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Abstract

Theoretical simulation of the ns stretching band is presented for benzoic acid and its OD derivative at 300 K. The simulation takes into

account an adiabatic coupling between the high-frequency O–H(D) stretching and the low-frequency intermolecular O· · ·O stretching

modes, linear and quadratic distortions of the potential energy for the low-frequency vibrations in the excited state of the O–H(D) stretching

vibration, resonance interaction between the two hydrogen bonds in the dimer, and Fermi resonance between the fundamental n OH(D)

stretching and the overtone of the d O–H(D) bending vibrations.

Infrared, far-infarared, Raman and low-frequency Raman spectra of the polycrystalline benzoic acid and its deuterated form have been

measured. The geometry and experimental frequencies are compared with the results of our B3LYP/6-311þþG** and B3LYP/cc-pVTZ

calculations.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Vibrational spectra of hydrogen bonded dimers have

been a subject of numerous experimental and theretical

papers [1–13]. There have been also numerous studies of

Fermi resonance in hydrogen bonded complexes and

crystals [14–24]. In this paper, we present infrared and

Raman spectra of polycrystalline benzoic acid and its OD

derivative. We, also, compare the experimental frequencies

with the results of our ab initio B3LYP/6-311þþG** and

B3LYP/cc-pVTZ calculations. The theoretical model was

used to simulate O–H(D) stretching bands. Recent infrared

spectra of hydrogen bonded benzoic acid crystals have been

studied experimentally and interpreted theoretically

within so-called ‘strong coupling’ model by Flakus et al.

[10,25–28].

At room temperature benzoic acid is a crystal (its melting

points is at 395 K). System which draws our attention in the

present paper is benzoic acid dimer. Benzoic acid crystals

are monoclinic, space group is P21=c ¼ C5
2h and Z ¼ 4:

There are two centrosymmetric hydrogen bonded dimers in

each unit cell, linked 2.645 Å long hydrogen bonds.

All other intermolecular distances are over 3 Å, and

correspond to normal van der Waals interactions. The

identity periods are: a ¼ 5:25 Å, b ¼ 5:14 Å, c ¼ 21:9 Å

and b ¼ 978: The closest contact between O of one dimer

and O another dimer is 3.65 Å, related by a translation b

[29–32].

An anharmonic coupling between the high frequency

X–H stretching and low frequency intermolecular hydro-

gen bond vibrations, described by Maréchal and

Witkowski [2] is an important mechanism shaping fine

structure of ns bands in hydrogen-bonded systems. The

most important mechanism influencing the fine structure

of vibratonal spectra of hydrogen bonded system is Fermi

resonance. The theoretical model of this mechanism was

published by Witkowski and Wójcik [15] and Wójcik

[16]. In this paper, we present a theoretical interpretation

of the fine structure of the ns stretching band of benzoic

acid and its deuterated derivative. For simulation of the

fine structure we used an adiabatic coupling between
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the high-frequency O–H(D) stretching and the low-

frequency intermolecular O· · ·O stretching modes, linear

and quadratic distortions of the potential energies for

these modes in the excited state of the O–H(D) stretching

vibration, resonance interaction between the two hydrogen

bonds in the dimer, and Fermi resonance between the

fundamental n OH(D) stretching and the overtone of the

dO–H(D) bending vibrations.

2. Methods

Policrystalline benzoic acid, which has been used in this

investigation, was purchased from the Aldrich Chemical

Corporation. The purity was 99%.

Infrared spectra of benzoic acid and deuterated benzoic

acid (benzoic acid-D) presented in this paper were recorded

on an Equinox 55 Brucker Fourier transform spectrometer.

The samples were ground with KBr and pressed.

The resolution of spectra was 2 cm21 in the range from

400 to 4000 cm21. Far-infrared spectrum of polycrystalline

benzoic acid in the range from 50 to 450 cm21 was recorded

on a FTS Biorad 60 V spectrometer in the Regional

Laboratory of Physico–Chemical Analyses and Structural

Research in Kraków. The samples were mixtured with

polyethylene and pressed. The resolution of spectra in this

region was 2 cm21.

Raman spectra of benzoic acid were recorded on a

Renishaw 2000 Micro Raman System. Samples were

excited by a near-infrared diode laser generating light of

wavelength 785 nm (30 mW) and Argon-Ion laser generat-

ing light of wavelenght 514 nm (50 mW). The resolution

was 2 cm21.

Deuteration of the carboxylic group was done by

dissolving the sample in D2O (purchased from IBJ Świerk,

99.1% purity) then heating under a flux condensor, filtering

and drying. The sample was deposite above zeolite-A.

The geometry of benzoic acid was optimized and the

vibrational frequencies were computed using the

GAUSSIAN 98 programs [33] at the B3LYP/6-311þþG**

and B3LYP/cc-pVTZ levels. Computations were carried out

in the Department of Materials Chemistry, Uppsala

University in Sweden.

3. Theoretical model

The theoretical model of Fermi resonace in infrared

spectra of hydrogen bonded carboxylic acid dimer, which

we are going to use, has been first developed by Wójcik

[16]. We used an extended version of this model, modified

to encompass an adiabatic coupling between the high

frequency O–H(D) stretching and low frequency hydrogen

bond stretching vibrations, linear and quadratic distortions

of the potential energies for these modes in the excited state

of the O–H(D) stretching vibration, resonance interaction

between the two hydrogen bonds in a dimer, and Fermi

resonance interaction between the fundamental nOH(D)

stretching and the overtone of the dO–H(D) bending

vibrations.

Fig. 1 present geometry of the benzoic acid dimer

optimized at the B3LYP/cc-pVTZ level. In this case the two

hydrogen bonds of this dimer are related by the

symmetry operation C2 corresponding to the two-fold

symmetry axis.

The vibrational hamiltonian, H, can be written as:

H ¼ TðQ1Þ þ TðQ2Þ þ hs;1 þ hs;2 þ hb;1 þ hb;2

þ V 0
1;ah þ V 0

2;ah þ V 0
res; ð1Þ

where TðQiÞ is the kinetic energy operator of the low-

frequency vibration; Qiði ¼ 1; 2Þ are the coordinates of the

two low frequency intermolecular O· · ·O stretching modes,

denote ns; hs;i ¼ Tðqs;iÞ þ Vðqs;i;QiÞ is the vibrational

hamiltonians of the high frequency ns vibrations;

qs;iði ¼ 1; 2Þ are the coordinates of the high frequency

O–H stretching vibrations, in the first and second hydrogen

bond; hb;i ¼ Tðqb;iÞ þ Vðqb;iÞ is the vibrational hamiltonians

of the high frequency nb vibrations; qb;iði ¼ 1; 2Þ are the

coordinates of the in plane bending vibrations in the first or

second hydrogen bond; V 0
i;ahðqs;i; qb;iÞ is the anharmonic

coupling terms between the hydrogen bond stretching

and bending vibrations; V 0
i;resðqs;1; qs;2Þ is the resonance

Fig. 1. Geometry of the benzoic acid dimer, optimized at the B3LYP/cc-pVTZ level.
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interaction potential between the two equivalent hydrogen

bonds; V is the potential energy. We neglect interactions of

ns and ns vibrations with the other vibrations of the system.

Fermi resonance is considered between the fundamental

vibration ns and the first overtone of the bending mode nb:

With a suitable change of the anharmonic coupling

parameter the in plane bending can be replaced by any

other vibration of the system. We do not consider any

coupling between the nb and ns vibrations.

In the first exciting state of O–H stretching vibrations,

the total vibrational wavefunction, Cþ
j0
; has the form:

Cþ
j0 ¼ a1x

þ
s;1xb;1xs;2xb;2 þ b1xs;1x

þ
b;1xs;2xb;2

þ a2xs;1xb;1x
þ
s;2xb;2 þ b2xs;1xb;1xs;2x

þ
b;2; ð2Þ

where xs;iðqs;i;QiÞ are the eigenfunctions of the hamiltonians

hs;i; xb;iðqb;iÞ the eigenfunctions of the hamiltonians

hb;i;aiðQÞ;biðQÞ the wavefunctions of the hydrogen–bond

vibrations ns; not determined yet. Superscript ‘ þ ’ – marks

the excited state of ns and of the first overtone of nb:

Applying the procedure of Longuet–Higgins [38] to the

Schrödinger equation with hamiltonian (1) and the wave-

function (2), enables to find the aiðQÞ;biðQÞ functions and

the total vibrational energy. With the crude adiabatic

approximation assumed for the ns and nb vibrations the

effective hamiltonian Heff for the low-frequency vibration

ns takes the four-dimensional matrix form:

where 1s;iðQiÞ are eigenvalues of the hamiltonians hs;i; 1b;i

the eigenvalues of the hamiltonians hb;i;V 0
ah the matrix

element of the anharmonic coupling between excited states

of ns and nb;V 0
res the vibrational analogue of the exchange

integral. The V 0
ah and V 0

res are defined as:

V 0
ah ¼ kxþs;1xb;1xs;2xb;2lV1;ahlxs;1x

þ
b;1xs;2xb;2lqs;qb

;

¼ kxs;1xb;1x
þ
s;2xb;2lV2;ahlxs;1xb;1xs;2x

þ
b;2lqs;qb

V 0
res ¼ kxþs;1xb;1xs;2xb;2lVreslxs;1xb;1x

þ
s;2xb;2lqs;qb

:

ð4Þ

The energies 1s;iðQiÞ of the high-frequency hydrogen

stretching vibration of individual hydrogen bonds deter-

mine the effective potential governing the low-frequency

hydrogen bond vibrations. Those potentials are assumed

harmonic and to have the same force constant in the upper

and lower states of the hydrogen bond stretching

vibrations:

1s;i ¼
1

2
KQ2

i ; 1þs;i ¼ R þ LQi þ
1

2
DKQ2

i þ
1

2
KQ2

i ;

ð5Þ

where R is vertical excitation energy; L the linear distortion

parameter, DK the quadratic distortion parameter, K the

quadratic force constant.

Introducing dimensionless quantities:

qi ¼ QiðMV="Þ1=2; pi ¼ Pi=ð"MVÞ1=2;

b ¼ L=ð"MV3Þ1=2; Vah ¼ V 0
ah="V; r ¼ R="V;

r0 ¼ 1þb;i="V; dk ¼ DK=MV2
; Vres ¼ V 0

res="V;

ð6Þ

where V is the angular frequency for ns vibration and M is

reduced mass for ns vibration ðK ¼ MV2Þ: We can re-write

the hamiltonian (3) in a compact form, using the two

orthogonal sets of Dirac matrices s and r:

Heff
= h� V ¼

1

2
ðp2

1 þ q2
1Þ1 þ

1

2
ðp2

2 þ q2
2Þ1

þ
1

4
bq1 þ bq2 þ

1

2
dkq2

1 þ
1

2
dkq2

2

� �
ð1 þ s3Þ

þ
1

4
bq1 2 bq2 þ

1

2
dkq2

1 2
1

2
dkq2

2

� �
ð1 þ s3Þr3

þ
1

2
M0s3 þ Vahs1 þ

1

2
Vresð1 þ s3Þr1

þ
1

2
ðr þ r0Þ1 ð7Þ

Heff ¼

TðQ1Þ þ TðQ2Þ þ 1þs;1ðQ1Þ
�
þ1s;2ðQ2Þ þ 1b;1 þ 1b;2;

�
V 0

ah; V 0
res; 0

V 0
ah; TðQ1Þ þ TðQ2Þ þ 1s;1ðQ1Þ

�
þ1s;2ðQ2Þ þ 1

þ
b;1 þ 1b;2;

�
0; 0

V 0
res; 0; TðQ1Þ þ TðQ2Þ þ 1s;1ðQ1Þ

�
þ1þs;2ðQ2Þ þ 1b;1 þ 1b;2;

�
V 0

ah

0; 0; V 0
ah; TðQ1Þ þ TðQ2Þ þ 1s;1ðQ1Þ

�
þ1s;2ðQ2Þ þ 1b;1 þ 1þb;2

�

2
666666666666666666664

3
777777777777777777775

;

ð3Þ
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The dimensionless parameter M0 means the difference

between the vertical excitation energy r of the hydrogen

bond stretching vibration (to the first excited state) and the

excitation energy to the first overtone of the proton bending

vibration r0ð1b;i ¼ 0; 1þb;i ¼ r0Þ: For exact Fermi resonace

M0 ¼ 0: 1 is the unit matrix. The four-dimensional Dirac

matrices have the following forms:

s1 ¼

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

2
6666664

3
7777775; s3 ¼

1 0 0 0

0 21 0 0

0 0 1 0

0 0 0 21

2
6666664

3
7777775;

r1 ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

2
6666664

3
7777775; r3 ¼

1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

2
6666664

3
7777775:

ð8Þ

In the hamiltonians (3) and (7) we have neglected the

resonance interaction between the two hydrogen bonds

involving the overtone states of the bending nb vibrations.

Applying the symmetry operator C2, we can reduce the

four-dimensional hamiltonian (7) to the two-dimensional

hamiltonians hþ and h2. The hamiltonians hþ and h2 are

given by the formulas:

h^ ¼
1

2
ðp2

1 þ q2
1Þ1 þ

1

2
ðp2

2 þ q2
2Þ1 þ

1

2
bq1 þ

1

2
dkq2

1

� �
1

þ
1

2
bq1 þ

1

2
dkq2

1 þ M0

� �
g3

þ Vahg1 ^
1

2
Vresð1 þ g3ÞC2 þ

1

2
ðr þ r0Þ1

ð9Þ

where gi are the two-dimensional Pauli matrices:

g1 ¼
0 1

1 0

" #
; g3 ¼

1 0

0 21

" #
: ð10Þ

The hamiltonians (9) describe the two low-frequency

vibrations which are coupled through the high-frequency

motions. The two mechanisms, i.e. Fermi resonance and

exchange resonance interaction, which are not in general

separable, contribute to the spectra, which are irregular and

no longer exhibit Franck-Condon type progressions.

The IR intensities of the transitions from the ground state

to the excited state of the hydrogen bond stretching

vibrations are given by the formula:

Ijj0 , lkCjlmlCþ
j0 ll

2
exp

2j h� V

kT

� �
; ð11Þ

where cj is the jth wavefunctions of the ground vibrational

state of the ns and nb vibrations; cþ
j0

the j 0th wavefunctions

of the excited vibrational state, m the dipole moment of the

dimer.

The wavefunctions cþ
j0

are given by Eq. (2) and the

wavefunctions cj; in the adiabatic approximation, have the

form:

Cj ¼ a
ðjÞ
0 xs;1xb;1xs;2xb;2: ð12Þ

Neglecting the dependence of the dipole moment m on

the coordinates Q of the low frequency hydrogen bond

vibrations we obtain the intensity given as a combination of

the Franck-Condon integrals between the wavefunctions a
ðjÞ
0

and the wavefunctions a
ðj0Þ
^ and b

ðj0Þ
^ : The intensity is given

by following equation:

Ijj0 , lm0sl
2
{lkaðjÞ

0 l1 ^ C2la
ðj0Þ
^ ll2

þ d2lkaðjÞ
0 l1 ^ C2lb

ðj0Þ
^ ll2}exp

2j h� V

kT

� �
; ð13Þ

where:

m0s ¼ kxs;1xb;1xs;2xb;2lmlxþs;1xb;1xs;2xb;2lqs;qb

and d2 is the ratio of the intensities of the bending overtone

to the fundamental stretching vibrations.

To obtain formula (13) from (11) we have used

symmetrical form of the eigenfunctions of the hamil-

tonian (7):

a
ðj0Þ
^

b
ðj0Þ
^

^C2a
ðj0Þ
^

^C2b
ðj0Þ
^

2
66666664

3
77777775

ð14Þ

derived from the eigenfunctions of the two-dimensional

hamiltonians (9):

a
ðj0Þ
^

b
ðj0Þ
^

2
4

3
5 ð15Þ

The eigenenergies of the hamiltonians h^ (9) and

eigenfunctions a^ and b^ (15) have been calculated

numerically by expanding the eigenfunctions into series

of harmonic oscillators and diagonalising the resulting

energy matrices.

The parameters b; dk;Vres and M0 of the hamiltonians (9)

can be evaluated from the succesive moments Mk of the

infrared band. These moments are defined as:

Mk ¼

X
j;j0

Ijj0 ðE
þ
j0 2 EjÞ

kX
j;j0

Ijj0
; ð16Þ

where Ej are the eigenenergies of the ground state; Eþ
j0

the

eigenenergies of the excited state.

The first and second transition moments describe the

centre of gravity of the spectrum v0 and its theoretical
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half-widths Dv:

v0 ¼ M1 Dv ¼ ðM2 2 M2
1Þ

1=2
: ð17Þ

Assuming, as previously, that the intensity of transitions

to the overtone states is negligible compared to the

fundamental transitions and applying formula (13) we

obtain from (16) and (17):

v0 ¼ r 2 Vres

Dv ¼
1

2
b2 þ

1

2
dk2

� �
coth h�V=2kTð Þ þ V2

ah

� �1=2 ð18Þ

We see that the anharmonic term Vah increases the width

of the spectrum but does not influence its position, whereas

the exchange interaction, described by the parameter Vres;

shifts the centre of gravity but does not change the width.

The formulas (18) can also be generalized for the case of

non-negligible intensity of transitions to the overtone

bending vibrations:

v0 ¼ r 2 Vres þ 2dVahcoswþ uðd2Þ; ð19Þ

Dv ¼

�
1

2

�
b2 þ

1

2
dk2

�
coth ð h�V=2kTÞ:

þV2
ah 2 2dVahM0coswþ uðd2Þ

�1=2

where w is the angle between the transition dipole moments

to these states.

4. Results and discussion

Fig. 1 presents the geometry of the benzoic acid dimer

optimized at the B3LYP/cc-pVTZ level. Optimized

geometries, calculated at the B3LYP/cc-pVTZ and

B3LYP/6-311þþG** levels, are summarized in Table 1

and compared with the experimental data. This table

contains also results of Alcolea Palafox et al. [34] ab initio

B3LYP/6-31G** frequencies calculation for the benzoic

acid dimer. The calculated values reproduce reasonably

well the experimental bond lengths and angles. The largest

differences are observed for the bonds which involve the

hydrogen atoms. The agreement between the calculated and

the experimental angles is slightly worse than for the bond

lengths. The largest discrepancies are for the angles which

involve the oxygen atoms, both in the carboxylic and ester

groups. On the base on our calculations we can conclude

that optimization at the B3LYP/cc-pVTZ level gives better

resuls.

The experimental far-infrared spectrum of the polycrys-

talline benzoic acid in the range 50–450 cm21 and its

standard infrared spectrum in the range 400–4000 cm21,

recorded by us, are presented in Fig. 2. Fig. 3 presents a far-

Raman spectrum in the range 50–400 cm21 and Raman

spectrum in the range 400–4000 cm21. The experimental IR

and Raman frequencies are shown in Table 2. This table

contains also results of our ab initio B3LYP/cc-pVTZ and

B3LYP/6-311þþG** frequencies calculations for the

benzoic acid dimer. To compensate for partial neglect of

electron correlation [39], the calculated frequencies were

uniformly scaled by a factor of 0.9754 and 0.9786 for

B3LYP/6-311þþG** and B3LYP/cc-pVTZ, respectively.

The scaling factor has been determined as the slope of

Table 1

Optimized geometries of benzoic acid dimer by the B3LYP/6-311þþG**

and B3LYP/cc-pVTZ methods

Calculated Experimental B3LYP/

6-31G**a

B3LYP/

6-311þþG**

B3LYP/

cc-pVTZ

Bond lengths (Å)

O1· · ·O2
0 2.663 2.638 2.64b; 2.629c; 2.633d 2.625

O1–H1
0 1.663 1.635 1.64c 1.617

O2–H1 1.000 1.003 0.988c 1.006

C1–O1 1.230 1.229 1.24b; 1.268c; 1.263d 1.237

C1–O2 1.323 1.318 1.29b; 1.275c; 1.275d 1.320

C2–C1 1.486 1.485 1.48b; 1.484d 1.487

C2–C3 1.400 1.396 1.39; 1.390c 1.402

C3–C4 1.391 1.388 1.42b; 1.387d 1.393

C4–C5 1.395 1.391 1.36b; 1.379d 1.397

C5–C6 1.395 1.392 1.37b; 1.384c 1.397

C6–C7 1.390 1.386 1.41b; 1.401d 1.392

C7–C2 1.400 1.396 1.39b; 1.392c 1.402

C3–H3 1.082 1.080 0.79b 1.084

C4–H4 1.084 1.082 0.96b 1.086

C5–H5 1.084 1.082 0.91b 1.086

C6–H6 1.084 1.082 0.96b 1.086

C7–H7 1.083 1.080 0.79b 1.084

Bond angles (8)

O1H1
0O2

0 177.14 178.73

C1O1H1
0 126.84 124.79 124.63

C1O2H1 110.27 110.50 110.41

O1C1O2 123.26 123.44 122b; 123.2d 123.72

O2C1C2 114.50 114.59 118b; 119.9c 114.62

C2C1O1 122.24 121.97 122b; 120.2d 121.66

C1C2C3 121.40 121.42 122b; 118.0c 121.68

C3C2C7 119.90 119.82 119b; 119.9d 119.95

C7C2C1 118.70 118.76 119b; 118.8c 118.73

C2C3C4 119.86 119.91 118b; 120.1d 119.84

C3C4C5 120.02 120.07 123b; 119.9c 120.08

C4C5C6 120.15 120.13 118b; 120.3d 120.17

C5C6C7 119.98 119.97 122b; 119.7c 119.97

C6C7C2 120.02 120.08 120b; 119.8d 119.99

C2C3H3 119.48 119.46 119.36

H3C3C4 120.66 120.63 120.80

C3C4H4 119.85 119.84 119.84

H4C4C5 120.07 120.07 120.08

C4C5H5 119.91 119.92 119.91

H5C5C6 119.94 119.95 119.92

C5C6H6 120.09 120.09 120.10

H6C6C7 119.93 119.94 119.93

C6C7H7 121.12 121.10 121.29

H7C7C2 118.86 118.82 118.72

a Ref. [34].
b Ref. [29].
c Ref. [30].
d Ref. [31].
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the correlation diagram for experimental versus computed

frequencies. We used the MOLEKEL program [37] to visualize

the amplitudes of the normal modes. The corespondence

between the experimental and calculated frequencies was

based on the comparison of frequencies and intensities and

on the assignment of calculated normal modes. The

differences between the calculated and experimental

frequencies are due to anharmonicity, intermolecular

interactions, correlation effects and the limited basis set.

The experimental ns stretching bands of benzoic acid and

its O–D derivative are shown in Figs. 4–5. All spectra

exhibit fine structure. To explain the fine structure we

applied a theoretical model presented in the preceding

section. The intermolecular O· · ·O stretching vibration

observed in the far-Raman spectrum has a frequency

114 cm21 (Table 2). The calculated frequencies for this

mode are 119 and 114 cm21 in B3LYP/cc-pVTZ and

B3LYP/6-311þþG**, respectively. There is another mode

involving intermolecular hydrogen bond stretching

observed in the far-Raman spectrum at 420 cm21.

The calculated frequencies are 419 and 413 cm21 in

B3LYP/cc-pVTZ and B3LYP/6-311þþG**, respectively.

In our theoretical calculations we used these two

experimental Raman frequencies ns, 114 and 420 cm21,

for the intermolecular O· · ·O stretching vibrations. The

coupling between the O–H(D) stretching and the inter-

molecular O· · ·O modes produces bandshapes of the main ns

bands as presented in Figs. 4–5. We were unable to

reproduce the observed infrared bandshapes of the O–H(D)

stretching vibrations in benzoic acid using in our model

other low-frequency modes.

To determine the optimum parameters we performed a

series of calculations of the ns stretching band to minimize

the square root deviation between the experimental and

theoretical spectra. All parameters which were determined

in minimization procedure were increased by 0.01.

The theoretical spectra of benzoic acid and its deuterated

derivative are shown and compared with the experimental

ones in Figs. 4 and 5. The values of the optimized

parameters are given in Table 3. d2 denotes the ratio of

the intensities of the bending overtone to the fundamental

stretching vibrations. The theoretical spectra are shown as d

functions and as bandshapes calculated with Gaussian

functions of the half-width. For benzoic acid-H the positions

and the fine structure of the theoretical ns bands agree well

with the experimental spectrum (Fig. 4). The positions of

the major bands are well reproduced, but the calculated

intensities are too small. The theoretical bandshape is

underestimated. As showed by Flakus [10], bandshapes of

the spectra of C6H5COOH and C6D5COOH are different.

In Table 4 we showed the calculated total atomic charges

in the benzoic acid. The calculated partial charges of the

hydrogen atom H3 are equal 0.168 e and 0.128 e, and of the

oxygen atom O2 are equal 20.393 e and 20.282 e, in

B3LYP/6-311þþG** and B3LYP/cc-pVTZ, respectively.

The calculated bond lenght O2· · ·H3 is equal 2.426 and

2.424 Å, in B3LYP/6-311þþG** and B3LYP/cc-pVTZ,

respectively. The O2· · ·H3 bond lenght is slighty shorter than

hydrogen bond O· · ·O lenght, equal 2.64 Å. This might

probably be the source of another resonance mechanism

between the fundamental nOH(D) stretching and the

dC–H(D) bending vibrations.The effect of deuteration

(Fig. 5) is reproduced correctly. In all cases the ns

bandshapes are formed as a result of the complex

mechanism of coupling between the O–H(D) stretching

vibration and the hydrogen bond stretching intermolecular

O· · ·O vibrations, with linear and quadratic distortions of the

potential energies for these modes in the excited state. This

coupling involves resonance interaction between the two

hydrogen bonds and Fermi resonance between the O–H(D)

stretching and the overtone of the O–H(D) bending

vibrations, all acting at the same time.

The ratios of b and dk parameters used in our

calculation of the ns bands in benzoic acid-H and benzoic

acid-D are: b1H=b1D ø 1:83; b2H =b2D ø 1:60; dk1H =dk1D ø
1:25; dk2H =dk2D ø 1:30: The harmonic value of these

Fig. 2. Far-infrared spectra (a) and infrared spectra (b) of the polycrystalline

benzoic acid.

Fig. 3. Far-Raman spectra (a) and Raman spectra (b) of the polycrystalline

benzoic acid. Samples were excited by light of wavelenght (a) 785 nm and

(b) 514 nm.
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Table 2

Observed and calculated vibrational frequencies for benzoic acid dimer ðn; stretching; d; in-plane bending; g; out-of-plane bending; t; torsion)

No. Sym. Calculated B3LYP n (cm21) Experimental n (cm21) Literature Infrared

n (cm21)

Approximate description

6-311þþG** cc-pVTZ IR Raman

1 Au 21 23 25a ‘Butterfly’

2 Au 32 32 35a Torsion (‘twist’)

3 Bg 40 69 41a oop monomers rocking

4 Bu 59 62 63 71a Cogwheel

5 Bg 62 63 79a t(Ph-COOH) twisting

6 Au 85 85 80 94b t(–COOH)

7 Ag 103 106 110 98 110a H-bond shearing

8 Ag 111 116 114 127a ns(O· · ·O)

9 Au 168 166 146b g(Ph–COOH)

10 Bg 175 183 g(Ph–COOH)

11 Ag 253 257 d(CO· · ·O) þ d(CC)

12 Bu 276 285 283 d(CO· · ·O) þ d(CC)

13 Bu 379 383 387 n(CC) þ d(CC)rings

14 Bg 404 409 413 g(CC)rings

15 Au 405 409 g(CC)rings

16 Ag 413 419 420 n(O· · ·O) þ d(CC)ring

17 Au 435 440 432 421b g(CC)rings

18 Bg 437 443 g(CC)rings

19 Ag 499 503 d(CC)

20 Bu 533 541 552 491b d(CC) þ n(O· · ·O)

21 Ag 616 621 617 d(CC)rings

22 Bu 616 621 619 615b d(CC)rings

23 Ag 653 658 660 d(CC)rings þ d(COOH) sciss.

24 Bu 662 668 668 669b d(CC)rings þ d(COOH) sciss.

25 Bg 677 692 686 g(CC)rings þ g(CC)

26 Au 679 692 685 687b g(CC)rings þ g(CC)

27 Bg 690 713 712 g(CH)rings þ g(CC)

28 Au 706 712 708 711b g(CH)rings þ g(CC)

29 Bg 784 813 796 g(CH)rings þ g(CC)rings

30 Ag 784 791 813 n(CC)rings þ d(COOH) sciss.

31 Bu 796 804 806 767b n(CC)rings þ d(COOH) sciss.

32 Au 811 813 810 813b g(CH)rings þ g(CC)rings

33 Au 845 853 g(CH)rings

34 Bg 845 853 856b g(CH)rings

35 Bg 864 949 g(OH)

36 Bg 937 952 g(CH)rings

37 Au 939 952 920 937b g(CH)rings

38 Au 958 989 936 960b g(OH)

39 Bg 975 985 992 g(CH)rings þ g(OH)

40 Au 975 984 945 974b g(CH)rings þ g(OH)

41 Bg 985 1002 1002 998b g(CH)rings

42 Au 986 1002 g(CH)rings

43 Bu 993 1001 1000 1002b n(CC)rings

44 Ag 993 1002 n(CC)rings

45 Bu 1020 1028 1026 1027b n(CC)rings þ d(CH)

46 Ag 1020 1029 1028 n(CC)rings þ d(CH)

47 Ag 1074 1081 n(CC)rings þ d(CH)

48 Bu 1074 1081 1073 1066b n(CC)rings þ d(CH)

49 Bu 1118 1127 1129 1027b n(Ph–COOH) þ n(CC)rings þ d(CH)

50 Ag 1122 1130 1135 n(Ph–COOH) þ n(CC)rings þ d(CH)

51 Bu 1155 1162 1181 1164b n(CC)rings þ d(CH)

52 Ag 1155 1162 1158 n(CC)rings þ d(CH)

53 Bu 1169 1176 1187 1185b n(CC)rings þ d(CH)

54 Ag 1170 1177 1182 n(CC)rings þ d(CH)

55 Ag 1277 1288 1290 1316b n(Ph–COOH) þ d(OH) þ d(CH)

56 Bu 1285 1296 1275 1322b n(CC)rings þ d(OH) þ d(CH)

57 Ag 1311 1317 1323 n(CC)rings þ d(OH) þ d(CH)

58 Bu 1313 1320 1294 1297b n(CC)rings þ d(OH) þ d(CH)

59 Ag 1317 1327 n(CC)rings þ d(CH)

(continued on next page)
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ratios is close to
ffiffi
2

p
: It should be stressed that our

simulation shows that the coupling between the O–H(D)

and O· · ·O stretching vibrations in benzoic acid gives rise

to important linear and quadratic distortions in the

potentials of the low-frequency O· · ·O stretching

vibrations in the excited states of the O–H(D) vibrations.

The resonance interaction between the two hydrogen

bonds in the benzoic acid-H dimer is large, but in this

case, the Fermi resonance interaction between the

fundamental nOH stretching and the overtone of the

dO–H bending vibrations is small. In the case of benzoic

acid-D the situation is reversed. The resonance interaction

parameter Vres in the benzoic acid-D dimer is small, but

the Fermi resonance interaction parameter Vah is large.

The present model allows to reproduce main features

of the experimental spectra, but it is unable to explain all

Table 2 (continued)

No. Sym. Calculated B3LYP n (cm21) Experimental n (cm21) Literature Infrared

n (cm21)

Approximate description

6-311þþG** cc-pVTZ IR Raman

60 Bu 1317 1327 1327 1380b n(CC)rings þ d(CH)

61 Bu 1417 1437 1426 1430b d(OH)

62 Ag 1438 1453 1447 d(OH) þ d(CH)

63 Bu 1444 1456 1454 1456b d(CH)

64 Ag 1449 1471 d(OH) þ d(CH)

65 Ag 1487 1498 d(CH)

66 Bu 1487 1499 1497 1496b d(CH)

67 Bg 1580 1589 1584 1590b n(CC)rings þ d(CH)

68 Ag 1581 1590 1605 n(CC)rings þ d(CH)

69 Bu 1603 1612 1603 1606b n(CC)rings

70 Ag 1603 1612 1639 n(CC)rings

71 Ag 1645 1646 1699b n(CyO) þ d(OH)

72 Bu 1688 1696 1688 1738b n(C ¼ O) þ d(OH)

2605b

73 Ag 3026 2937 3010 n(OH)

74 Bu 3088 3100 3073 n(CH)rings

75 Ag 3088 3100 3040 n(CH)rings

76 Bu 3101 3113 3041b n(CH)rings

77 Ag 3101 3113 n(CH)rings

78 Bu 3109 3122 3068b n(OH) þ n(CH)rings

79 Ag 3110 3122 3073 n(CH)rings

80 Bu 3118 3045 3012 3012b n(OH)

81 Ag 3124 3138 n(CH)rings

82 Bu 3124 3138 3079b n(OH) þ n(CH)rings

83 Bu 3131 3144 3098b n(CH)rings

84 Ag 3131 3144 n(CH)rings

The calculated frequencies were uniformly scaled by a factor of 0.9754 and 0.9786 for B3LYP/6-311þþG** and B3LYP/cc-pVTZ, respectively.
a Ref. [36].
b Ref. [35].

Fig. 4. Comparison between the experimental (bold solid line), theoretical

(d functions and thin line) ns spectra for benzoic acid-H.

Fig. 5. Comparison between the experimental (bold solid line), theoretical

(d functions and thin line) ns spectra for benzoic acid-D.
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fine details. Further improvements of the model require

taking into account interactions between hydrogen-

bonded dimers within unit cell and an harmonic

potentials for O· · ·O modes, and are planned in future.

Recently a similar model for three deuterated isotopo-

mers of benzoic acid dimer with computed cubic anharmo-

nic constants has been published by Florio et al. [40].

5. Conclusions

The ab initio calculated geometries and frequencies

agree well with the experimental ones. The differences

between the calculated and experimental frequencies are

partly due to anharmonicity, to intermolecular interactions,

the correlation effects and the limited basis set.

The experimental Raman frequencies assigned to the

intermolecular O· · ·O stretching vibrations were used in

our calculations of the fine structure of the ns stretching

bands.

The theoretical model used for these calculations was

based on the Fermi resonance in the carboxylic acid dimer.

The model was modified to encompass an adiabatic

coupling between the high-frequency O–H(D) stretching

and the low-frequency intramolecular O· · ·O stretching

modes. The linear and quadratic distortions of the potential

energy for the low-frequency vibration in the excited state, a

resonance interaction between the two hydrogen bonds in

the dimer and Fermi resonance between the fundamental

nO–H(D) and the overtone of the dO–H(D) vibrations

was done.

The calculated spectra are in fairly good agreement with

the experimental ones. The effect of deuteration was well

reproduced by our model calculations. Our results show that

spectra of benzoic acid and its deuterated analogue can be

successfully simulated by our model.
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