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Summary: Dirhodium(lI) tetrakislmethyl 1-(3-phenylpropunoyl)imidu~olidin-2-one-4(S)-carbo~late], Rh2(4S- 

MPPIM)4, provides significant enhancement in enantiocontrolfor intramolecular cyclopropanation reactions of allylic 

diazoacetates and optimal enantiocontroUdiastereocontro1 for intramolecular C-H insertion reactions of secondary alkyl 

diazoacetates. 

Enantiocontrol in intramolecular cyclopropanation and carbon-hydrogen insertion reactions of diazoacetate esters 
catalyzed by dirhodium(I1) tetrakis[methyl2-oxapyrrolidine-S(R or S)-carboxylate], Rh2(5R-MEPY)4 or Rh2(5S- 

MEPY)4, has generally been exceptional. l-l ’ Cyclopropane products derived from allylic diazoacetate& and ‘I’- 

lactones from secondary alkyl diazoacetatcs &lo have been formed in high yield with enantioselectivities 2 94% ee. 

However, there are notable exceptions. With 3-alkyl/aryl-2(E)-alken-l-y1 diazoacetates, Rh2(MEPY)4 catalyzed 

intramolecular cyclopropanations occur with lower ee’s (< 85%) and 2-methallyl diazoacetate forms the corresponding 

cyclopropane product with only 7% ee.6 Secondary alkyl diazoacetates undergo intramolecular C-H insertion catalyzed 

by Rh2(MEPY)4 with high enantiocontrol, but diastereocontrol is often 10w.g~ The use of dirhodium(II) tetrakis- 

[methyl l-acetylimidazolidin-2-one-4(S)-carboxylate], Rh2(4SMACIM)4, has been demonstrated to improve dia- 

stereocontrol (up to 99: 1 cis:trans), but enantiocontrol in selected cases is limited; for example, < 90% ee with CYC~O- 

pentyl diazoacetates8 We now report the u.sc of a new imidazolidinone ligated dirhodium(I1) catalyst that provides 

dramatic improvement in enanuocontrol and diastereocontrol for intramolecular cyclopropanation and C-H insertion 

reactions. 

Rh,(SS-MEPY), Rh,(4SMACIM), Rh,(4SMPPIM), 
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Dirhodium(I1) tetrakis[methyl 1-(3-phenylpropanoyl)imidazolidin-2-one-4(~-c~boxylate], Rh2(4S-MPPIM)4, 

was prepared by acetate displacement from rhodium@) acetate, and the imidazolidinone-carboxylate was synthesized 

from L-asparagine by a procedure identical to that reported for the l&and of Rh2(4S-MACIM)46 The N-3-phenyl- 

propanoyl attachment was selected to achieve distal control over the approach of the reacting bond to the carbene center. 

As with previously prepared chiral dirhodium(I1) carboxamidate catalysts,l,l 1 Rh2(@-h@‘PIh4)4 has two oxygen and 

two nitrogen donor atoms bound to each rhodium, and each pair of donor atoms is oriented in a cis (cis-2,2) con&u- 
ration.12 

For 2(E)-hexen- l-y1 diazoacetate (1). catalysis by Rh2(4S-MPPIM)4 (1 .O mol %) produced the intramolecular 

cyclopropanation product, ] lR-( la,5a,6P)]-6-n-propyl-3-oxabicyclo[3.l.O]hexan-2-one (2) in 95% ee compared to 
85% ee with Rh2(5S-MEPY)4 and 87% ee with Rh2(4S-MACBQ4 (cq. 1).6 Similarly, truns-3-phenyl-2-propen-l-y1 
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diazoacetate (3) yielded 4 in 96% ee with Rh2(4SMPPIM)4 as the catalyst compared to 80% ee with Rh2(4S- 

MACIM)4 and 68% ee with Rh2(5SMEPY)4 (eq. 2).l3 However. the advantage of Rh2(4S-MPPIM)4 is most 
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evident in the results from intramolecular cyclopropanation of 2-methallyl diazoacetate (eq. 3). A catalyst initially 
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perceived to be more sterically constrained than Rh2(4S-MPPIM)4 dirhodium(I1) tetrakis[methyl l-(cyclohexylacetyl)- 

imidazolidin-2-one-4(S)-carboxylate], Rh2(4S-MCHIM)4, l2 gave 6 in 83% ee; however, 2 was produced in 94% ee 

(64% yield) with the use of this catalyst. Neither Rh2(4SMPPIM)4 nor Rh2(4S-MCHIM)4 provided any advantage in 

% ee over Rh2(5SMEPY)4 for intramolecular cyclopropanation of the homoallylic 3-methyl-3-buten-l-y1 diazoacetate 

(78 and 74% ee, respectively, relative to 83% ee).6 Reactions were performed in refluxing CH2Cl2 with controlled 

addition of the diazoacetate: to a refluxing solution of the catalyst (1.0 mol %) in 20 mL of anhydrous CH2Cl2 was 
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added the diazo compound (1 .O mmol) in 5 mL of CH2Cl2 over IO- 12 h; yields are those of the pure product obtained 

from distillation. Values for % ee were determined as previously described.6 

Among secondary alkyl diazoacetates, 8-11 cyclopentyl diazoacetate stands out as providing the lowest level of 
enantiocontrol in C-H insertion reactions of secondary cycloalkyl diazoacetates with, optimally, 89% ee from Rh2(4s- 

MACIM)4 catalysis8 Use of Rh2(4S-MPPIM)4 increases enantioselectivity to 92% ee (eq. 4). With 2-indanyl 

diazoacetate (9) enhancement of enantioselectivity is even more pronounced, leading to 10 in 75% yield with 92% ee.14 

ee, % 
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co- 0 o 75 CHNz CH,Cl, Rh,Lt, Rh,(4SMPPIM), Rh,(4SMACIM), Rh,(SS-MEPY), 92 79 36 

(4) 
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9 10 

In the case of cyclohexyl diazoacetate, enantioselectivity is only slightly enhanced (to 98% ee with Rh2(4S-MPPIM)4 

from 97% ee with Rh2(4S-MACIM)4: cis isomer) but diastereocontrol is diminished (to 96:4 cis:trans from 99:l).15 

Enantioselectivity, diastereoselectivity, and regioselectivity become important considerations in catalytic C-H 
insertion reactions of 3pentyl diazoacetate. Three products are formed (eq. 6),14 and their respective distributions as a 

function of catalyst are reported in Tahle 1. Diastereocontrol and regiocontrol are optimal with the imidazolidinone-ligated 

dirhodium(II) catalysts, whereas overall enantiocontrol for 12 and 13 is highest with Rh2(4S-MEOX)4. However, only 

with Rh2(4S-MPPIM)4 is the full compliment of selectivities successfully achieved. Furthermore, this result suggests 

0 CHN, 
K 

s+y+T+T (6) 

0 0 0 0 

11 12 13 14 

Table 1. Selectivity in Catalytic C-H Insertion Reactions of 3-Pentyl Diazoacetate 

catalyst 
isolated relative yield, % %ee %ee 

yield, % 12 13 14 12 13 

Rh2(4S-MCHIM)4 90 0s 2 3 99 
Rh2(4S-MPPIM)4 85 92 3 5 99 
Rh2(4S-MACIM)4 x3 92 5 3 86 36 
Rh2(5S-MEPY)4 75 71 20 I 98 71 
Rh2(4S-MEOX)4 86 60 27 13 98 92 
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that the high levels of diastereoselectivity and enantioselectivity that characterize C-H insertion reactions of secondary 

cycloalkyl diazoacetates* can now be extended to acyclic secondary alkyl diazoacetates. 

The dramatic improvements in % ee and, in some cases, product yield with the use of Rh2(4S-MPPIM)q or 

Rh2(4S-MCHIM)4 are presumably due to a tighter orientation of the reacting carbene by the two pendant N-alhyl 

substituents of the catalyst which are across the rhodium face from (distal to) the sites of carboxylate attachment.6 Efforts 

are underway to further elaborate this advantage. 
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