a	OMe
5	1a	2f : $R^2 = 4 - O_2 NC_6 H_4$	4 a	O_{2N} OMe $O_{2}N$ $O_{2}N$
6	1a	$\mathbf{2g}: \mathbf{R}^2 = 4\text{-}\mathrm{MeOC}_6\mathbf{H}_4$	4a	OMe
7	1a	$\mathbf{2h}: \mathbf{R}^2 = 4\text{-}\mathrm{ClC}_6\mathrm{H}_4$	4a	OMe S (70)
8	1a	2i : $R^2 = 3,4-(MeO)_2C_6H_4$	4a	MeO OMe 5q (44)

 Table 2
 Coupling–Cycloaddition Synthesis of Isoxazoles 5; Variation of Alkynes (continued)

The structures of the isoxazoles **5** were unambiguously assigned by ¹H and ¹³C NMR spectroscopy and, in addition, by X-ray crystal structure analysis of the isoxazole **5w** (Figure 2).²¹

In accordance with theory for kinetically controlled 1,3dipolar cycloadditions,²⁰ in each case only one of the two possible regioisomers, i.e. isomer **5**, was formed. Not even traces of the regioisomers **7** could be detected. Substitution patterns were determined by NOESY NMR experiments and supported by an X-ray crystal structure analysis (Figure 3).

Figure 3 Possible regioisomers 5 and 6 of the isoxazoles

Figure 2 ORTEP plot of isoxazole 5w

Table 3	Coupling-Cycloaddition	Synthesis of Isoxazoles 5;	Variation of Hydroximinoyl Chlorides
---------	------------------------	----------------------------	--------------------------------------

 Table 3
 Coupling–Cycloaddition Synthesis of Isoxazoles 5; Variation of Hydroximinoyl Chlorides (continued)

Entry	Acid chloride 1	Alkyne 2	Hydroximinoyl chloride 4	Isoxazole 5 (yield, %)
3	1a	2b	$R^3 = 4-MeC_6H_4$ (4c)	Me S mBu ON
				5u (60)
4	1a	2b	$R^3 = 3,4-(MeO)_2C_6H_4$ (4d)	OMe OMe nBu ON
				5v (57)
5	1a	2b	$R^3 = 10$ -anthranyl (4e)	
				5w (68)
6	1c	2l : R ² = <i>n</i> -propyl	$R^3 = 2$ -thienyl (4f)	MeO O S
				5x (66)

As a consequence of 3,4,5-substitution, no peculiar resonances of the isoxazole core were found in the proton NMR spectra. However, the carbon signals of the isoxazole, as well as the carbonyl nuclei, could be readily assigned by 2D NMR spectroscopy and incremental calculations. Carbon atoms C-1 appeared in the carbon NMR spectra at about $\delta = 175$ ppm. The quaternary C-2 resonances could be found at higher field (around $\delta = 115$ ppm) as a consequence of the polarization caused by the electron-withdrawing effect of the carbonyl group. Finally, the imine-type nuclei emerged at about $\delta = 161$ ppm. The signals around $\delta = 185$ ppm could be unambiguously assigned to the nuclei of the carbonyl groups. According to the X-ray structure analysis, the aroyl moiety is distorted from coplanarity with respect to the isoxazole ring by 126°.

The scope of this one-pot coupling-cycloaddition isoxazole synthesis is fairly broad and can be performed under mild conditions and with excellent chemo- and regioselectivity. As a consequence of using acid chlorides as the halide coupling partner, amines and hydroxy groups need to be protected prior to the reaction. The use of the acid chlorides **1** is predominantly limited to (hetero)aromatic compounds and derivatives without β -hydrogens. With a few exceptions, cyclopropyl (Table 1, entry 8) or cyclohex-1-enyl substituents (entry 9) are tolerated in both steps of the sequence. Aliphatic alkynes can be employed as well as ethynylbenzenes with electron-donating or electron-withdrawing substituents (Table 2; 2d-i). Even heterocyclic alkynes, such as the phenothiazine bearing alkyne 2j, can be used as starting materials. Silylated alkynes also undergo the coupling procedure, indeed, trimethylsilyl acetylene (1a) proved to be very favorable (Table 2, entries 1–10). With respect to the 1,3-dipolar nitrile oxide, electron-rich, polycyclic, electron-deficient and heterocyclic substituents are all tolerated and react readily with the alkynones 3 (Table 3, entries 2–6).

In conclusion, we have established a straightforward, onepot, three-component synthesis of 3,4,5-substituted isoxazoles in the sense of a consecutive coupling-cycloaddition sequence starting with room temperature coupling and subsequent dielectric heating for completion of the cycloaddition. Preparation of starting materials is very general and can be applied to a broad variety of substrates. Studies addressing this novel synthesis in order to enhance molecular diversity in material and pharmaceutically interesting targets are currently underway.

All reactions involving water-sensitive compounds were carried out in flame-dried Schlenk glassware under nitrogen atmosphere unless stated otherwise. Reagents and catalysts were purchased as reagent grade and used without further purification. Solvents were dried and distilled according to standard procedures.²² Aldoximes and the corresponding hydroximinoyl chlorides 4 were synthesized according to literature procedures.²³ Flash column chromatography: silica gel 60, mesh 230-400, Merck, Darmstadt. TLC: silica gel plates (60 F254 Merck, Darmstadt). 1H-, 13C-, DEPT-, NOESY-, COSY-, HM-QC- and HMBC spectra were recorded with Bruker ARX 250, Bruker DRX 300 or Bruker DRX 500 spectrometers using CDCl₃ as solvent unless stated otherwise. The assignments of quaternary C, CH, CH₂ and CH₃ were made on the basis of DEPT spectra. Mass spectra were recorded with JEOL JMS-700 and Finnigan TSQ 700 spectrometers. The melting points (uncorrected) were measured with Stuart Scientific Melting Point Apparatus SMP3. Elemental analyses were carried out in the microanalytical laboratory of the Organisch-Chemisches Institut, Universität Heidelberg. Dielectric heating was performed in a SmithCreator (Personal Chemistry AB, Uppsala, Sweden) and a Discover[™] (CEM GmbH, Kamp-Lintfort, Germany; Table 3, entries 2 and 6) single-mode microwave cavity, producing continuous irradiation at 2450 MHz.

One-Pot, Three-Component Synthesis of Isoxazoles 5; General Procedure

In a 10 mL microwave tube, $PdCl_2(PPh_3)_2$ (15 mg, 0.02 mmol) and CuI (8 mg, 0.04 mmol) were dissolved in degassed THF (5 mL). To this orange solution, acid chloride **1** (1.00 mmol), alkyne **2** (1.00 mmol) and Et₃N (1.05 mmol) were added. The reaction mixture was stirred at r.t. for 1 h then aryl hydroximinoyl chloride **4** (1.00 mmol) and Et₃N (1.1 mmol) were added to the suspension and the reaction mixture was heated for 30 min at 90 °C under microwave conditions (sealed reaction vessel, ramp time 2 min, temperature measured by infra-red sensor, 1.9 bar). After cooling to r.t., the solvent was removed under reduced pressure and the crude products were purified by silica gel flash column chromatography (hexane–EtOAc, 50:1) to afford the analytically pure products.

[3-(4-Methoxyphenyl)-5-(trimethylsilyl)isoxazol-4-yl](thiophen-2-yl)methanone (5a)

Light-red crystals; mp 101 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.32$ (s, 9 H), 3.76 (s, 3 H), 6.83 (d, ³*J* = 8.8 Hz, 2 H), 6.96 (dd, ³*J* = 4.9, 3.8 Hz, 1 H), 7.30 (dd, ³*J* = 3.8 Hz, ⁴*J* = 1.2 Hz, 1 H), 7.51 (d, ³*J* = 8.8 Hz, 2 H), 7.65 (dd, ³*J* = 4.9 Hz, ⁴*J* = 1.2 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): $\delta = -2.1$ (3 × CH₃), 55.1 (CH₃), 114.1 (2 × CH), 120.4 (C_q), 127.2 (C_q), 128.2 (CH), 129.7 (2 × CH), 135.5 (CH), 135.6 (CH), 144.8 (C_q), 158.8 (C_q), 160.7 (C_q), 179.8 (C_q), 183.3 (C_q).

MS (EI, 70 eV): m/z (%) = 357 (92) [M]⁺, 314 (89), 240 (17), 208 (15), 141 (20), 133 (35), 111 (49), 90 (13), 73 (26), 32 (27), 28 (100) [CO]⁺.

HRMS: *m/z* calcd for C₁₈H₁₉NO₃SSi: 357.0855; found: 357.0846.

Anal. Calcd for $C_{18}H_{19}NO_3SSi: C, 60.47; H, 5.26; N, 3.92$. Found: C, 60.21; H, 5.60; N, 3.80.

[5-n-Butyl-3-(4-methoxyphenyl)isoxazol-4-yl](4-nitrophenyl)methanone (5b)

Light-yellow crystals; mp 98 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.92$ (t, ³*J* = 7.3 Hz, 3 H), 1.40 (m, 2 H), 1.77 (q, ³*J* = 7.6 Hz, 2 H), 2.93 (t, ³*J* = 7.4 Hz, 2 H), 3.74 (s, 3 H), 6.73 (d, ³*J* = 8.9 Hz, 2 H), 7.28 (d, ³*J* = 8.9 Hz, 2 H), 7.77 (d, ³*J* = 8.9 Hz, 2 H), 8.10 (d, ³*J* = 8.9 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 13.6 (CH₃), 22.3 (CH₂), 26.6 (CH₂), 29.6 (CH₂), 55.3 (CH₃), 114.1 (2 × CH), 114.5 (C_q), 119.9 (C_q), 123.5 (2 × CH), 130.0 (2 × CH), 130.3 (2 × CH), 142.1 (C_q), 150.1 (C_q), 160.9 (C_q), 161.1 (C_q), 178.3 (C_q).

MS (EI, 70 eV): m/z (%) = 380 (100) [M]⁺, 351 (31), 296 (25), 202 (10), 174 (27), 150 (68), 104 (15), 28 (16).

Anal. Calcd for $C_{21}H_{20}N_2O_5$: C, 66.31; H, 5.30; N, 7.76. Found: C, 66.36; H, 5.29; N, 7.33.

[5-*n*-Butyl-3-(4-methoxyphenyl)isoxazol-4-yl](4-methoxyphenyl)methanone (5c) Yellow resin.

¹H NMR (500 MHz, CDCl₃): δ = 0.87 (t, ³*J* = 7.3 Hz, 3 H), 1.33 (m, 2 H), 1.69 (q, ³*J* = 7.5 Hz, 2 H), 2.79 (t, ³*J* = 7.5 Hz, 2 H), 3.75 (s, 3 H), 3.81 (s, 3 H), 6.79 (d, ³*J* = 8.9 Hz, 2 H), 6.82 (d, ³*J* = 8.9 Hz, 2 H), 7.44 (d, ³*J* = 8.9 Hz, 2 H), 7.73 (d, ³*J* = 8.9 Hz, 2 H).

¹³C NMR (125 MHz, CDCl₃): δ = 13.6 (CH₃), 22.2 (CH₂), 26.3 (CH₂), 29.6 (CH₂), 55.2 (CH₃), 55.5 (CH₃), 113.8 (CH), 114.0 (CH), 114.5 (2 × CH), 115.1 (C_q), 120.7 (C_q), 129.8 (2 × CH), 130.4 (C_q), 132.0 (2 × CH), 160.7 (C_q), 161.0 (C_q), 164.0 (C_q), 175.1 (C_q), 189.0 (C_q).

MS (EI, 70 eV): m/z (%) = 366 (21) [M + H]⁺, 365 (77) [M]⁺, 364 (30) [M – H]⁺, 336 (19), 322 (35), 238 (59), 228 (20), 223 (23), 136 (18), 135 (100), 107 (14), 77 (16).

HRMS: *m*/*z* calcd for C₂₂H₂₃NO₄: 365.1627; found: 365.1635.

[5-n-Butyl-3-(4-methoxyphenyl)isoxazol-4-yl](4-chlorophenyl)methanone (5d)

Colorless crystals; mp 83 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, ³*J* = 7.3 Hz, 3 H), 1.35 (m, 2 H), 1.72 (q, ³*J* = 7.7 Hz, 2 H), 2.84 (t, ³*J* = 7.4 Hz, 2 H), 3.76 (s, 3 H), 6.78 (d, ³*J* = 8.8 Hz, 2 H), 7.28 (d, ³*J* = 8.6 Hz, 2 H), 7.36 (d, ³*J* = 8.8 Hz, 2 H), 7.63 (d, ³*J* = 8.6 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 13.6 (CH₃), 22.3 (CH₂), 26.5 (CH₂), 29.6 (CH₂), 55.3 (CH₃), 114.0 (2 × CH), 114.7 (C_q), 120.3 (C_q), 128.8 (2 × CH), 129.9 (2 × CH), 130.9 (2 × CH), 135.7 (C_q), 139.9 (C_q), 160.8 (C_q), 161.0 (C_q), 176.6 (C_q), 189.1 (C_q).

MS (EI, 70 eV): m/z (%) = 372 (6) [³⁷Cl: M + H]⁺, 371 (29) [³⁷Cl: M]⁺, 370 (27) [³⁵Cl: M + H]⁺, 369 (83) [³⁵Cl: M]⁺, 368 (24) [³⁵Cl: M - H]⁺, 340 (27), 326 (11), 285 (17), 174 (19), 149 (13), 141 (43), 139 (100), 113 (10), 111 (28).

Downloaded by: University of Pittsburgh. Copyrighted material.

HRMS: m/z calcd for C₂₁H₂₀³⁷ClNO₃: 371.1097; found: 371.1127.

HRMS: *m/z* calcd for C₂₁H₂₀³⁵ClNO₃: 369.1127; found: 369.1142.

[3-(4-Methoxyphenyl)-5-(trimethylsilyl)isoxazol-4-yl][4-(trifluoromethyl)phenyl)methanone (5e)

Light-red crystals; mp 108 °C.

¹H NMR (300 MHz, CDCl₃): δ = 0.35 (s, 9 H), 3.73 (s, 3 H), 6.74 (d, ³*J* = 8.4 Hz, 2 H), 7.30 (d, ³*J* = 8.4 Hz, 2 H), 7.54 (d, ³*J* = 8.6 Hz, 2 H), 7.76 (d, ³*J* = 8.6 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): $\delta = -2.0 (3 \times CH_3)$, 55.2 (CH₃), 114.1 (2 × CH), 120.1 (C_q), 123.3 (q, ¹J_{C-F} = 272.8 Hz, C_q), 125.4 (q, ³J_{C-F} = 3.8 Hz, CH), 127.0 (C_q), 129.9 (2 × CH), 130.0 (CH), 134.5 (q, ²J_{C-F} = 32.7 Hz, C_q), 140.1 (q, ⁵J_{C-F} = 1.2 Hz, C_q), 159.5 (C_q), 160.8 (C_q), 182.5 (C_q), 190.4 (C_q).

MS (EI, 70 eV): m/z (%) = 420 (30) [M + H]⁺, 419 (58) [M]⁺, 377 (30), 376 (100), 302 (39), 270 (32), 173 (26), 145 (18), 73 (29).

Anal. Calcd for $C_{21}H_{20}F_3NO_3Si$: C, 60.13; H, 4.81; N, 3.34. Found: C, 59.81; H, 4.76; N, 3.37.

(*E*)-1-[3-(4-Methoxyphenyl)-5-(trimethylsilyl)isoxazol-4-yl]-3-phenylprop-2-en-1-one (5f)

Colorless crystals; mp 124 °C.

¹H NMR (300 MHz, CDCl₃): δ = 0.44 (s, 9 H), 3.83 (s, 3 H), 6.71 (dd, ³*J* = 15.9, 0.6 Hz, 1 H), 6.97 (d, ³*J* = 8.3 Hz, 2 H), 7.22–7.31 (m, 5 H), 7.50–7.58 (m, 3 H).

Synthesis 2008, No. 2, 293-303 © Thieme Stuttgart · New York

¹³C NMR (75 MHz, CDCl₃): $\delta = -2.2$ (3 × CH₃), 55.4 (CH₃), 114.3 (2 × CH), 120.8 (C_q), 125.7 (CH), 128.4 (CH), 128.9 (2 × CH), 129.2 (C_q), 130.6 (CH), 130.7 (CH), 134.3 (C_q), 144.4 (CH), 159.6 (C_q), 161.0 (C_q), 183.5 (C_q), 187.2 (C_q).

MS (EI, 70 eV): m/z (%) = 378 (20) [M + H]⁺, 377 (65) [M]⁺, 362 (22), 248 (14), 335 (25), 334 (100), 162 (10), 151 (13), 133 (10), 131 (12), 86 (16), 84 (24), 77 (16), 73 (26).

HRMS: *m/z* calcd for C₂₂H₂₃NO₅Si: 377.1447; found: 377.1440.

1-[3-(4-Methoxyphenyl)-5-(trimethylsilyl)isoxazol-4-yl]-2,2dimethylpropan-1-one (5g)

Colorless crystals; mp 136 °C.

¹H NMR (300 MHz, CDCl₃): δ = 0.34 (s, 9 H), 0.96 (s, 9 H), 3.83 (s, 3 H), 6.94 (d, ³*J* = 8.9 Hz, 2 H), 7.44 (d, ³*J* = 8.9 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = -1.5 (3 × CH₃), 27.3 (CH₃), 45.4 (C_q), 55.3 (CH₃), 114.3 (2 × CH), 122.0 (C_q), 128.1 (C_q), 129.7 (2 × CH), 158.3 (C_q), 160.9 (C_q), 175.8 (C_q), 209.4 (C_q).

MS (EI, 70 eV): m/z (%) = 331 (15) [M]⁺, 275 (12), 274 (61), 247 (13), 246 (69), 101 (11), 73 (100).

HRMS: *m/z* calcd for C₁₈H₂₅NO₃Si: 331.1604; found: 331.1601.

Cyclopropyl[3-(4-methoxyphenyl)-5-(trimethylsilyl)isoxazol-4-yl)methanone (5h)

Colorless crystals; mp 137 °C.

¹H NMR (300 MHz, CDCl₃): δ= 0.38 (s, 9 H), 0.80 (m, 2 H), 1.18 (s, 2 H), 1.82 (m, 1 H), 3.85 (s, 3 H), 6.98 (d, ${}^{3}J$ = 8.7 Hz, 2 H), 7.56 (d, ${}^{3}J$ = 8.7 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = -2.2 (3 × CH₃), 13.1 (2 × CH₂), 21.5 (CH), 55.3 (CH₃), 114.1 (2 × CH), 120.9 (C_q), 130.1 (C_q), 130.6 (2 × CH), 159.8 (C_q), 161.0 (C_q), 182.7 (C_q), 197.7 (C_q).

MS (EI, 70 eV): m/z (%) = 315 (35) [M]⁺, 300 (20), 273 (21), 272 (100), 198 (27), 99 (10), 73 (40).

HRMS: *m*/*z* calcd for C₁₇H₂₁NO₃Si: 315.1291; found: 315.1293.

Cyclohexenyl[3-(4-methoxyphenyl)-5-(trimethylsilyl)isoxazol-4-yl]methanone (5i)

Colorless crystals; mp 124 °C.

¹H NMR (500 MHz, CDCl₃): δ = 0.31 (s, 9 H), 1.46–1.61 (m, 4 H), 1.97–2.02 (m, 2 H), 2.28–2.33 (m, 2 H), 3.80 (s, 3 H), 6.48–6.52 (m, 1 H), 6.89 (d, ³*J* = 8.8 Hz, 2 H), 7.43 (d, ³*J* = 8.8 Hz, 2 H).

¹³C NMR (125 MHz, CDCl₃): δ = -2.0 (3 × CH₃), 21.3 (CH₂), 21.6 (CH₂), 23.0 (CH₂), 26.1 (CH₂), 55.2 (CH₃), 114.0 (2 × CH), 120.9 (C_q), 127.2 (C_q), 129.7 (2 × CH), 140.8 (C_q), 146.7 (CH), 159.3 (C_q), 160.5 (C_q), 178.6 (C_q), 192.8 (C_q).

MS (EI, 70 eV): m/z (%) = 356 (16) [M + H]⁺, 355 (54) [M]⁺, 340 (30), 313 (23), 312 (100), 238 (17), 206 (12), 139 (10), 121 (10), 73 (40), 32 (10).

HRMS: *m*/*z* calcd for C₂₀H₂₅NO₃Si: 355.1604; found: 355.1617.

[5-n-Butyl-3-(4-methoxyphenyl)isoxazol-4-yl](thiophen-2yl)methanone (5j)

Yellow resin.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, ³*J* = 7.4 Hz, 3 H), 1.36 (m, 2 H), 1.73 (q, ³*J* = 7.6 Hz, 2 H), 2.86 (t, ³*J* = 7.4 Hz, 2 H), 3.77 (s, 3 H), 6.83 (d, ³*J* = 8.9 Hz, 2 H), 6.96 (dd, ³*J* = 4.9, 3.9 Hz, 1 H), 7.31 (dd, ³*J* = 3.9 Hz, ⁴*J* = 1.1 Hz, 1 H), 7.49 (d, ³*J* = 8.9 Hz, 2 H), 7.64 (dd, ³*J* = 4.9 Hz, ⁴*J* = 1.1 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 13.6 (CH₃), 22.2 (CH₂), 26.4 (CH₂), 29.6 (CH₂), 55.3 (CH₃), 114.1 (2 × CH), 115.1 (C_q), 120.6 (C_q), 128.2 (CH), 129.8 (2 × CH), 135.1 (CH), 135.3 (CH), 144.2 (C_q), 160.5 (C_q), 160.8 (C_q), 175.3 (C_q), 182.1 (C_q).

Synthesis 2008, No. 2, 293-303 © Thieme Stuttgart · New York

MS (EI, 70 eV): m/z (%) = 341 (91) [M]⁺, 312 (11), 257 (26), 242 (18), 228 (28), 174 (14), 149 (22), 111 (100).

HRMS: *m/z* calcd for C₁₉H₁₉NO₃S: 341.1086; found: 341.1088.

[5-n-Decyl-3-(4-methoxyphenyl)isoxazol-4-yl](thiophen-2-yl)methanone (5k)

Colorless crystals; mp 109 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.85$ (t, ³*J* = 6.6 Hz, 3 H), 1.16– 1.37 (m, 14 H), 1.66–1.79 (m, 2 H), 2.84 (t, ³*J* = 7.5 Hz, 2 H), 3.75 (s, 3 H), 6.81 (d, ³*J* = 8.4 Hz, 2 H), 6.93 (dd, ³*J* = 4.9, 3.8 Hz, 1 H), 7.23 (dd, ³*J* = 4.9, 1.2 Hz, 1 H), 7.48 (d, ³*J* = 8.4 Hz, 2 H), 7.62 (dd, ³*J* = 3.8, 1.2 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0 (CH₃), 22.6 (CH₂), 26.5 (CH₂), 27.5 (CH₂), 29.0 (CH₂), 29.0 (CH₂), 29.2 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 31.8 (CH₂), 55.1 (CH₃), 114.0 (2 × CH), 115.0 (C_q), 120.5 (C_q), 128.1 (CH), 129.7 (2 × CH), 135.0 (CH), 135.1 (CH), 144.1 (C_q), 160.4 (C_q), 160.7 (C_q), 175.2 (C_q), 182.0 (C_q).

MS (EI, 70 eV): m/z (%) = 426 (29) [M + H]⁺, 425 (100) [M]⁺, 424 (11), 312 (22), 257 (13), 111 (32).

HRMS: m/z calcd for C₂₅H₃₁NO₃S: 425.2025; found: 425.2004.

Anal. Calcd for $C_{25}H_{31}NO_3S$: C, 70.55; H, 7.34; N, 3.29. Found: C, 70.23; H, 7.44; N, 3.32.

Methyl 4-[3-(4-Methoxyphenyl)-4-(thiophene-2-carbonyl)isoxazol-5-yl]benzoate (51)

Colorless crystals; mp 147 °C.

¹H NMR (300 MHz, CDCl₃): δ = 3.78 (s, 3 H), 3.90 (s, 3 H), 6.85– 6.94 (s, 3 H), 7.36 (dd, ³*J* = 3.9, 1.0 Hz, 1 H), 7.58–7.66 (m, 3 H), 7.81 (d, ³*J* = 8.5 Hz, 2 H), 8.05 (d, ³*J* = 8.5 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 52.3 (CH₃), 55.2 (CH₃), 114.3 (2 × CH), 115.1 (C_q), 120.1 (C_q), 127.2 (2 × CH), 128.5 (CH), 129.5 (2 × CH), 130.0 (2 × CH), 130.4 (C_q), 131.9 (C_q), 135.7 (CH), 136.3 (CH), 144.0 (C_q), 161.1 (C_q), 161.4 (C_q), 166.0 (C_q), 167.2 (C_q), 182.6 (C_q).

MS (EI, 70 eV): m/z (%) = 420 (15) [M + H]⁺, 419 (58) [M]⁺, 390 (12), 268 (15), 244 (13), 242 (13), 216 (47), 164 (10), 163 (100), 149 (12), 135 (30), 111 (85), 103 (14), 32 (14), 28 (56).

HRMS: *m*/*z* calcd for C₂₃H₁₇NO₅S: 419.0827; found: 419.0816.

Anal. Calcd for $C_{23}H_{17}NO_5S$: C, 65.86; H, 4.09; N, 3.34. Found: C, 65.65; H, 4.22; N, 3.29.

{3-(4-Methoxyphenyl)-5-[4-(pyrrolidin-1-yl)phenyl]isoxazol-4yl}(thiophen-2-yl)methanone (5m)

Yellow crystals; mp 141 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.96-2.01$ (m, 4 H), 3.25-3.31 (m, 4 H), 3.78 (s, 3 H), 6.48 (d, ³*J* = 8.8 Hz, 2 H), 6.86 (d, ³*J* = 8.6 Hz, 2 H), 6.87-6.92 (m, 1 H), 7.36-7.41 (m, 1 H), 7.55-7.64 (m, 5 H).

¹³C NMR (75 MHz, CDCl₃): δ = 25.4 (2 × CH₂), 47.4 (2 × CH₂), 55.2 (CH₃), 111.0 (C_q), 111.4 (2 × CH), 113.3 (C_q), 114.1 (2 × CH), 121.0 (C_q), 128.3 (CH), 128.8 (2 × CH), 129.5 (2 × CH), 135.34 (CH), 135.39 (CH), 144.7 (C_q), 149.2 (C_q), 160.7 (C_q), 161.2 (C_q), 169.8 (C_q), 183.7 (C_q).

MS (EI, 70 eV): m/z (%) = 420 (15) [M + H]⁺, 419 (58) [M]⁺, 340 (94), 281 (44), 191 (16), 170 (15), 139 (36), 111 (100), 74 (16), 41 (24), 40 (29), 39 (47).

Anal. Calcd for $C_{25}H_{22}N_2O_3S$: C, 69.75; H, 5.15; N, 6.51. Found: C, 69.44; H, 5.29; N, 6.39.

[3-(4-Methoxyphenyl)-5-(4-nitrophenyl)isoxazol-4-yl](thiophen-2-yl)methanone (5n)

Colorless crystals; mp 139 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 3.80$ (s, 3 H), 6.89 (d, ${}^{3}J = 8.9$ Hz, 2 H), 6.96 (dd, ${}^{3}J = 4.7$, 3.9 Hz, 1 H), 7.37 (dd, ${}^{3}J = 3.9$, 1.0 Hz, 1 H), 7.60 (d, ${}^{3}J = 8.7$ Hz, 2 H), 7.70 (dd, ${}^{3}J = 4.9$, 1.0 Hz, 1 H), 7.96 (d, ${}^{3}J = 8.7$ Hz, 2 H), 8.27 (d, ${}^{3}J = 8.9$ Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 55.3 (CH₃), 114.4 (2 × CH), 116.1 (C_q), 119.8 (C_q), 124.2 (2 × CH), 128.3 (2 × CH), 128.8 (CH), 129.6 (2 × CH), 132.2 (C_q), 136.0 (CH), 136.8 (CH), 143.8 (C_q), 148.8 (C_q), 161.3 (C_q), 161.6 (C_q), 165.9 (C_q), 182.3 (C_q).

MS (EI, 70 eV): m/z (%) = 408 (11), 407 (27), 406 (100) [M]⁺, 378 (15), 377 (13), 216 (11), 162 (14), 151 (15), 150 (11), 113 (11), 112 (10), 111 (100), 104 (10).

HRMS: m/z calcd for $C_{21}H_{14}N_2O_5S$: 406.0623; found: 406.0613.

Anal. Calcd for $C_{21}H_{14}N_2O_5S$: C, 62.06; H, 3.47; N, 6.89. Found: C, 61.90; H, 3.59; N, 6.75.

[3,5-Bis(4-methoxyphenyl)isoxazol-4-yl](thiophen-2-yl)methanone (50)

Colorless crystals; mp 138 °C.

¹H NMR (300 MHz, CDCl₃): δ = 3.78 (s, 3 H), 3.80 (s, 3 H), 6.84– 6.93 (m, 5 H), 7.36 (dd, ³*J* = 3.9, 1.2 Hz, 1 H), 7.60 (d, ³*J* = 8.9 Hz, 2 H), 7.61 (dd, ³*J* = 4.9, 1.1 Hz, 1 H), 7.71 (d, ³*J* = 9.0 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 55.3 (CH₃), 55.4 (CH₃), 112.8 (C_q), 114.2 (2 × CH), 114.4 (2 × CH), 119.3 (C_q), 120.6 (C_q), 128.5 (CH), 129.1 (2 × CH), 129.6 (2 × CH), 135.7 (CH), 135.9 (CH), 144.4 (C_q), 160.9 (C_q), 161.3 (C_q), 161.6 (C_q), 168.7 (C_q), 183.2 (C_q).

MS (EI, 70 eV): m/z (%) = 391 (36) [M]⁺, 216 (15), 136 (11), 135 (100), 111 (21), 77 (12), 59 (11).

HRMS: *m*/*z* calcd for C₂₂H₁₇NO₄S: 391.0878; found: 391.0871.

Anal. Calcd for $C_{22}H_{17}NO_4S$: C, 67.50; H, 4.38; N, 3.58. Found: C, 67.28; H, 4.44; N, 3.55.

[5-(4-Chlorophenyl)-3-(4-methoxyphenyl)isoxazol-4-yl](thiophen-2-yl)methanone (5p) Colorless crystals; mp 126 °C.

¹H NMR (300 MHz, CDCl₃): δ = 3.79 (s, 3 H), 6.88 (d, ³*J* = 8.9 Hz, 2 H), 6.93 (dd, ³*J* = 4.9, 3.8 Hz, 1 H), 7.34–7.40 (m, 3 H), 7.65 (dd, ³*J* = 4.9, 1.1 Hz, 1 H), 7.59 (d, ³*J* = 8.9 Hz, 2 H), 7.70 (d, ³*J* = 8.7 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 55.2 (CH₃), 114.3 (2 × CH), 114.4 (C_q), 120.2 (C_q), 125.1 (C_q), 128.5 (CH), 128.6 (2 × CH), 129.3 (2 × CH), 129.5 (2 × CH), 135.8 (CH), 136.3 (CH), 137.1 (C_q), 144.0 (C_q), 161.0 (C_q), 161.4 (CH), 167.4 (C_q), 182.7 (C_q).

MS (EI, 70 eV): m/z (%) = 397 (16) [³⁷Cl: M]⁺, 396 (10) [M + H]⁺, 395 (47) [³⁵Cl - M]⁺, 244 (14), 220 (11), 216 (36), 149 (10), 141 (23), 139 (70), 113 (13), 111 (100).

HRMS: *m*/*z* calcd for C₂₁H₁₄ClNO₃S: 395.0383; found: 395.0395.

Anal. Calcd for $C_{21}H_{14}CINO_3S$: C, 67.50; H, 4.38; N, 3.58. Found: C, 67.44; H, 4.59; N, 3.56.

[5-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl)isoxazol-4yl](thiophen-2-yl)methanone (5q)

Colorless crystals; mp 151 °C.

¹H NMR (300 MHz, CDCl₃): δ = 3.74 (s, 3 H), 3.78 (s, 3 H), 3.84 (s, 3 H), 6.80–6.90 (m, 4 H), 7.23 (d, ⁴*J* = 2.0 Hz, 1 H), 7.30–7.37 (m, 2 H), 7.55–7.61 (m, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 55.1 (CH₃), 55.72 (CH₃), 55.76 (CH₃), 110.1 (CH), 111.0 (CH), 112.8 (C_q), 114.1 (2 \times CH), 119.1 (C_q), 120.4 (C_q), 120.8 (CH), 128.4 (CH), 129.4 (2 \times CH), 135.5 (CH), 135.8 (CH), 144.2 (C_q), 148.9 (C_q), 151.0 (C_q), 160.8 (CH), 161.2 (C_q), 168.4 (C_q), 183.1 (C_q).

MS (EI, 70 eV): m/z (%) = 422 (33), 421 (100) [M]⁺, 420 (20), 357 (20), 356 (36), 163 (19), 135 (18), 133 (11), 121 (18).

HRMS: *m*/*z* calcd for C₂₃H₁₉NO₅S: 421.0984; found: 421.0985.

[3-(4-Methoxyphenyl)-5-(10-methyl-10*H*-phenothiazin-3yl)isoxazol-4-yl](thiophen-2-yl)methanone (5r) Orange crystals; mp 172 °C.

¹H NMR (300 MHz, CDCl₃): δ = 3.30 (s, 3 H), 3.76 (s, 3 H), 6.68– 6.77 (m, 2 H), 6.83–6.95 (m, 4 H), 7.05–7.17 (m, 2 H), 7.36 (dd, ³*J* = 3.8, 1.1 Hz, 1 H), 7.48–7.63 (m, 5 H).

¹³C NMR (75 MHz, CDCl₃): δ = 35.3 (CH₃), 55.1 (CH₃), 112.9 (C_q), 113.8 (CH), 114.1 (2 × CH), 114.3 (CH), 120.4 (C_q), 120.6 (C_q), 122.3 (C_q), 123.0 (CH), 123.9 (C_q), 125.5 (CH), 126.99 (CH), 127.07 (CH), 127.6 (CH), 128.4 (CH), 129.5 (2 × CH), 135.6 (CH), 135.9 (CH), 144.1 (C_q), 144.4 (C_q), 147.8 (C_q), 160.8 (C_q), 161.2 (CH), 167.8 (C_q), 182.9 (C_q).

MS (EI, 70 eV): m/z (%) = 497 (19), 496 (63) [M]⁺, 241 (17), 240 (100), 239 (15), 224 (13), 216 (28), 213 (22), 212 (73), 210 (13), 197 (25), 196 (19), 153 (11), 111 (11).

HRMS: *m*/*z* calcd for C₂₈H₂₀N₂O₃S₂: 496.0915; found: 496.0925.

{3-(4-Methoxyphenyl)-5-[(tetrahydro-2*H***-pyran-2-yloxy)methyl]isoxazol-4-yl}(thiophen-2-yl)methanone (5s)** Colorless crystals; mp 133 °C.

¹H NMR (300 MHz, CDCl₃): δ = 1.40–1.71 (m, 6 H), 3.41–3.49 (m, 1 H), 3.41–3.49 (m, 1 H), 3.62–3.71 (m, 1 H), 3.76 (s, 3 H), 4.60– 4.68 (s, 2 H), 4.83 (d, ³*J* = 13.7 Hz, 1 H), 6.84 (d, ³*J* = 8.9 Hz, 2 H), 7.00 (dd, ³*J* = 4.9, 3.9 Hz, 1 H), 7.43 (dd, ³*J* = 3.8, 1.1 Hz, 1 H), 7.53 (d, ³*J* = 8.9 Hz, 2 H), 7.67 (dd, ³*J* = 4.9, 1.1 Hz, 1 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 18.5 (CH₂), 25.1 (CH₂), 29.8 (CH₂), 55.2 (CH₃), 59.1 (CH₂), 61.6 (CH₂), 98.4 (CH), 114.1 (2 \times CH), 116.5 (C_q), 120.1 (C_q), 128.2 (CH), 129.6 (2 \times CH), 135.3 (CH), 135.6 (CH), 144.3 (C_q), 160.4 (C_q), 160.9 (C_q), 169.7 (C_q), 181.3 (C_q).

Downloaded by: University of Pittsburgh. Copyrighted material

MS (EI, 70 eV): m/z (%) = 400 (22) [M + H]⁺, 343 (12), 315 (13), 300 (12), 299 (59), 298 (97), 286 (16), 271 (10), 270 (19), 266 (21), 257 (14), 175 (10), 174 (45), 111 (71), 97 (30), 85 (32).

HRMS: m/z calcd for C₂₁H₂₁NO₅S: 399.1140; found: 399.1115.

Anal. Calcd for $C_{21}H_{21}NO_5S$: C, 63.14; H, 5.30; N, 3.51. Found: C, 62.93; H, 5.45; N, 3.44.

[5-n-Butyl-3-(4-nitrophenyl)isoxazol-4-yl](4-nitrophenyl)methanone (5t)

Colorless crystals; mp 97 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, ³*J* = 7.3 Hz, 3 H), 1.30– 1.43 (m, 2 H), 1.76 (q, ³*J* = 7.6 Hz, 2 H), 2.90 (t, ³*J* = 7.4 Hz, 2 H), 6.71 (d, ³*J* = 8.9 Hz, 2 H), 7.25 (d, ³*J* = 8.9 Hz, 2 H), 7.74 (d, ³*J* = 8.9 Hz, 2 H), 8.07 (d, ³*J* = 8.9 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 14.1 (CH₃), 22.3 (CH₂), 27.8 (CH₂), 30.1 (CH₂), 114.0 (2 × CH), 114.8 (C_q), 119.3 (C_q), 123.4 (2 × CH), 130.0 (2 × CH), 130.2 (2 × CH), 142.4 (C_q), 150.3 (C_q), 160.8 (C_q), 161.1 (C_q), 178.5 (C_q).

MS (EI, 70 eV): m/z (%) = 395 (100) [M]⁺, 366 (27), 245 (19), 150 (68), 85 (12), 28 (11).

Anal. Calcd for $C_{20}H_{17}N_3O_6{:}$ C, 60.76; H, 4.33; N, 10.63. Found: C, 60.39; H, 4.47; N, 10.46.

(5-n-Butyl-3-p-tolylisoxazol-4-yl)(thiophen-2-yl)methanone~(5u)

Yellow resin.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, ³*J* = 7.4 Hz, 3 H), 1.29–1.42 (m, 2 H), 1.66–1.79 (m, 2 H), 2.30 (s, 3 H), 2.86 (t,

 ${}^{3}J = 7.9$ Hz, 2 H), 6.93 (dd, ${}^{3}J = 4.9$, 3.8 Hz, 1 H), 7.11 (d, ${}^{3}J = 8.3$ Hz, 2 H), 7.29 (dd, ${}^{3}J = 3.8$, 1.2 Hz, 1 H), 7.43 (d, ${}^{3}J = 8.3$ Hz, 2 H), 7.62 (dd, ${}^{3}J = 4.9$, 1.2 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 13.5 (CH₃), 21.3 (CH₃), 22.2 (CH₂), 26.3 (CH₂), 29.5 (CH₂), 115.2 (C_q), 125.3 (C_q), 128.2 (2 × CH), 128.1 (CH), 129.3 (2 × CH), 135.0 (CH), 135.1 (CH), 139.9 (C_q), 144.1 (C_q), 160.8 (C_q), 175.3 (C_q), 182.0 (C_q).

 $\begin{array}{l} \text{MS (EI, 70 eV): } \textit{m/z (\%) = 326 (21) [M + H]^+, 325 (92) [M]^+, 324 \\ (21), 296 (22), 283 (15), 241 (10), 212 (21), 111 (100) [C_4H_3\text{SCO}]^+. \end{array}$

HRMS: *m*/*z* calcd for C₁₉H₁₉NO₂S: 325.1136; found: 325.1115.

[5-n-Butyl-3-(3,4-dimethoxyphenyl)isoxazol-4-yl](thiophen-2-yl)methanone (5v)

Colorless crystals; mp 147 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.84$ (t, ³*J* = 7.3 Hz, 3 H), 1.26– 1.38 (m, 2 H), 1.63–1.74 (m, 2 H), 2.84 (t, ³*J* = 7.4 Hz, 2 H), 3.73 (s, 3 H), 3.80 (s, 3 H), 6.74 (d, ³*J* = 8.2 Hz, 1 H), 6.92 (dd, ³*J* = 4.9, 3.8 Hz, 1 H), 7.05–7.12 (s, 2 H), 7.27 (dd, ³*J* = 3.8, 1.1 Hz, 1 H), 7.61 (dd, ³*J* = 4.9, 1.1 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 13.4 (CH₃), 22.1 (CH₂), 26.2 (CH₂), 29.5 (CH₂), 55.7 (2 × CH₃), 110.9 (CH), 111.0 (CH), 115.0 (C_q), 120.6 (C_q), 121.3 (CH), 128.2 (CH), 135.0 (CH), 135.1 (CH), 144.1 (C_q), 148.8 (C_q), 150.2 (C_q), 160.4 (C_q), 175.4 (C_q), 182.1 (C_q).

MS (EI, 70 eV): m/z (%) = 372 (19) [M + H]⁺, 371 (100) [M]⁺, 287 (10), 162 (11), 111 (29).

HRMS: *m/z* calcd for C₂₀H₂₁NO₄S: 371.1191; found: 371.1215.

[3-(Anthracen-9-yl)-5-*n*-butylisoxazol-4-yl](thiophen-2-yl)methanone (5w)

Colorless crystals; mp 112 °C.

¹H NMR (500 MHz, CDCl₃): $\delta = 1.00$ (t, ³*J* = 7.4 Hz, 3 H), 1.51 (m, 2 H), 1.93 (q, ³*J* = 7.6 Hz, 2 H), 3.14 (t, ³*J* = 7.4 Hz, 2 H), 6.40 (dd, ³*J* = 4.9, 3.9 Hz, 1 H), 6.95 (dd, ³*J* = 3.9 Hz, ⁴*J* = 1.1 Hz, 1 H), 7.22 (dd, ³*J* = 4.9 Hz, ⁴*J* = 1.1 Hz, 1 H), 7.41–7.50 (m, 4 H), 7.89–7.97 (m, 4 H), 8.43 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 13.7 (CH₃), 22.5 (CH₂), 26.8 (CH₂), 29.7 (CH₂), 118.8 (C_q), 121.6 (C_q), 125.2 (CH), 125.3 (CH), 126.9 (CH), 129.3 (CH), 130.9 (C_q), 130.9 (C_q), 133.1 (CH), 134.1 (CH), 143.1 (C_q), 159.1 (C_q), 176.7 (C_q), 181.2 (C_q).

MS (EI, 70 eV): *m*/*z* (%) = 411 (100) [M]⁺, 327 (15), 219 (14), 194 (13), 111 (26), 32 (11), 28 (39).

HRMS: m/z calcd for C₂₆H₂₁NO₂S: 411.1293; found: 411.1303.

(4-Methoxyphenyl)[5-*n*-propyl-3-(thiophen-2-yl)isoxazol-4-yl]methanone (5x)

Colorless crystals; mp 152 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.90$ (t, ³*J* = 7.3 Hz, 3 H), 1.70 (s, 2 H), 2.68 (t, ³*J* = 7.4 Hz, 2 H), 3.88 (s, 3 H), 6.75 (d, ³*J* = 4.0 Hz, 1 H), 6.92 (d, ³*J* = 8.8 Hz, 2 H), 7.01 (d, ³*J* = 4.0 Hz, 1 H), 7.80 (d, ³*J* = 8.8 Hz, 2 H), 8.08–8.14 (m, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 13.6 (CH₃), 20.9 (CH₂), 28.6 (CH₂), 55.6 (CH₃), 114.0 (C_q), 114.1 (2 × CH), 126.6 (CH), 127.8 (C_q), 128.9 (CH), 130.3 (C_q), 132.1 (2 × CH), 155.2 (C_q), 164.4 (C_q), 174.9 (C_q), 188.2 (C_q).

MS (EI, 70 eV): m/z (%) = 328 (11) [M + H]⁺, 327 (100) [M]⁺, 266 (10), 151 (11), 79 (29).

Anal. Calcd for $C_{18}H_{17}NO_3S$: C, 66.03; H, 5.23; N, 4.28. Found: C, 65.99; H, 5.54; N, 4.12.

Acknowledgment

Financial support of the Fonds der Chemischen Industrie and the Dr.-Otto-Röhm Gedächtnisstiftung is gratefully acknowledged. We also cordially thank Mario Altendorfer for experimental assistance, CEM for a research cooperation, and BASF AG for the generous donation of chemicals.

References

- For a review, see: Carlsen, L.; Döpp, D.; Döpp, H.; Duus, F.; Hartmann, H.; Lang-Fugmann, S.; Schulze, B.; Smalley, R. K.; Wakefield, B. J. In *Houben-Weyl, Methods in Organic Chemistry*, Vol. E8a; Schaumann, E., Ed.; Georg Thieme Verlag: Stuttgart, Germany, **1992**, 45–204.
- (2) Rowley, M.; Broughton, H. B.; Collins, I.; Baker, R.; Emms, F.; Marwood, R.; Patel, S.; Ragan, C. I. *J. Med. Chem.* **1996**, *39*, 1943.
- (3) Frolund, B.; Jorgensen, A. T.; Tagmose, L.; Stensbol, T. B.; Vestergaard, H. T.; Engblom, C.; Kristiansen, U.; Sanchez, C.; Krogsgaard-Larsen, P.; Liljefors, T. J. Med. Chem. 2002, 45, 2454.
- (4) Daidone, G.; Raffa, D.; Maggio, B.; Plescia, F.; Cutuli, V.
 M. C.; Mangano, N. G.; Caruso, A. Arch. Pharm. Pharm. Med. Chem. 1999, 332, 50.
- (5) (a) Talley, J. J. *Prog. Med. Chem.* **1999**, *13*, 201. (b) Talley, J. J.; Brown, D. L.; Carter, J. S.; Graneto, M. J.; Koboldt, C. M.; Masferrer, J. L.; Perkins, W. E.; Rogers, R. S.; Shaffer, A. F.; Zhang, Y. Y.; Zweifel, B. S.; Seibert, K. *J. Med. Chem.* **2000**, *43*, 775.
- (6) Giovannoni, M. P.; Vergelli, C.; Ghelardini, C.; Galeotti, N.; Bartolini, A.; Kal Piaz, V. J. Med. Chem. 2003, 46, 1055.
- (7) Li, W.-T.; Hwang, D.-R.; Chen, C.-P.; Shen, C.-W.; Huang, C.-L.; Chen, T.-W.; Lin, C.-H.; Chang, Y.-L.; Chang, Y.-Y.; Lo, Y.-K.; Tseng, H.-Y.; Lin, C.-C.; Song, J.-S.; Chen, H.-C.; Chen, S.-J.; Wu, S.-H.; Chen, C.-T. *J. Med. Chem.* **2003**, *46*, 1706.
- (8) For a recent review, see: Wakefield, B. J. In Science of Synthesis: Houben–Weyl Methods of Molecular Transformations, Vol. 11; Schaumann, E., Ed.; Georg Thieme Verlag: Stuttgart, Germany, 2001, 229.
- (9) Bandiera, T.; Grünanger, P.; Albini, F. M. J. Heterocycl. Chem. 1992, 29, 1423.
- (10) Cuadrado, P.; Gonzalez-Nogal, A. M.; Valero, R. *Tetrahedron* **2002**, *58*, 4975.
- (11) Vicentini, C. B.; Verones, A. C.; Poli, T.; Guarneri, M.; Giori, P.; Ferretti, V. J. Heterocycl. Chem. 1990, 27, 1481.
- (12) He, Y.; Lin, N.-H. Synthesis 1994, 989.
- (13) (a) Barber, G. N.; Olofson, R. A. J. Org. Chem. 1978, 43, 3015. (b) Nitz, T. J.; Volkots, D. L.; Aldous, D. J.; Oglesby, R. C. J. Org. Chem. 1994, 59, 5828.
- (14) (a) Denmark, S. E.; Kallemeyn, J. M. J. Org. Chem. 2005, 70, 2839. (b) Jaeger, V.; Colinas, P. A. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, In Chemistry of Heterocyclic Compounds, Vol. 59; Padwa, A.; Pearson, W. H., Eds.; Wiley: Hoboken, 2002, 361.
- (15) (a) Müller, T. J. J. In *Targets in Heterocyclic Systems*, Vol. 10; Attanasi, O. A.; Spinelli, D., Eds.; Società Chimica Italiana: Rome, **2006**, 54. (b) Müller, T. J. J. *Chimica Oggi/ Chemistry Today* **2007**, 25, 70.
- (16) For a recent review on multi-component synthesis of heterocycles by transition-metal catalysis, see: D'Souza, D. M.; Müller, T. J. J. *Chem. Soc. Rev.*; 2007, 36, 1095.
- (17) Rotaru, A. V.; Druta, I. D.; Oeser, T.; Müller, T. J. J. *Helv. Chim. Acta* **2005**, 88, 1798.

- (18) Toda, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1977, 777.
- (19) (a) Karpov, A. S.; Müller, T. J. J. Org. Lett. 2003, 5, 3451.
 (b) Karpov, A. S.; Müller, T. J. J. Synthesis 2003, 2815.
 (c) Karpov, A. S.; Merkul, E.; Rominger, F.; Müller, T. J. J. Angew. Chem. Int. Ed. 2005, 44, 6951. (d) Karpov, A. S.; Merkul, E.; Rominger, F.; Müller, T. J. J. Eur. J. Org. Chem. 2006, 2991.
- (20) For important reviews on 1,3-dipolar cycloadditions, see:
 (a) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565.
 (b) Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; John Wiley & Sons: New York, 1984.
- (21) Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the

Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-661680 (**5w**), and CCDC-661681 (**6a**). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk].

- (22) Becker, H. G. O.; Beckert, R.; Domschke, G.; Fanghänel, E.; Habicher, W. D.; Metz, P.; Pavel, D.; Schwetlick, K. Organikum; Wiley-VCH: Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, **2001**, 21st ed.
- (23) (a) Liu, K.-C..; Shelton, R. B.; Howe, R. K. J. Org. Chem. 1980, 45, 3916. (b) Shaw, K. N.F.; McMillan, A.; Gudmundson, A. G.; Armstrong, M. D. J. Org. Chem. 1958, 23, 1171.