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Highlights

® As a versitle platform for phosphorescent chemosensors, bis(benzylic amine)
derivative 6 was synthesized.

® A phosphorescent chemosensor 1 displayed a selective phosphorescence
enhancement with H,PO,".

® A new iridium complex 2 is reported as a first chiral phosphorescent chemosensor

for amino acids.
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Abstract: As a versatile platform for phosphorescent chemosensors, bis(benzylic
amine) derivative 6 was synthesized. Two urea groups could be readily introduced for
phosphorescent chemosensor 1. A preorganized binding pocket could induce a
selective phosphorescence enhancement with H,PO,. A new iridium complex 2
bearing two thiourea groups as well as glucopyranosyl chiral barriers is reported as a

first chiral phosphorescent chemosensor for amino acids.
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1. Introduction

Numerous efforts have been devoted to the development of methods for the
recognition and detection of anions due to their important roles in many chemical and
biological processes [1]. Phosphorescent chemosensors have several unique
advantages, such as evident Stockes shifts, relatively long lifetimes, etc.. Because of
these unique properties, their emission spectra can be utilized to readily discriminate
from the background fluorescence normally present in biological and clinical sample
[2].

Among the various types of phosphors, cyclometalated iridium (III) complexes
have been known to show high phosphorescence efficiency and relatively long
lifetimes and, thus, they have been utilized as efficient phosphorescent dopants in
organic light emitting diodes (OLEDs) [3]. These highly phosphorescent iridium (III)
complexes have also been utilized as phosphorescent chemosensors for anions [4],
cysteine/homocystein [5], molecular oxygens [6], cations [7], etc [8].

Even though fluorescent chemosensors for H,PO4 have been extensively studied
[9], there has been only one report that evaluated their use as phosphorescent
chemosensors.[10]

Similarily, chiral recognitions using fluorescence changes have been actively

studied [11], while there has not been an example for chiral phosphorescent
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chemosensors. In this paper, we report the first example of H,PO4 selective
phosphorescence chemosensor based on the iridium (III) complex. Unlike previous
anion selective phosphorescence chemosensors, probe 1 displayed phosphorescence
enhancement in the presence of H,PO.. In addition, first example of chiral
phosphorescence chemosensor and its chiral recognition towards amino acids are
reported.

In this work, we prepared bis(benzylic amine) derivative 6 as a versatile flatform.
As a proof of concept, two new phosphorescence chemosensors 1 and 2, which
contained a preorganized binding pocket, were synthesized from 6 and their unique
binding properties were studied. We believe this bis(benzylic amine) derivative 6 can
be utilized as a valuable platform for the development of new phosphorescent

chemosensors in the future.

2. Experimental
2.1 Materials and equipments

General methods unless otherwise noted, materials were obtained from commercial
suppliers and were used without further purification. Flash chromatography was carried
out on silica gel (230-400 mesh). *H NMR and **C NMR spectra were recorded using
300 MHz and 75 MHz Chemical shifts were expressed in ppm and coupling constants
(J) in Hz. UV-vis absorption spectra were measured with an EVOLUTION 201
UV-visible spectrophotometer. Phosphorescence spectra were recorded on Shimadzu

RF-5301 pc spectrofluorometer.
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2.2 Synthesis

4,4’-Bis (bromomethyl)-2,2"-bipyridine 3

The bipyridine (0.90 g, 4.2 mmol) was dissolved in a mixture of 48% HBr (20 mL)
and concentrated sulfuric acid (6.7 mL). The resulting solution was refluxed for 6 h
and then allowed to cool to room temperature, and 40 mL of water was added. The pH
was adjusted to neutral with NaOH solution and the resulting precipitate filtered,
washed with water (pH = 7), and air-dried. The product was dissolved in chloroform
(40 mL) and filtered. The solution was dried over magnesium sulfate and evaporated
to get a white powder. Yield: 1.2 g (85%). 'H-NMR (300 MHz, CDCl;) & (ppm) 4.50
(s, 4H), 7.38 (d, 2H), 8.45 (s, 2H), 8.68 (d, 2H).

4,4’ -Phthalimidylmethyl-2,2"-bipyridine 4

A mixture of 4,4’-Bis (bromomethyl)-2,2’-bipyridine (0.26 mg, 0.7 mmol) and
potassium phthalimide (1.4 g, 7.6 mmol) in DMF (38 mL) was heated at 50 °C under
nitrogen atmosphere. After 5 h, water (60 mL) was added to the mixture, and the
organic layer was extracted with CHCl; (70 mL x 3). The organic layer was dried
over anhydrous Na,SOy4, and evaporated under reduced pressure. The residue was
washed with methanol, and dried under reduced pressure to give colorless solid.
Yield: 180 mg (50 %). 'H-NMR (300 MHz, CDCls) § (ppm) 8.61 (d, 2H), 8.37 (s, 2H),
7.87 (m, 2H), 7.74 (m, 2H), 7.28 (d, 2H), 4.93 (s, 4H).

Ir(ppy)2(dphmbpy) 5

A mixture of 4,4’-phthalimidylmethyl-2,2’-bipyridine (0.5 g, 0.47 mmol) and

[(ppy)2IrCl], (0.46 g, 0.98 mmol) in a 1:1 (v/v) dichloromethane and methanol
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solution was refluxed for 6 h. The solvents were evaporated on rotary evaporation.
The residue was dissolved in dichloromethane. The organic solution was washed with
brine and then dried over Na,SO4.The solvent was removed by rotary evaporator. The
light yellow residue was purified by chromatography over silica gel
(dichloromethane). Yield: 290 mg (64 %). mp: 231-233 °C. '"H-NMR (300 MHz,
CDCl3) 6 (ppm) 9.89 (s, 2H), 7.87-7.80 (m, 6H), 7.78-7.71 (m, 8H), 7.60 (d, J = 7.69,
2H), 7.48 (d, J = 5.76, 2H), 7.18 (d, J = 5.76, 2H), 7.07 (t, J = 6.59, 2H), 6.97 (t, J
=7.41, 2H), 6.85 (t, ] = 7.41, 2H), 6.22 (d, ] = 7.69, 2H), 5.34 (s, 4H); °C NMR (75
MHz, CDCl3) & (ppm) 167.92, 156.11, 150.35, 148.85, 143.65, 138.39, 134.70,
131.96, 131.83 , 130.94 , 125.97, 125.66, 124.93, 123.92, 123.70, 122.83, 119.83,
40.66; HR FAB-MS m/z [M+] calcd. For C5oH34IrNgO4 975.2275 Found: 975.2271; IR
(KBr pellet) cm™ 3408.43, 3043.37, 1715.50, 1607.29, 1393.19, 950.71, 725.18.

Ir(ppy)2(dambpy) 6

A mixture of 5 (70 mg, 0.1 mmol) and hydrazine monohydrate (140 pL, 2.9 mmol)
in EtOH (5.3 mL) was heated at 100 °C for 12 h. Saturated aqueous NaCl solution (18
mL) was added to the mixture. The mixture was adjusted to pH 12 with 50 % NaOH
solution. The organic layer was extracted with CHCl; (50 mL x 3), dried over
anhydrous Na,SOj, and evaporated to give orange solid. Yield: 180 mg (50 %). mp >
300 °C. "H-NMR (300 MHz, CDCl3) & (ppm) 9.91 (s, 2H), 7.91-7.88 (d, J = 7.96,
2H), 7.76-7.66 (m, 6H), 7.50 (s, 2H), 7.29 (s, 2H), 7.05-6.90 (m, 8H), 6.30 (d, J =

7.42, 2H), 4.17 (s, 4H), 2.47 (s, 4H); HR FAB-MS m/z [M] calcd. For C34H30IrNg
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715.2161 Found: 715.2163; IR (KBr pellet) cm™ 3408.68, 1683.71, 1507.16, 1477.29,
1418.84, 760.26.

Ir(ppy)2(dburebpy) 1

A mixture of 6 (70 mg, 0.08 mmol) and butyl isocyanate (140 pL) in
dichloromethane (5.3 mL) was stirring at room temperature for 2 h. The solvents were
evaporated on rotary evaporation. The residue was dissolved in dichloromethane. The
organic solution was washed with brine and then dried over Na,SO4 then removed by
rotary evaporator. The light yellow residue was purified by chromatography over
silica gel (dichloromethane). Yield: 180 mg (50 %). mp 224 — 225 °C. 'H-NMR (300
MHz, CDCls) 8 (ppm) 9.33 (s, 2H), 7.90 (d, J = 7.97, 2H), 7.78-7.60 (m, 6H), 7.45 (d,
J=6.04, 2H), 7.22 (m, 2H), 7.05-6.97 (m, 6H), 6.93-6.87 (t, J = 6.73, 2H), 6.38 (d,
2H), 6.29 (d, J = 7.99, 2H), 4.62 (d, J = 6.04, 2H), 3.60-3.14 (m, 4H), 1.52-1.47 (m,
4H), 1.38-1.30 (m, 4H), 0.89-0.84 (t, J = 7.14, 6H); *C NMR (75 MHz, CDCl5) &
(ppm) 168.18, 159.06, 156.73, 155.27, 150.56, 149.29, 148.67, 143.67, 138.12,
131.95, 131.02, 126.35, 124.99, 123.74, 123.39, 122.81, 119.79, 42.67, 40.11, 32.71,
20.35, 14.06; HR FAB-MS m/z [M+] calcd. For C45HyoIrN-O, 913.3529. Found:
913.3527; IR (KBr pellet) cm™ 3408.50, 2926.48, 1669.53, 1559.23, 1268.68, 761.07.

GITC appended Iridium (III) complex 2

A solution of GITC (0.22 g, 0.56mmol) was added dropwise to a stirred methylene
chloride solution (20 mL) of compound 6 (0.2 g, 0.28 mmol). The mixture was stirred
for 2 h under nitrogen gas at room temperature. Purification by flash chromatography

(methylene chloride/ methanol = 20:1) offered 0.27 g orange solid compound 2.
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Yield: 65 % mp 226-227 °C; [@]15° 15.3 'H NMR (300 MHz, CDCl;) & 9.31 (s, 1H),
8.09 (d, J = 8.24, 2H), 7.71-7.85 (m, 8H), 7.50-7.52 (m, 2H), 7.00-7.05 (t, J = 7.41,
2H), 6.88-6.94 (t, J = 7.41, 2H), 6.82-6.77 (t, J = 7.41, 2H), 6.25 (d, J = 8.24, 2H),
5.83-5.87 (m, 2H), 4.90-5.26 (m, 7H), 4.10-4.16 (m, 2H), 3.92-3.98 (m, 4H), 3.85 (bs,
2H), 1.86-1.93 (m, 24H), 1.72 (m, 6H). 3C NMR (75 MHz, CDCl3) § 185.39, 171.08,
170.51, 170.11, 169.68, 156.63, 152.00, 150.22, 149.66, 148.83, 143.69, 138.29,
131.86, 131.08, 127.37, 125.02, 123.45, 122.91, 119.83, 74.00, 73.37, 70.73, 68.51,
62.25, 47.07, 21.00, 20.84. HR FAB-MS m/z [M+] caled. For CgHesIrNsO15S,
1493.3722 Found:1493.3725; IR (KBr pellet) cm™ 3356, 3408, 1751, 1541, 1226,

1036, 760.

3. Results and discussion
3.1 Synthesis

For the synthesis of probe 1 and 2, 4,4 -phthalimidyl methyl-2,2"-bipyridine (4) was
prepared by modifying the reported procedures [12]. Treatment of [(ppy).IrCl], with
4,4 -phthalimidylmethyl-2,2"-bipyridine (4) produced the iridium (III) complex 5
containing bipyridine as the ancillary ligand appended with phthalimidylmethyl
groups with a yield of 64 % after column chromatography purification using
dichloromethane (Scheme 1). Phthalimidylmethyl iridium (III) complex 5 was then
reacted with hydrazine monohydrate to form the versatile intermediate, iridium (III)
complex (6) bearing dimethylamine groups. Finally, probe 1 and 2 were synthesized

by treatment of  compound 6 with n-butyl isocyanate or
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2,3,4,6-0-acetyl-B-D-glucopyranosyl isothiocyanate (GITC), respectively, at room
temperature in dichloromethane. The detailed synthetic procedures are explained in
the Experimental Section and the new compounds were fully characterized by 'H

NMR, "*C NMR and high resolution mass spectroscopy.

Insert Scheme 1

3.2 Spectral studies of iridium (111) complex 1

The assay methods for UV-vis spectra and phosphorescence spectra: Firstly, Ir(1I)
complexes were dissolved in distilled CH,ClI, to make 1.0x10™M solution. Then the
solution was diluted to quartz cell filled with 3 mL acetonitrile using microsyringe to
1.0x10°M test solution. And because of the emission sensitivity to oxygen, all
samples in phosphorescence experiments were deaerated with argon for ca. 8 min
before measurement and the gas flow is kept during the measurement.

The UV-vis spectra and phosphorescence spectra of iridium (III) complex 1 in
acetonitrile are shown in Fig. S1. In the UV-vis spectra, due to the ligand-centered LC
(n-n*) and spin-allowed metal-to ligand charge transfer (‘MLCT) transitions, an
intense absorption bands at around 250-280 nm and relatively weak absorption at
290-450 nm were observed. The addition of HPO4 anions (100 equiv.) did not induce
any significant change in its UV-vis absorption as shown in Fig. S1. Fig. 1 shows the
photoluminescence properties of iridium (III) complex 1. The iridium (IIT) complex 1

exhibited phosphorescence with a maximum wavelength of 560 nm in acetonitrile



©CO~NOOOTA~AWNPE

upon excitation at 372 nm. To explore the anion selectivity of the iridium (III)
complex 1, binding experiments were performed using tetrabutylammonium salts of
F, CI', Br, I', CH;COO', and H,PO4 (Fig. 1a). The addition of H,PO4 (100 equiv.)
resulted in an enhancement of the phosphorescence of iridium (III) complex 1 with a
14 nm blue shift (Fig. 1b), which could also be observed by the naked eye (Fig. 2).
From the phosphorescence titration experiments of iridium (III) complex 1 (10 uM)
with H,PO, , the association constant were calculated to be 1.06 x 10° M.
Insert Figure 1

Insert Figure 2

If the receptor was connected to the ligand through a spacer, the interaction of the
receptor with the analyte may perturb the energy levels of the excited states [3a]. Thus
the phosphorescence enhancement of iridium (III) complex 1 with H,PO4 can be
attributed to the moderate increase in the energy level of the triplet excited state which
was demonstrated by the 14 nm blue shift of phosphorescence. This increases the
intersystem crossing efficiency and enhances the triplet quantum yield, thus inducing
a “switch on” of the emission.

We also investigated the phosphorescence lifetime variation with H,PO4. The
system for nanosecond phosphorescence lifetime spectroscopy is illustrated in Fig. S2.
As shown in Fig. 2b, the phosphorescence lifetime of complex 1 increased markedly
upon the addition H,PO4 . The phosphorescence lifetime of complex 1 changed from

0.34 ps to 0.6 us as the H,PO4 concentration increased from 0.0 to 200.0 uM.
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3.2. Chiral recognition of iridium (111) complex 2

Then, Iridium (III) complex 2 was examined for chiral recognition with tetrabutyl
ammonium salts of #-Boc-amino acids and 3,5-dinitrobenzoyl (DNB)-amino acids,
such as alanine (Ala), valine (Val), threonine (Thr), leucine (Leu), phenylglycine
(Phg) and phenylalanine (Phe). Phosphorescence titrations of iridium (III) complex 2
(10 uM) with D- and L-t-Boc-amino acid derivatives in acetonitrile are illustrated in
the supporting informations. Iridium (III) complex 2 showed phosphorescence
enhancement with ~-Boc-amino acid derivatives. Based on phosphorescence titrations
data of iridium (III) complex 2 with #-Boc-amino acid derivatives, the association
constants (K) were calculated according to the linear Benesi-Hildebrand expression
(Table 1)."” In general, iridium (IIT) complex 2 showed larger K, values for D-t-Boc
amino acid derivatives than those for L-isomers. For example, the association
constant of 2 with D- and L-r-Boc-leucine were calculated as 1.10 x 10° and 3.48 x

10* M, respectively, with the Kp/Ky of 3.16.

Insert Table 1

Compared to the #-Boc series, iridium (III) complex 2 displayed phosphorescence
quenching effects with DNB derivatives. The phosphorescence titrations of iridium
(IIT) complex 2 (10 uM) with D-DNB-threonine and L-DNB-threonine in acetonitrile

are also illustrated in the supporting informations. L-DNB-threonine induced larger
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phosphorescence quenching effect than D-isomer. The phosphorescence quenching
effects of Iridium complex 2 can be attributed to the -NO, group of DNB [11d]. The
association constants with DNB-amino acid derivatives were summarized in Table 2.
As shown in Table 2, iridium (III) 2 showed larger K, values for L-DNB-amino acid
derivatives. The Job's plot experiment indicated a 1:1 formation between amino acids
and hosts (Fig. S3).

Insert Table 2

4. Conclusion

In conclusion, here, we report the first example of phosphorescence chemosensor
for H,POy". Iridium (III) complex 1 contained two preorganized urea groups for the
recognition of H,PO,". Methylene linkers between bipyridine and urea moieties in
probe 1 not only provided a nice binding pocket for the selective recognition of
H,PO,4 but also resulted in a higher phosphorescence enhancement with H,POy,
which can be compared to the phosphorescence quenching effects of reported iridium
(IIT) complexes bearing the urea group directly on the benzene. A new chiral
phosphorescent iridium (IIT) complex 2 bearing two preorganized thiourea groups as
binding sites and two GITC groups as chiral barriers was studied for the recognition
of the a-amino acid derivatives. In addition, bis(benzylic amine) derivative 6 holds
great promise for use as a valuable platform for the development of new

phosphorescence chemosensors through the introduction of various binding sites.
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Scheme Title and Captions of Figures
Scheme 1. Synthesis of iridium (I11) complex 1 and 2.

Figure 1.(a) The phosphorescence spectra of iridium (I11) complex 1 (10 uM) upon
addition of different anions (10 eq) in CH3CN. (b) The phosphorescence titration
spectra of iridium (I11) complex 1 (10 uM) upon addition of tetrabutyl ammonium
dihydrogenphosphate in CH;CN. Excitation wavelength: 372 nm.

Figure 2. (a) Phosphorescence changes iridium (111) complex 1 by naked-eye upon
the addition of tetrabutyl ammonium dihydrogenphosphate in CH3CN. Excitation
wavelength: 365 nm. (b) The phosphorescence lifetime of iridium (I11) complex 1 (20
uM) and 1 with H,PO,4 (10 eq.) in CH3CN.

Table 1. The association constants (M™) of iridium (I11) complex 2 with
t-Boc-amino acid derivatives in acetonitrile.

Table 2. The association constants (M™) of iridium (1) complex 2 with
DNB-amino acid derivatives in acetonitrile.
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Figure 1. (a) The phosphorescence spectra of iridium (I11) complex 1 (10 uM) upon
addition of different anions (10 eq) in CH3CN. (b) The phosphorescence titration
spectra of iridium (111) complex 1 (10 uM) upon addition of tetrabutyl ammonium
dihydrogenphosphate in CH3CN. Excitation wavelength: 372 nm.
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Figure 2. (a) Phosphorescence changes iridium (111) complex 1 by naked-eye upon
the addition of tetrabutyl ammonium dihydrogenphosphate in CH3CN. Excitation
wavelength: 365 nm. (b) The phosphorescence lifetime of iridium (I11) complex 1 (20
uM) and 1 with H,PO,4 (10 eq.) in CH3CN.
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Table 1. The association constants (M™) of iridium (I11) complex 2 with

t-Boc-amino acid derivatives in acetonitrile.

Guest Kp(M™) Ko/ K¢ K (M™
Phenylglycine 9.00 x 10* 1.91 471 x 10°*
Leucine 1.10 x 10° 3.16 3.48 x 10°
Valine 4.83 x 10* 1.72 2.81 x 10*
Threonine - - 5.00 x 10°
Alanine 4.62 x 10* 1.32 3.50 x 10"
Phenylalanine 3.52 x 10* 2.05 1.72 x 10*

Table 2. The association constants (M™) of iridium (111) complex 2 with

DNB-amino acid derivatives in acetonitrile.

Guest Kp(M™) K/ Kp K (M1
Phenylglycine 1.74 x 10* 0.88 1.53 x 10*
Leucine 2.95 x 10* 1.73 5.11 x 10*
Valine 4.67 x 10° 1.25 5.82 x 10*
Threonine 5.07 x 10° 3.04 1.54 x 10*
Alanine 3.09 x 10* 1.19 3.68 x 10*
Phenylalanine 2.60 x 10* 225 5.85 x 10*
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Graphical Abstract

New Iridium Complexes with Two Pre-organized Urea Groups
and Thiourea Groups as Phosphorescent Chemosensors for

H,PO, and Chiral Carboxylates

Yinan Li, Liu Yifan, Dayoung Nam, Sungnam Park, Juyoung Yoon* and Myung Ho

Hyun*

Highlights

® As a versitle platform for phosphorescent chemosensors, bis(benzylic amine)
derivative 6 was synthesized.

® A phosphorescent chemosensor 1 displayed a selective phosphorescence
enhancement with H,PO,".

® A new iridium complex 2 is reported as a first chiral phosphorescent

chemosensor for amino acids.
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Figure S1. UV-vis spectra and phosphorescence spectra of iridium (I11) complex 1 (10 uM) in
acetonitrile.
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Figure S2. System for phosphorescence life time measurements.
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Figure S3. Job’s plot of complex 2 and D-t-Boc-Leucine amino acid in acetonitrile.
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Figure S4. (a) The phosphorescence titration spectra of GITC appended iridium (I11) complex
2 (10 uM) upon addition of t-Boc-D-valine in 100 % CH;CN. (b) Benesi-Hildebrand plot of
PL spectra of complex 2.
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Figure S5. (a) The phosphorescence titration spectra of GITC appended iridium (I11)
complex 2 (10 uM) upon addition of t-Boc-L-valine in 100 % CH;CN. (b) Benesi-Hildebrand
plot of PL spectra of complex 2.



©CO~NOOOTA~AWNPE

a)

240
220+

200 ]
180 ]
160 ]
140 ]
120 ]
100 ]
80 ]

Intensity (a.u.)

60 -
40 -
20 -

450 500 550 600 650 700
Wavelength (nm)

b)

Figure S6. (a) The phosphorescence titration spectra of GITC appended iridium (111) complex
2 (10 uM) upon addition of t-Boc-D-leucine in 100 % CH3CN. (b) Benesi-Hildebrand plot of
PL spectra of complex 2.
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Figure S7. (a) The phosphorescence titration spectra of GITC appended iridium (I1I)

complex 2 (10 pM) upon addition of t-Boc-L-leucine
Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S8. (a) The phosphorescence titration spectra of GITC appended iridium (111) complex
2 (10 uM) upon addition of t-Boc-R-phenylglycine in 100 % CH3CN. (b) Benesi-Hildebrand
plot of PL spectra of complex 2.
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Figure S9. (a) The phosphorescence titration spectra of GITC appended iridium (111) complex
2 (10 uM) upon addition of t-Boc-S-phenylglycine in 100 % CH3CN. (b) Benesi-Hildebrand
plot of PL spectra of complex 2.



©CO~NOOOTA~AWNPE

a)

280
260
240
220
200
180 4
160
140
120
100

80

60 -

40

Intensity (a.u.)

450 500 550 600 650 700
Wavelength (nm)

b)

Figure S10. (a) The phosphorescence titration spectra of GITC appended iridium (I1)
complex 2 (10 puM) upon addition of t-Boc-L-threonine in 100 % CH;CN. (b)
Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S11. (a) The phosphorescence titration spectra of GITC appended iridium (I1)

complex 2 (10 uM) upon addition of t-Boc-D-alanine
Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S12. (a) The phosphorescence titration spectra of GITC appended iridium (I1)
complex 2 (10 pM) upon addition of t-Boc-L-alanine in 100

Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S13. (a) The phosphorescence titration spectra of GITC appended iridium (I11)
complex 2 (10 uM) upon addition of t-Boc-D-phenylalanine in 100 % CH3;CN. (b)
Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S14. (a) The phosphorescence titration spectra of GITC appended iridium (I1)
complex 2 (10 uM) upon addition of t-Boc-L- phenylalanine in 100 % CH3;CN. (b)
Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S15. (a) The phosphorescence titration spectra of GITC appended iridium (I11)
complex 2 (10 uM) upon addition of DNB-D-valine in 100 % CH5CN. (b) Benesi-Hildebrand
plot of PL spectra of complex 2.
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Figure S16. (a) The phosphorescence titration spectra of GITC appended iridium (I1)
complex 2 (10 uM) upon addition of DNB-L-valine in 100 % CH3CN. (b) Benesi-Hildebrand

plot of PL spectra of complex 2.
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Figure S17. (a) The phosphorescence titration spectra of GITC appended iridium (I1)
complex 2 (10 pM) upon addition of DNB-D-leucine in 100 % CH3CN. (b)
Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S18. (a) The phosphorescence titration spectra of GITC appended iridium (I1)
complex 2 (10 puM) upon addition of DNB-L-leucine in 100 % CH3;CN. (b)
Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S19. (a) The phosphorescence titration spectra of GITC appended iridium (I1)
complex 2 (10 pM) upon addition of DNB-R-phenylglycine in 100 % CHsCN. (b)
Benesi-Hildebrand plot of PL spectra of complex 2.
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FigureS 20. (a) The phosphorescence titration spectra of GITC appended iridium (I1)
complex 2 (10 uM) upon addition of DNB-S-phenylglycine in 100 % CH;CN. (b)
Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S21. (a) The phosphorescence titration spectra of GITC appended iridium (I1)
complex 2 (10 puM) upon addition of DNB-D-threonine in 100 % CH;CN. (b)
Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S22. (a) The phosphorescence titration spectra of GITC appended iridium (I1)
complex 2 (10 puM) upon addition of DNB- L -threonine in 100 % CH3;CN. (b)
Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S23. (a) The phosphorescence titration spectra of GITC appended iridium (I1I)
complex 2 (10 pM) upon addition of DNB-D-alanine in 100 % CH3CN. (b)
Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S24. (a) The phosphorescence titration spectra of GITC appended iridium (I1)
complex 2 (10 puM) upon addition of DNB-L-alanine in 100 % CH3;CN. (b)
Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S25. (a) The phosphorescence titration spectra of GITC appended iridium (I1)
complex 2 (10 pM) upon addition of DNB-D-phenylalanine in 100 % CHsCN. (b)
Benesi-Hildebrand plot of PL spectra of complex 2.
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Figure S26. (a) The phosphorescence titration spectra of GITC appended iridium (I1)
complex 2 (10 puM) upon addition of DNB-L-phenylalanine in 100 % CHsCN. (b)
Benesi-Hildebrand plot of PL spectra of complex 2.





